
COMMODORE 128
PROGRAMMER'S
REFERENCE GUIDE

Bantam Computer Books
Ask your bookseller for the books you have missed

THE AMIGADOS MANUAL
by Commodore-Amiga, Inc.

THE APPLE lie BOOK
by Bill O'Brien

THE ART OF DESKTOP
PUBLISHING
By Tony Bove, Cheryl Rhodes,
and Wes Thomas

ARTIFICIAL INTELLIGENCE
ENTERS THE MARKETPLACE
by Larry R. Harris and
Dwight B. Davis

THE BIG TIP BOOK FOR
THE APPLE II SERIES
by Bert Kersey and
Bill Sanders

THE COMMODORE 64 SURVIVAL
MANUAL
by Winn L. Rosch

COMMODORE 128 PROGRAMMER'S
REFERENCE GUIDE
by Commodore Business Machines, Inc.

THE COMPUTER AND THE BRAIN
by Scott Ladd/
The Red Feather Press

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR APPLE II
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR COMMODORE 64
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR IBM PC
by Tim Hartnell

EXPLORING THE UNIX ENVIRONMENT
by The Waite Group/Irene Pasternack

FRAMEWORK FROM THE GROUND UP
by The Waite Group/Cynthia Spoor and
Robert Warren

HOW TO GET THE MOST OUT OF
COMPUSERVE, 2d ed.
by Charles Bowen and David Peyton

HOW TO GET THE MOST OUT OF THE
SOURCE
by Charles Bowen and David Peyton

THE MACINTOSH
by Bill O'Brien

MACINTOSH C PRIMER PLUS
by The Waite Group/Stephen W. Prata

THE NEW jr. A GUIDE TO IBM'S PCjr
by Winn L. Rosch

ORCHESTRATING SYMPHONY
by The Waite Group/Dan Shafer with
Mary Johnson

PC-DOS/MS-DOS
User's Guide to the Most Popular Operating
System for Personal Computers
by Alan M. Boyd

POWER PAINTING: COMPUTER GRAPHICS
ON THE MACINTOSH
by Verne Bauman and Ronald Kidd/
illustrated by Gasper Vaccaro

SMARTER TELECOMMUNICATIONS
Hands-On Guide to On-Line Computer Services
by Charles Bowen and Stewart Schneider

SWING WITH JAZZ: LOTUS JAZZ ON THE
MACINTOSH
by Datatech Publications Corp./S. Michael McCarty

UNDERSTANDING EXPERT SYSTEMS
by The Waite Group/Mike Van Horn

USER'S GUIDE TO THE AT&T PC 6300
PERSONAL COMPUTER
by David B. Peatroy, Ricardo A. Anzaldua,
H. A. Wohlwend, and Datatech Publications
Corp.

COMMODORE 128

PROGRAMMER'S
REFERENCE GUIDE

COMMODORE BUSINESS MACHINES, INC.

BANTAM BOOKS

COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE

A Bantam Book I February 1986

Commodore 64 and Commodore 128 are registered trademarks of Commodore
Electronics. Ltd.
CP/M and CP/M Plus Version 3.0 are registered trademarks of Digital Research

Perfect is a registered trademark of Perfect Software.
TouchTone is a registered trademark of AT&T.
WordStar is a registered trademark of MicroPro International Corporation.

Grateful acknowledgment is made for permission to reprint two bars of Invention
13 (Inventio 13) b\ Johann Sebastian Bach. Sheet music copyright © C. F. Peters,
Corp., New York.

Book design by Ann Gold.

Cover design by Jo Ellen Temple.

All rights reserved.
Copyright © 1986 by Commodore Capital, Inc.
This book may not be reproduced in whole or in part, by
mimeograph or any other means, without permission.
For information address: Bantam Books, Inc.

ISBN 0-553-34292-4

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its trademark, consisting of
the words "Bantam Books" and the portrayal of a rooster, is Registered in U.S.
Patent and Trademark Office and in other countries. Marca Regisirada. Bantam
Books, Inc., 666 Fifth Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

H L 0 9 8 7 6 5 4 3

CONTENTS
Chapter 1
Introduction 1

Chapter 2
BASIC Building Blocks and BASIC 7.0 Encyclopedia 11

Chapter 3
One Step Beyond Simple BASIC 91

Chapter 4
Commodore 128 Graphics Programming 109

Chapter 5
Machine Language on the Commodore 128 123

Chapter 6
How to Enter Machine Language Programs Into the

Commodore 128 181

Chapter 7
Mixing Machine Language and BASIC 197

Chapter 8
The Power Behind Commodore 128 Graphics 207

Chapter 9
Sprites 265

Chapter 10
Programming the 80-Column (8563) Chip 291

Chapter 11
Sound and Music on the Commodore 128 335

Chapter 12

Chapter 13
The Commodore 128 Operating System 401

Chapter 14
CP/M 3.0 on the Commodore 128 477

Chapter 15
The Commodore 128 and Commodore 64 Memory Maps 501

Chapter 16

C128 Hardware Specifications 555

Appendixes 643

Glossary 731

Index 739

ACKNOWLEDGMENTS

Written by Larry Greenley
and

Fred Bowen
Bil Herd
Dave Haynie
Terry Ryan
Von Ertwine
Kim Eckert
Mario Eisenbacher
Norman McVey

The authors are deeply indebted to the many people who have contributed to the
preparation of this book. Special thanks go to Jim Gracely of Commodore Publications,
who reviewed the entire manuscript for technical accuracy and provided important
corrections, clarifications, and user-oriented suggestions, and to Steve Beats and Dave
Middleton of Commodore Software Engineering for their programming assistance and
expertise.

We also want to recognize the contributions of Frank Palaia of Commodore Hardware
Design, who provided expertise in the operation of the Z80 hardware, and of Dave
DiOrio of Commodore Integrated Circuit Design, who provided insight into the design
of the Memory Management Unit and the C128 VIC chip enhancements.

For their extensive technical reviews of the manuscript, we wish to thank Bob Albright,
Pete Bowman, Steve Lam and Tony Porrazza of Commodore Engineering. We also
thank Dan Baker, Dave Street and Carolyn Scheppner of Commodore Software Techni-
cal Support for providing an always available source of technical assistance. In addition,
we want to acknowledge the valuable contributions of members of Commodore Soft-
ware Quality Assurance, especially Mike Colligon, Karen Mackenzie, Pat McAllister,
Greg Rapp, Dave Resavy, and Stacy English.

We also thank Carol Sullivan and Donald Bein for carefully proofreading various
sections of the text, Michelle Dreisbach for typing the manuscript, Marion Dooley for
preparing the art, Jo-Ellen Temple for the cover design, and Nancy Zwack for overall
coordination assistance.

Finally, we would like to acknowledge the unflagging support and guidance provided by
senior Commodore executives Paul Goheen, Harry McCabe and Bob Kenney.

I
INTRODUCTION

The Commodore 128 Personal Computer is a versatile, multimode computer. The
Commodore 128 is the successor to the commercially successful Commodore 64 com-
puter. The principal features of the Commodore 128 are:

128K bytes of RAM, optionally expandable to 256K or 640K
80-column horizontal screen display
Hardware and software compatibility with Commodore 64
CP/M 3.0 operation
Enhanced BASIC language

As this Guide shows, the Commodore 128 has many other new or expanded
capabilities and features. Those listed above, however, are the most significant when
assessing the Commodore 128's capabilities against those of the Commodore 64 and
other microcomputers.

The Commodore 128 is actually three computers in one, with the following three
primary operating modes:

• C128 Mode
• C64 Mode
• CP/M Mode

Two of these primary modes (C128 and CP/M) can operate using either a 40- or
80-column screen display. Following is a summary of the major features of each of the
three primary operating modes.

CI28 MODE

In C128 Mode, the Commodore 128 Personal Computer provides the capabilities and
memory needed to run sophisticated applications, such as word processing, spreadsheets,
and database programs.

C128 Mode features include:

8502 processor running at 1.02 or 2.04 MHz
New, enhanced C128 Kernal
Built-in machine language monitor
Commodore BASIC 7.0 language, with over 140 commands and functions
Special new BASIC 7.0 commands that provide better, quicker and easier ways
to create complex graphics, animation, sound and music programs
40-column text and bit map screen output using VIC II chip
80-column text screen output using 8563 chip

INTRODUCTION

NOTE: The 40- and 80-column screen displays can be used either singly
or simultaneously with two monitors.

Sound (three voices) using SID chip
A 92-key keyboard that includes a full numeric keypad and ESCAPE, TAB,
ALT, CAPS LOCK, HELP, LINE FEED, 40/80 DISPLAY, and NO SCROLL
keys
Access to the full capabilities of the new peripheral devices from Commodore
(1571 fast disk drive, 1902 dual 40/80-column RGBI monitor, etc.)
Access to all standard Commodore serial peripherals
RAM expansion to 256 or 640K with optional RAM expansion modules

C64 MODE

In C64 Mode, the Commodore 128 retains all the capabilities of the Commodore 64,
thus allowing you to use the wide range of available Commodore 64 software.

C64 Mode features include:

8502 processor running at 1.02 MHz
Standard C64 Kernal
BASIC 2.0 language
64K of RAM
40-column output using VIC II chip
Sound (three voices) using SID chip
Standard Commodore 64 keyboard layout except for function keys
All standard Commodore 64 keyboard functions
Access to all Commodore 64 graphics, color and sound capabilities, used
as on a Commodore 64
Compatibility with standard Commodore 64 peripherals, including user port and
serial devices, Datassette, joysticks, composite video monitors, and RF
(TV) output devices

NOTE: The 1571 disk drive will function in C64 Mode, but only
at standard 1541 speed. C64 compatibility requirements make it impossi-
ble for the 1571 to operate in C64 Mode at fast speed.

CP/M MODE

In CP/M Mode, an onboard Z80 microprocessor gives you access to the capabilities of
Digital Research's CP/M Version 3.0, plus a number of new capabilities added by Commodore.

CP/M Mode features include:

Integral Z80 processor running at 2.04 MHz
Disk-based CP/M 3.0 System
128K bytes of RAM (in 64K banks)
40-column screen output using VIC II chip
80-column screen output using 8563 chip
Access to the full keyboard, including the numeric keypad and special keys
Access to the new fast serial disk drive (1571) and the standard serial peripherals
Ability to redefine almost any key
Ability to emulate several terminals (Lear-Siegler ADM31, ADM3A)
Support for various MFM disk formats (IBM, Kaypro, Epson, Osborne)
RAM expansion to 256 or 640K RAM with optional RAM expansion modules

The incorporation of CP/M 3.0 (also called CP/M Plus) into the Commodore 128
makes thousands of popular commercial and public domain software programs available
to the user.

HARDWARE COMPONENTS

The Commodore 128 Personal Computer incorporates the following major hardware
components:

PROCESSORS
8502: Main processor in C128, C64 Modes; I/O support for CP/M; 6502 software-

compatible; runs at 1.02 or 2.04 MHz
Z80: CP/M Mode only; runs at 2.04 MHz

MEMORY
ROM: 64K standard (C64 Kernal plus BASIC; C128 Kernal plus BASIC, character

ROMs and CP/M BIOS); one 32K slot available for software
RAM: 128K in two 64K banks; 16K display RAM for 8563 video chip; 2K x 4 Color RAM

VIDEO
8564: 40-column video (separate versions for NTSC and PAL TV standards)
8563: 80-column video

INTRODUCTION

SOUND

6581: SID Chip

INPUT/OUTPUT
6526: Joystick ports/keyboard scan/cassette
6526: User and serial ports

MEMORY MANAGEMENT
892/: PLA (C64 plus C128 mapping modes)
8922: MMU (Custom gate array)

For details on these and other hardware components see Chapter 16, Commodore
128 Hardware Specifications.

COMPATIBILITY WITH
COMMODORE 64

The Commodore 128 system is designed as an upgrade to the Commodore 64. Accord-
ingly, one of the major features of the Commodore 128 design is hardware and software
compatibility with the Commodore 64 when operating in C64 Mode. This means that in
C64 Mode the Commodore 128 is capable of running Commodore 64 application
software. Also, the Commodore 128 in C64 Mode supports Commodore 64 peripherals
except the CP/M 2.2 cartridge. (NOTE: The Commodore 128's built-in CP/M 3.0
capability supersedes that provided by the external cartridge. This cartridge should not
be used with the Commodore 128 in any mode.)

The C128 Mode is designed as a compatible superset to the C64. Specifically, all
Kernal functions provided by the Commodore 64 are provided in the C128 Kernal.
These functions are also provided at the same locations in the jump table of the C128
Kernal to provide compatibility with existing programs. Zero page and other system
variables are maintained at the same addresses they occupy in C64 Mode. This simpli-
fies interfacing for many programs.

Providing Commodore 64 compatibility means that the new features of the Com-
modore 128 cannot be accessed in C64 Mode. For example, compatibility and memory
constraints preclude modifying the C64 Mode Kernal to support the 1571 fast serial disk
drive. As noted previously, C64 Mode sees this drive as a standard serial disk drive. For
the same reason, C64 Mode does not have an 80-column screen editor, and C64 Mode
BASIC 2.0 cannot use the second 64K bank of memory.

SWITCHING FROM MODE TO MODE

As mentioned before, in the C128 and CP/M Modes the Commodore 128 can provide
both 40-column and 80-column screen displays. This means that the Commodore 128
actually has five operating modes, as follows:

• C128 Mode with 80-column display
• C128 Mode with 40-column display
• C64 Mode (40-column display only)
• CP/M Mode with 80-column display
• CP/M Mode with 40-column display

Figure 1-1 summarizes the methods used to switch from mode to mode.

FROM

TO

CI28
40 COL

CI28
80 COL

OFF

1.

2.

3.

1.

2.

Check that
40/80 key
is UP.
Make sure
that:
a)NoCP/M

system
disk is
in drive

b)No C64
cartridge
is in ex-
pansion
port

Turn com-
puter ON.
Press
40/80 key
DOWN.
Turn com-
puter ON.

C128
40 COL

1. Press
ESC key;
release.

2. Press X
key.

OR
1. Press

40/80 key
DOWN.

2. Press
RESET
button.

C128
80 COL

1. Press ESC
key;
release.

2. Press X
key.

OR
1. Check that

40/80 key
is UP.

2. Press
RESET
button.

C64

1.

2.

3.

1.

2.

3.

Check that
40/80 key
is UP.
Turn com-
puter OFF,
then ON.
Remove
cartridge
if present

Press
40/80 key
DOWN.
Turn com-
puter OFF,
then ON.
Remove
cartridge
if present.

CP/M
40

1.

2.

1.

2.

3.

COL

Check that
40/80 key
is UP.
Turn com-
puter OFF,
then ON.

Press
40/80 key
DOWN.
Remove
CP/M sys-
tem disk
from
drive, if
necessary.
Turn com-
puter OFF,
then ON.

CP/M
80

1.

2.

1.

2.

3.

COL

Check that
40/80 key
is UP.
Turn com-
puter OFF,
then ON.

Check that
40/80 key
is DOWN.
Remove
CP/M sys-
tem disk
from
drive, if
necessary.
Turn com-
puter OFF,
then ON.

Figure l - l . Commodore 128 Mode Switching Chart

INTRODUCTION

FROM

TO

C64

CP/M
40 COL

CP/M
80 COL

OFF

1.

2.

1.

2.

1.

2.

3.

4.

1.

2

3.

4.

Hold
" G " key
DOWN.
Turn com-
puter ON.

OR
Insert C64
cartridge.
Turn com-
puter ON.

Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Check that
40/80 key-
is UP.
Turn com-
puter ON.

Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Press
40/80 key
DOWN.
Turn com-
puter ON.

C128

40

1.

2.

I.

2.

3.

4.

5.

1.

2.

3.

4.

5.

COL

Type GO
64; press
RETURN.
The com-
puter re-
sponds:
ARE YOU
SURE?
Type Y;
press
RETURN.

Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Check that
40/80 key
is UP.
Type:
BOOT
Press
RETURN.

Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Press
40/80 key
DOWN.
Type:
BOOT
Press
RETURN.

C128

80

1.

2.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

COL

Type GO
64; press
RETURN.
The com-
puter re-
sponds:
ARE YOU
SURE?
Type Y;
press
RETURN.

Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Check that
40/80 key
is UP.
Type:
BOOT
Press
RETURN.

Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Check that
40/80 key
is DOWN.
Type:
BOOT.
Press
RETURN.

C64

1.

2.

3.

4.

1.

2.

3.

4.

Check that
40/80 key
is UP.
Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Turn com-
puter OFF.

Press
40/80 key
DOWN.
Turn disk
drive ON.
Insert
CP/M sys-
tem disk
in drive.
Turn com-
puter OFF.

CP/M

40 COL

1.

3.

1.

2.

3.

1.

2,

3.

Turn com-
puter OFF.
Check that
40/80 key
is UP.
Hold
DOWN
C1 key-
while
turning
computer
ON.

OR
Turn com-
puter OFF.
Insert C64
cartridge.
Turn
power ON.

Insert
CP/M util-
ities disk
in drive.
At screen
prompt,
A> type:
DEVICE

CONOUT =

80 COL

Press
RETURN.

CP/M

80

1.

2

3.

1.

2

3.

1.

2.

3.

COL

Turn com-
puter OFF.
Check that
40/80 key
is UP.
Hold
DOWN
G key
while turn-
ing com-
puter ON.

OR
Turn com-
puter OFF.
Insert C64
cartridge.
Turn
power
ON.

Insert
CP/M util-
ities disk
in drive.
At screen
prompt,
A> type:
DEVICE

CONOUT: =

40 COL

Press
RETURN.

Figure I-1. Commodore 128 Mode Switching Chart (continued)

NOTE: If you are using a Commodore 1902 dual monitor, remember to
move the video switch on the monitor from COMPOSITE or SEPA-
RATED to RGBI when switching from 40-column to 80-column display;
reverse this step when switching from 80 to 40 columns. Also, when
switching between modes remove any cartridges from the expansion port.
You may also have to remove any disk (e.g., CP/M) from the disk drive.

CP/M 3.0 SYSTEM RELEASES

When you send in your C128 warranty card, your name will be added to a list
which makes you eligible for CP/M system release dates.

HOW TO USE THIS GUIDE

This guide is designed to be a reference tool that you can consult whenever you need
detailed technical information on the structure and operation of the Commodore 128
Personal Computer. Since many of the design features of the Commodore 128 can be
viewed from various aspects, it may be necessary to consult several different chapters to
find the information you want. Note that certain groups of chapters form logical sequences
that cover in detail an extended topic like BASIC, graphics, or machine language.

The following chapter summaries should help you pinpoint what chapter or
chapters are most likely to provide the answer to a specific question or problem.

CHAPTER 2. BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA—
Defines and describes the structural and operational components of the BASIC
language, including constants, variables and arrays, and numeric and string ex-
pressions and operations.

CHAPTER 3. ONE STEP BEYOND SIMPLE BASIC—Provides routines (menu,
keyboard buffer, loading, programming function keys) and techniques ("crunch-
ing" or saving memory; debugging and merging programs; relocating BASIC)
that can be incorporated in your own programs. Provides modem-related informa-
tion (how to generate TouchTone® frequencies, how to detect telephone ringing,
etc.) plus technical specifications for Commodore Modem/1200 and Modem/300.

CHAPTER 4. COMMODORE 128 GRAPHICS PROGRAMMING—Describes the
general BASIC 7.0 graphics commands (COLOR, GRAPHIC, DRAW, LO-
CATE, BOX, CIRCLE, PAINT) and gives annotated examples of use, including
programs. Describes the structure and general function of the color modes and
character and bit map graphics modes that are fundamental to Commodore 128
graphics.

INTRODUCTION

CHAPTER 5. MACHINE LANGUAGE ON THE COMMODORE 128—Defines,
with examples, machine language (ML) and associated topics, including the
Kernal; the 8502 registers, binary and hexadecimal numbers, and addressing
modes. Defines, with examples, types of ML instructions (op codes, etc.).
Includes 8502 instruction and addressing table.

CHAPTER 6. HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE
COMMODORE 128—Describes, with examples, how to enter ML programs by
using the built-in Machine Language Monitor or by POKEing decimal op-code
values with a BASIC program. Defines, with examples, the ML Monitor commands.

CHAPTER 7. MIXING MACHINE LANGUAGE AND BASIC—Describes, with
examples, how to combine BASIC and ML instructions in the same program by
using BASIC READ, DATA, POKE and SYS commands. Shows where to place
ML programs in memory.

CHAPTER 8. THE POWER BEHIND COMMODORE 128 GRAPHICS—Describes
the C128 Mode memory banking concept and tells how to manage banked
memory. Defines the use of shadow registers. Describes how screen, color and
character memory are handled in BASIC and machine language, for both character
and bit map modes. Shows how to redefine the character set. Describes use of
split-screen modes. Includes a tabular graphics programming summary.

CHAPTER 9. SPRITES—Describes programming of sprites or MOBs (movable object
blocks). Defines and shows how to use the BASIC 7.0 sprite-related commands
(SPRITE, SPRDEF, MOVSPR, SSHAPE, GSHAPE, SPRSAV). Provides anno-
tated examples of use, including programs.

CHAPTER 10. PROGRAMMING THE 80-COLUMN (8563) CHIP—Defines the
8563 registers and describes, with machine language examples, how to program
the 80-column screen in character and bit map modes.

CHAPTER II. SOUND AND MUSIC ON THE COMMODORE 128—Defines the
BASIC 7.0 sound and music commands (SOUND, ENVELOPE, VOL, TEMPO,
PLAY, FILTER). Describes how to code a song in C128 Mode. Defines in detail
the Sound Interface Device (SID) and how to program it in machine language.

CHAPTER 12. INPUT/OUTPUT GUIDE—Describes software control of peripheral
devices connected through I/O ports, including disk drives, printers, other User
Port and Serial Port devices, the Datassette, and Controller Port devices. Provides
pin-out diagrams and pin descriptions for all ports.

CHAPTER 13. THE COMMODORE 128 OPERATING SYSTEM—Describes, with
examples, the operating system (Kernal), which controls the functioning of the
Commodore 128; includes the Kernal Jump Table, which lists the ROM entry
points used to call the Kernal routines; defines each Kernal routine; defines the
C128 Screen Editor. Describes the Memory Management Unit (MMU), defines
the MMU registers, tells how to select and switch banks in BASIC and ML, and
tells how to predefine memory configurations.

CHAPTER 14. CP/M 3.0 ON THE COMMODORE 128—Summarizes the Commo-
dore version of CP/M 3.0. Defines the general system layout and the operating
system components (CCP, BIOS and BDOS). Describes the Commodore enhance-
ments to CP/M 3.0. (Additional details on CP/M 3.0 are given in Appendix K.)

CHAPTER IS. COMMODORE 128 AND COMMODORE 64 MEMORY MAPS—
Provides detailed memory maps for C128 and C64 modes. (The Z80 memory
map is shown in Appendix K.)

CHAPTER 16. HARDWARE SPECIFICATIONS—Includes technical specifications for
Commodore 128 hardware components (8563, 8564, etc.).

APPENDIXES A through L—Provide additional technical information and/or a more
convenient grouping of information supplied elsewhere in the Guide (e.g., pinout
diagrams).

GLOSSARY—Provides standard definitions of technical terms.

2
BASIC
BUILDING
BLOCKS AND
BASIC 7.0
ENCYCLOPEDIA

The BASIC language is composed of commands, operators, constants, variables, arrays
and strings. Commands are instructions that the computer follows to perform an
operation. The other elements of BASIC perform a variety of functions, such as
assigning values to a quantity, passing values to the computer, or directing the computer
to perform a mathematical operation. This section describes the structure and functions
of the elements of the BASIC language.

COMMANDS AND STATEMENTS

By definition, commands and statements have the following distinctions. A command is
a BASIC verb which is used in immediate mode. It is not preceded by a program line
number and it executes immediately after the RETURN key is pressed. A statement is
a BASIC verb which is contained within a program and is preceded by a line number.
Program statements are executed with the RUN command followed by the RETURN key.

Most commands can be used within a program. In this case the command is
preceded by a line number and is said to be used in program mode. Many commands
also can be used outside a program in what is called direct mode. For example, LOAD
is an often-used direct mode command, but you can also include LOAD in a program.
GET and INPUT are commands that only can be used in a program; otherwise, an
ILLEGAL DIRECT ERROR occurs. While PRINT is usually included within a
program, you can also use PRINT in direct mode to output a message or numeric value
to the screen, as in the following example:

PRINT "The Commodore 128" R E T U R N

Notice that the message is displayed on the screen as soon as you press the return
key. The following two lines display the same message on the screen. The first line is a
program mode statement; the second line is a direct mode command.

10 PRINT "The Commodore 128" R E T U R N

RUN RETURN

It is important to know about the concepts behind memory storage before examin-
ing the Commodore BASIC language in detail. Specifically, you need to understand
constants, variables and arrays.

NUMERIC MEMORY STORAGE:
CONSTANTS, VARIABLES AND ARRAYS

There are three ways to store numeric information in Commodore BASIC. The first way
is to use a constant. A constant is a form of memory storage in which the contents
remain the same throughout the course of a program. The second type of memory
storage unit is a variable. As the name indicates, a variable is a memory storage cell in

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 13

which the contents vary or change throughout the course of a program. The last way to store
information is to use an array, a series of related memory locations consisting of variables.

Each of these three units of memory storage can have three different types of
information or data assigned. The three data types are INTEGER, FLOATING-POINT
or STRING. Integer data is numeric, whole number data—that is, numbers without
decimal points. Floating-point is numeric data including fractional parts indicated with a
decimal point. String data is a sequential series of alphanumeric letters, numbers and
symbols referred to as character strings. The following paragraphs describe these three
data types and the way each memory storage unit is assigned different data type values.

CONSTANTS: INTEGER,
FLOATING-POINT AND STRING

INTEGER CONSTANTS
The value assigned to a constant remains unchanged or constant throughout a program.
Integer constants can contain a positive or negative value ranging from -32768 through
+ 32767. If the plus sign is omitted, the C128 assumes that the integer is positive.
Integer constants do not contain commas or decimal points between digits. Leading
zeros are ignored. Integers are stored in memory as two-byte binary numbers, which
means a constant requires 16 bits or two bytes of memory to store the integer as a base
two number. The following are examples of integer constants:

I
1000
-32
0
-32767

FLOATING-POINT CONSTANTS
Floating-point constants contain fractional parts that are indicated by a decimal
point. They do not contain commas to separate digits. Floating-point constants may be
positive or negative. If the plus sign is omitted, it is assumed that the number is
positive. Again, leading zeros are unnecessary and ignored. Floating-point constants are
represented in two ways depending on their value:

1. Simple Number Notation
2. Scientific Notation

In simple number notation, the floating-point number is calculated to ten digits of
precision and stored using five bytes, but only nine digits are displayed on the screen or
printer. If the floating-point number is greater than nine digits, it is rounded according to
the tenth digit. If the tenth digit is greater than five, the ninth digit is rounded to the next
higher digit. If the tenth digit is less than five, the ninth digit is rounded to the next
lower digit. The rounding of floating-point numbers may become a factor when calculat-

ing values based upon floating-point numbers greater than nine digits. Your program
should test floating-point results and take them into consideration when basing these
values on future calculations.

As mentioned, floating-point numbers are displayed as nine digits. If the value of a
floating-point constant is less than .01 or greater than 999999999, the number is
displayed on the screen or printer in scientific notation. For example, the number
12345678901 is displayed as 1.23456789E+ 10. Otherwise, the simple number notation
is displayed. A floating-point constant in scientific notation appears in three parts:

1. The mantissa is the leftmost number separated by a decimal point.
2. The letter E indicates that the number is displayed in exponential (scientific)

notation.
3. The exponent specifies the power of ten to which the number is raised and the

number of places the decimal point is moved in order to represent the number
in simple number notation.

The mantissa and exponent can be positive or negative. The exponent can be
within the range -39 to +38. If the exponent is negative, the decimal point moves to
the left representing it as a simple number. If the exponent is positive, the decimal
point moves to the right representing it in simple number notation.

The Commodore 128 limits the size of floating-point numbers. The highest
number you can represent in scientific notation is 1.70141183E +38. If you try to
represent a number larger than that, an OVERFLOW ERROR occurs. The smallest
number you can represent in scientific notation is 2.93873588E-39. If you try to
represent a number smaller than that, no error occurs but a zero is returned as the value.
You should therefore test floating-point values in your programs if your calculations are
based on very small numbers and the results depend on future calculations. Here are
examples of floating-point constants in simple number notation and others in scientific
notation:

SIMPLE NUMBER

9.99
.0234

+10.01
-90.23

SCIENTIFIC

22.33E + 20
99999.234E-23

-45.89E-11
-3.14E+17

NOTE: The values in either column are not equivalent.

STRING CONSTANTS
A string constant, as mentioned, is a sequential series of alphanumeric characters
(numbers, letters and symbols). A string constant can be as long as a 160-character input

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 15

line, minus the line number and any other information appearing on that program line.
By concatenating strings together, you may form a string as long as 255 characters. The
string may contain numbers, letters, and even decimal points and commas. However,
the string cannot contain the double quote (") character, since this character delimits or
marks the beginning or ending of the string. You can represent a double quote character
within a string using CHR$(34). You can omit the closing double quote character of a
string if it is the last statement in a line of a program.

A string can even be assigned a null value, meaning no characters are actually
assigned to it. Assign a string a null value by omitting characters between the double
quotes and follow the opening double quote directly with a closing double quote. Here
are some examples of string constants:

"Commodore 128"
"qwerl234!#$%()*.:,"
" " (null string)
"John and Joan"

VARIABLES: INTEGER,
FLOATING-POINT AND STRING
Variables are units of memory storage that represent varying data values within a
program. Unlike constants, variables may change in value throughout the course of a
program. The value assigned to a variable can be an integer, a floating-point number, or
a string. You can assign a value to a variable as the result of a mathematical calculation.
Variables are assigned values using an equals sign. The variable name appears to the left
of the equals sign and the constant or calculation appears to the right. When you refer to
a variable in a program before you assign it a value, the variable value becomes zero if
it is an integer or floating-point number. It becomes a null string if the variable is a
string.

Variable names can be any length, but for efficiency you should limit the size
of the variable to a few characters. Only the first two characters of a variable name
are significant. Therefore, do not begin the names of two different variables with
the same two characters. If you do, the C128 will interpret them as the same variable
name.

The first character of a variable name must be a letter. The rest of the
variable name can be any letter or number from zero to nine. A variable name
must not contain any BASIC keyword. If you include a BASIC keyword in
a variable name, a SYNTAX ERROR occurs. BASIC keywords include all
BASIC statements, commands, function names, logical operator names and reserved
variables.

You can specify the data type of a variable by following the variable name with
a percent sign (%) if the variable is an integer value, or a dollar sign if the
variable is a string. If no character is specified, the C128 assumes that the variable
value is a floating-point number. Here are some examples of variables and how they are
assigned:

A = 3.679 (floating-point)
Z% = 714 (integer)
F$ = "CELEBRATE THE COMMODORE 128" (string)
T = A + Z% (floating-point)

Count % = Count % + 1 (integer)
G$ = "SEEK A HIGHER LEVEL OF CONSCIOUSNESS" (string)
H$ = F$ + G$ (string)

ARRAYS: INTEGER,
FLOATING-POINT AND STRING
Although arrays were defined earlier in this chapter as series of related variables or
constants, you refer to them with a single integer, floating point or string variable name.
All elements have the same data type as the array name. To access successive elements
within the array, BASIC uses subscripts (indexed variables) to refer to each unique storage
compartment in the array. For example, the alphabet has twenty-six letters. Assume an
array called "ALPHA" is constructed and includes all the letters of the alphabet. To
access the first element of the array, which is also the first letter of the alphabet (A),
label Alpha with a subscript of zero:

ALPHA$(0) A

To access the letter B, label Alpha with a subscript of one:

ALPHA$(1) B

Continue in the same manner to access all of the elements of the array ALPHA, as in
the following:

ALPHA$(2) C
ALPHA$(3) D
ALPHA$(4) E
ALPHA$(5) Z

Subscripts are a convenient way to access elements within an array. If subscripts
did not exist, you would have to assign separate variables for all the data that would
normally be accessed with a subscript. The first subscript within an array is zero.

Although arrays are actually stored sequentially in memory, they can be multi-
dimensional. Tables and matrices are easily manipulated with two-dimensional arrays.
For example, assume you have a matrix with ten rows and ten columns. You need 100
storage locations or array elements in order to store the whole matrix. Even though
your matrix is ten by ten, the elements in the array are stored in memory one
after the other for 100 hundred locations.

You specify the number of dimensions in the arrays with the DIM statement. For
example:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 17

10 DIM A(99)

dimensions a one-dimensional floating-point array with 100 elements. The following are
examples of two-, three- and four-dimensional integer arrays:

20 DIM B(9, 9) (100 elements)
30 DIM C(20,20,20) (9261 elements)
40 DIM D(10,15,15,10) (30976 elements)

In theory the maximum number of dimensions in an array is 255, but you cannot
fit a DIMension statement that long on a 160-character line. The maximum number of
DIMension statements you can fit on a 160-character line is approximately fifty. The
maximum number of elements allowed in each dimension is 32767'. In practice, the size
of an array is limited to the amount of available memory. Most arrays are one-, two- or
three-dimensional. If an array contains fewer than ten elements, there is no need for a
DIM statement since the C128 automatically dimensions variable names to ten elements.
The first time you refer to the name of the undimensioned array (variable) name, the
C128 assigns zero to the value if it is a numeric array, or a null string if it is a string
array.

You must separate the subscript for each dimension in your DIMension statement
with a comma. Subscripts can be integer constants, variables, or the integer result of an
arithmetic operation. Legal subscript values can be between zero and the highest
dimension assigned in the DIMension statement. If the subscript is referred to outside of
this range, a BAD SUBSCRIPT ERROR results.

The type of array determines how much memory is used to store the integer,
floating-point or string data.

Floating-point string arrays take up the most memory; integer arrays require the
least amount of memory. Here's how much memory each type of array requires:

5 bytes for the array name
+ 2 bytes for each dimension
+ 2 bytes for each integer array element

OR + 5 bytes for each floating-point element
OR + 3 bytes for each string element
AND + 1 byte per character in each string element

Keep in mind the amount of storage required for each type of array. If you only
need an integer array, specify that the array be the integer type, since floating-point
arrays require much more memory than does the integer type.

Here are some example arrays:

A$(0) = "GROSS SALES" (string array)
MTH$(K%) = "JAN" (string array)
G2%(X) = 5 (integer array)
CNT%(G2%(X)) = CNT%(l)-2 (integer array)
FP(12*K%) = 24.8 (floating-point array)

SUM(CNT%(1)) = FP*K% (floating-point array)
A(5) = 0 Sets the 5th element in the 1 dimensional array

called " A " equal to 0
B(5,6) = 26 Sets the element in row position 5 and column

position 6 in the 2 dimensional array called " B "
equal to 26

C(l,2,3)=100 Sets the element in row position 1, column
position 2, and depth position 3 in the 3 dimen-
sional array called " C " equal to 100

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An expression can be a
single constant, simple variable, or an array variable of any type. It also can be a
combination of constants and variables with arithmetic, relational or logical operators
designed to produce a single value. How operators work is explained below. Expres-
sions can be separated into two classes:

1. ARITHMETIC
2. STRING

Expressions have two or more data items called operands. Each operand is
separated by a single operator to produce the desired result. This is usually done by
assigning the value of the expression to a variable name.

An operator is a special symbol the BASIC Interpreter in your Commodore 128
recognizes as representing an operation to be performed on the variables or constant
data. One or more operators, combined with one or more variables and/or constants
form an expression. Arithmetic, relational and logical operators are recognized by
Commodore 128 BASIC.

ARITHMETIC EXPRESSIONS
Arithmetic expressions yield an integer or floating-point value. The arithmetic operators
(+ , - , * , / , |) are used to perform addition, subtraction, multiplication, division and
exponentiation operations, respectively.

ARITHMETIC OPERATIONS
An arithmetic operator defines an arithmetic operation which is performed on the two
operands on either side of the operator. Arithmetic operations are performed using
floating-point numbers. Integers are converted to floating-point numbers before an
arithmetic operation is performed. The result is converted back to an integer if it is
assigned to an integer variable name.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 19

ADDITION (+)
The plus sign (+) specifies that the operand on the right is added to the operand on the
left.

EXAMPLES:

2 + 2
A + B+C
X% + 1
BR+10E-2

SUBTRACTION (-)
The minus sign (-) specifies that the operand on the right is subtracted from the operand
on the left.

EXAMPLES:

4-1
100^64
A-B
55-142

The minus also can be used as a unary minus which is the minus sign in front of a
negative number. This is equal to subtracting the number from zero (0).

EXAMPLES:

-5
-9E4
^B
4-(-2) (same as 4 + 2)

MULTIPLICATION (*)
An asterisk (*) specifies that the operand on the left is multiplied by the operand on the
right.

EXAMPLES:

100*2
50*0
A*X1
R%*14

DIVISION (/)
The slash (/) specifies that the operand on the left is divided by the operand on the
right.

EXAMPLES:

10/2
6400/4
A/B
4E2/XR

EXPONENTIATION (f)
The up arrow (f) specifies that the operand on the left is raised to the power specified
by the operand on the right (the exponent). If the operand on the right is a 2, the number
on the left is squared; if the exponent is a 3, the number on the left is cubed, etc. The
exponent can be any number as long as the result of the operation gives a valid
floating-point number.

EXAMPLES:

2 f 2 Equivalent to 2*2
3 f 3 Equivalent to 3*3*3
4 | 4 Equivalent to 4*4*4*4

AB | CD
3 f -2 Equivalent to lA*lA

RELATIONAL OPERATORS

The relational operators (<, = , > , < = ,> = ,<>) are primarily used to compare the
values of two operands, but they also produce an arithmetic result. The relational
operators and the logical operators (AND, OR, and NOT), when used in comparisons,
produce an arithmetic true/false evaluation of an expression. If the relationship stated in
the expression is true, the result is assigned an integer value of - 1 . If it's false a value of
0 is assigned. Following are the relational operators:

< LESS THAN
EQUAL TO

> GREATER THAN
< = LESS THAN OR EQUAL TO
> = GREATER THAN OR EQUAL TO
<> NOT EQUAL TO

EXAMPLES:

5-4=1 result true (-1)
14>66 result false (0)

15>=15 result true (-1)

Relational operators may be used to compare strings. For comparison purposes,
the letters of the alphabet have the order A<B<C<D, etc. Strings are compared by

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 21

evaluating the relationship between corresponding characters from left to right (see
string operations).

EXAMPLES:

" A " < " B " result true (-1)
" X " = "YY" result false (0)
BB$ <> CC$ result false (0) if they are the same

Numeric data items can only be compared (or assigned) with other numeric items.
The same is true when comparing strings; otherwise, the BASIC error message ?TYPE
MISMATCH occurs. Numeric operands are compared by first converting the values of
either or both operands from integer to floating-point form, as necessary. Then
the relationship between the floating-point values is evaluated to give a true/false
result.

At the end of all comparisons, you get an integer regardless of the data type
of the operand (even if both are strings). Because of this, a comparison of two
operands can be used as an operand in performing calculations. The result will
be -1 or 0 and can be used as anything but a divisor, since division by zero is
illegal.

LOGICAL OPERATORS
The logical operators (AND, OR, NOT) can be used to modify the meaning of the
relational operators or to produce an arithmetic result. Logical operators can produce
results other than -1 and 0, although any nonzero result is considered true when testing
for a true/false condition.

The logical operators (sometimes called Boolean operators) also can be used to
perform logical operations on individual binary digits (bits) in two operands. But when
you're using the NOT operator, the operation is performed only on the single operand to
the right. The operands must be in the integer range of values (-32768 to +32767)
(floating-point numbers are converted to integers) and logical operations give an integer
result.

Logical operations are performed bit-by-corresponding-bit on the two operands.
The logical AND produces a bit result of 1 only if both operand bits are 1. The logical
OR produces a bit result of 1 if either operand bit is 1. The logical NOT is the opposite
value of each bit as a single operand. In other words, "If it's NOT 1 then it is 0. If it's
NOT 0 then it is 1."

The exclusive OR IF (XOR) doesn't have a logical operator but it is performed as
part of the WAIT statement or as the XOR function. Exclusive-OR means that if the
bits of two operands are set and equal, then the result is 0; otherwise the result is 1.

Logical operations are defined by groups of statements which, when taken to-
gether, constitute a Boolean "truth table" as shown in Table 2-1.

The AND operation results in a 1 only if both bits are 1:
1 AND 1 = 1
0 AND 1 = 0
1 AND 0 = 0
0 AND 0 = 0

The OR operation results in a 1 if either bit is 1:
1 OR 1 = 1
0 OR 1 = 1
1 OR 0=1
0 OR 0 = 0

The NOT operation logically complements each bit:
NOT 1 = 0
NOT 0 = 1

The exclusive OR (XOR) is a function (not a logical operator):
1XOR 1=0
1 XOR0=1
0 XOR 1 = 1
0 X O R 0 = 0

Table 2-1 Boolean Truth Table

The logical operators AND, OR and NOT specify a Boolean arithmetic operation
to be performed on the two operand expressions on either side of the operator. In the
case of NOT, only the operand on the right is considered. Logical operations (or
Boolean arithmetic) aren't performed until all arithmetic and relational operations in an
expression have been evaluated.

EXAMPLES:

IF A = 100 AND B = 100 THEN 10 (if both A and B have a value of 100 then

the result is true)

A = 96 AND 32: PRINT A (A = 32)

IF A = 100 OR B = 100 THEN 20 (if A or B is 100 then the result is true)

A = 64 OR 32: PRINT A (A = 96)

X = NOT 96 (result is -97 (two's complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to a fixed hierarchy.
Certain operations have a higher priority and are performed before other operations. The
normal order of operations can be modified by enclosing two or more operands within

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 23

parentheses f), creating a "subexpression." The parts of an expression enclosed in pa-
rentheses will be reduced to a single value before evaluating parts outside the parentheses.

When you use parentheses in expressions, pair them so that you always have an
equal number of left and right parentheses. If you don't, the BASIC error message
?SYNTAX ERROR will occur.

Expressions that have operands inside parentheses may themselves be enclosed in
parentheses, forming complex expressions of multiple levels. This is called nesting.
Parentheses can be nested in expressions to a maximum depth of ten levels—ten
matching sets of parentheses. The innermost expression has its operations performed
first. Some examples of expressions are:

A + B
C f (D E)/2
((X-C^ (D + E)/2)*10)+l
GG$>HH$
JJ$ + "MORE"
K%=1 A N D M O X
K% = 2 OR (A = B AND M<X)
NOT(D = E)

The BASIC Interpreter performs operations on expressions by performing arithme-
tic operations first, then relational operations, and logical operations last. Both arithme-
tic and logical operators have an order of precedence (or hierarchy of operations) within
themselves. Relational operators do not have an order of precedence and will be
performed as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of precedence, then
operations are performed from left to right. When performing operations on expressions
within parentheses, the normal order of precedence is maintained. The hierarchy of
arithmetic and logical operations is shown in Table 2-2 from first to last in order of
precedence. Note that scientific notation is resolved first.

OPERATOR

t
-
*/

+

> = <
NOT

AND
OR

DESCRIPTION

Exponentiation

Negation (Unary Minus)

Multiplication
Division

Addition
Subtraction

Relational Operations

Logical NOT
(Integer Two's Complement)

Logical AND

Logical OR

EXAMPLE

BASE t EXP

-A

AB * CD
EF/GH

CNT + 2
J K - P Q

A < = B

NOT K%

JK AND 128
PQ OR 15

Table 2-2 Hierarchy of Operations Performed on Expressions

STRING OPERATIONS
Strings are compared using the same relational operators (= , < > , < = , > = , < , >)
that are used for comparing numbers. String comparisons are made by taking one
character at a time (left-to-right) from each string and evaluating each character
code position from the character set. If the character codes are the same, the char-
acters are equal. If the character codes differ, the character with the lower CBM ASCII
code number is lower in the character set. The comparison stops when the end of either
string is reached. All other factors being equal, the shorter string is considered less than
the longer string. Leading or trailing blanks are significant in string evaluations.

Regardless of the data types, all comparisons yield an integer result. This is
true even if both operands are strings. Because of this, a comparison of two string
operands can be used as an operand in performing calculations. The result will
be -1 or 0 (true or false) and can be used in any mathematical operation but division
since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied " < > 0 " follows them. This means that if an
expression is true, the next BASIC statement on the same program line is executed. If
the expression is false, the rest of the line is ignored and the next line in the program is
executed.

Just as with numbers, you can perform operations on string variables. The only
arithmetic string operator recognized by BASIC 7.0 is the plus sign (+) which is used
to perform concatenation of strings. When strings are concatenated, the string on the
right of the plus sign is appended to the string on the left, forming a third string. The
result can be printed immediately, used in a comparison, or assigned to a variable name.
If a string data item is compared with (or set equal to) a numeric item, or vice-versa, the
BASIC error message ?TYPE MISMATCH occurs. Some examples of string expres-
sions and concatenation are:

10 A$="FILE": B$="NAME"
20 NAM$ = A$ + B$ (yields the string "FILENAME")
30 RES$ = "NEW" + A$ + B$ (yields the string "NEWFILENAME")

ORGANIZATION OF THE
BASIC 7.0 ENCYCLOPEDIA

This section of Chapter 2 lists BASIC 7.0 language elements in an encyclopedia
format. It provides an abbreviated list of the rules (syntax) of Commodore 128
BASIC 7.0, along with a concise description of each. Consult the Commodore 128
System Guide BASIC 7.0 Encyclopedia (Chapter 5) included with your computer for a

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 25

more detailed description of each command. BASIC 7.0 includes all the elements of
BASIC 2.0

The different types of BASIC operations are listed in individual sections, as
follows:

1. Commands and Statements: the commands used to edit, store and erase
programs, and the BASIC program statements used in the numbered lines of a
program.

2. Functions: the string, numeric and print functions.
3. Reserved Words and Symbols: the words and symbols reserved for

use by the BASIC 7.0 language, which cannot be used for any other
purpose.

COMMAND AND
STATEMENT FORMAT

The command and statement definitions in this encyclopedia are arranged in the follow-
ing format:

Command name—

Brief definition—

Command format—

Discussion of
format and use—

EXAMPLES:

Example(s)—

AUTO
Enable/disable automatic line numbering

AUTO [line#]

This command turns on the automatic line-numbering feature.
This eases the job of entering programs, by automatically typing
the line numbers for the user. As each program line is entered by
pressing RETURN, the next line number is printed on the screen,
and the cursor is positioned two spaces to the right of the line
number. The line number argument refers to the desired incre-
ment between line numbers. AUTO without an argument turns off
the auto line numbering, as does RUN. This statement can be
used only in direct mode (outside of a program).

AUTO 10 Automatically numbers program lines in incre-
ments of 10.

AUTO 50 Automatically numbers lines in increments of 50.

AUTO Turns off automatic line numbering.

The boldface line that defines the format consists of the following elements:

DLOAD "program name" [,D0,U8]
t t

keyword argument additional arguments
(possibly optional)

The parts of the command or statement that must be typed exactly as shown are in
capital letters. Words the user supplies, such as the name of a program, are not
capitalized.

When quote marks (" ") appear (usually around a program name or filename), the
user should include them in the appropriate place, according to the format example.

Keywords are words that are part of the BASIC language. They are the central part of a
command or statement, and they tell the computer what kind of action to take.
These words cannot be used as variable names. A complete list of reserved words
and symbols is given at the end of this chapter.

Keywords, also called reserved words, appear in upper-case letters. Key-
words may be typed using the full word or the approved abbreviation. (A full list
of abbreviations is given in Appendix I). The keyword or abbreviation must be
entered correctly or an error will result. The BASIC and DOS error messages are
defined in Appendices A and B, respectively.

Arguments, also called parameters, appear in lower-case letters. Arguments comple-
ment keywords by providing specific information to the command or statement.
For example, the keyword LOAD tells the computer to load a program while the
argument "program name" tells the computer which specific program to load. A
second argument specifies from which drive to load the program. Arguments
include filenames, variables, line numbers, etc.

Square Brackets [] show optional arguments. The user selects any or none of the
arguments listed, depending on requirements.

Angle Brackets <> indicate the user MUST choose one of the arguments listed.
A Vertical Bar | separates items in a list of arguments when the choices are limited to

those arguments listed. When the vertical bar appears in a list enclosed in
SQUARE BRACKETS, the choices are limited to the items in the list, but the
user still has the option not to use any arguments. If a vertical bar appears within
angle brackets, the user MUST choose one of the listed arguments.

Ellipsis . . . (a sequence of three dots) means an option or argument can be repeated more
than once.

Quotation Marks " " enclose character strings, filenames and other expressions.
When arguments are enclosed in quotation marks, the quotation marks must be
included in the command or statement. In this encyclopedia, quotation marks are
not conventions used to describe formats; they are required parts of a command or
statement.

Parentheses () When arguments are enclosed in parentheses, they must be included in
the command or statement. Parentheses are not conventions used to describe
formats; they are required parts of a command or statement.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 27

Variable refers to any valid BASIC variable names, such as X, A$, T%, etc.
Expression refers to any valid BASIC expressions, such as A + B + 2,.5*(X + 3),

etc.

NOTE: For all DOS commands, variables and expressions used as
arguments must be endorsed in parentheses.

BASIC COMMANDS AND
STATEMENTS

APPEND
Append data to the end of a sequential file

APPEND #logical file number,"filename"[,Ddrive number][<ON|,>Udevice]

EXAMPLES:

Append # 8, "MYFILE" OPEN logical file 8 called "MYFILE", and prepare
to append with subsequent PRINT # statements.

Append #7,(A$),D0,U9 OPEN logical file named by the variable in A$ on
drive 0, device number 9, and prepare to APPEND.

AUTO
Enable/disable automatic line numbering

AUTO [line#]

EXAMPLES:

AUTO 10 Automatically numbers program lines in increments of 10.
AUTO 50 Automatically numbers lines in increments of 50.

AUTO Turns off automatic line numbering.

BACKUP
Copy the entire contents from one disk to another on a dual disk drive

BACKUP source Ddrive number TO destination Ddrive number [<ON|,>
Udevice]

NOTE: This command can be used only with a dual-disk drive.

EXAMPLES:

BACKUP DO TO Dl Copies all files from the disk in drive 0 to the disk
in drive 1, in dual disk drive unit 8.

BACKUP DO TO Dl ON U9 Copies all files from drive 0 to drive 1, in disk
drive unit 9.

BANK

Select one of the 16 BASIC banks (default memory configurations), numbered 0-15 to
be used during PEEK, POKE, SYS, and WAIT commands.

BANK bank number

Here is a table of available BANK configurations in the Commodore 128 memory:

BANK CONFIGURATION

0 RAM(O) only
1 RAM(l) only
2 RAM(2) only (same as 0)
3 RAM(3) only (same as 1)
4 Internal ROM , RAM(O), I/O
5 Internal ROM , RAM(l), I/O
6 Internal ROM , RAM(2), I/O (same as 4)
7 Internal ROM , RAM(3), I/O (same as 5)
8 External ROM , RAM(O), I/O
9 External ROM , RAM(l), I/O

10 External ROM , RAM(2), I/O (same as 8)
11 External ROM , RAM(3), I/O (same as 9)
12 Kernal and Internal ROM (LOW), RAM(O), I/O
13 Kernal and External ROM (LOW), RAM(O), I/O
14 Kernal and BASIC ROM, RAM(O), Character ROM
15 Kernal and BASIC ROM, RAM(O), I/O

Banks are described in detail in Chapter 8, The Power Behind Commodore 128
Graphics and Chapter 13, The Commodore 128 Operating System.

BEGIN / BEND

A conditional statement like IF . . . THEN: ELSE, structured so that you can include
several program lines between the start (BEGIN) and end (BEND) of the structure.
Here's the format:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 29

IF condition THEN BEGIN : statement
statement
statement BEND : ELSE BEGIN
statement
statement BEND

EXAMPLE
10 IF X = 1 THEN BEGIN: PRINT "X = 1 is True"
20 PRINT "So this part of the statement is performed"
30 PRINT "When X equals 1"
40 BEND: PRINT "End of BEGIN/BEND structure":GO to 60
50 PRINT "X does not equal 1":PRINT "The statements between BEGIN/
BEND are skipped"
60 PRINT "Rest of Program"

BLOAD
Load a binary file starting at the specified memory location

BLOAD "filename"[,Ddrive number][<ON!,U>device number] [,Bbank
number] [,Pstart address]

where:

• filename is the name of your file
• bank number selects one of the 16 BASIC banks (default memory con-

figurations)
• start address is the memory location where loading begins

EXAMPLES:

BLOAD "SPRITES", B0, P3584 LOADS the binary file "SPRITES"
starting in location 3584 (in BANK 0).

BLOAD "DATA1", DO, U8, Bl, P4096 LOADS the binary file "DATA 1"
into location 4096 (BANK 1) from
Drive 0, unit 8.

BOOT
Load and execute a program which was saved as a binary file

BOOT "fi!ename"[,Ddrive number][<ON|,>Udevice][,PaIt LOAD ADD]

EXAMPLE:

BOOT BOOT a bootable disk (CP/M Plus for ex-
ample).

BOOT "GRAPHICS 1", DO, U9 LOADS the binary program "GRAPHICS 1"
from unit 9, drive 0, and executes it.

BOX
Draw box at specified position on screen

BOX [color source], XI, Yl[,X2,Y2][,angle][,paint]

where:

color source 0 = Background color
1 = Foreground color (DEFAULT)
2 = Multi-color 1
3 = Multi-color 2

XI,Yl Corner coordinate (scaled)

X2,Y2 Corner diagonally opposite XI, Yl, (scaled); default is the PC
location.

angle Rotation in clockwise degrees; default is 0 degrees

paint Paint shape with color
0 = Do not paint
1= Paint
(default = 0)

EXAMPLES:

BOX 1, + 10, + 10 Draw a box 10 pixels to the right and 10 down from
the current pixel cursor location.

BOX 1, 10, 10, 60, 60 Draws the outline of a rectangle.

BOX , 10, 10, 60, 60, 45, 1 Draws a painted, rotated box (a diamond).

BOX , 30, 90, , 45, 1 Draws a filled, rotated polygon.

Any parameter can be omitted but you must include a comma in its place, as in the last
two examples.

NOTE: Wrapping occurs if the degree is greater than 360.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 31

BSAVE
Save a binary file from the specified memory locations

BSAVE "filename"[,Ddrive number] [< ON I, U> device number] [,Bbank
number],Pstart address TO Pend address

where:

• start address is the starting address where the program is SAVEd from

• end address is the last address + 1 in memory which is SAVEd

This is similar to the SAVE command in the Machine Language MONITOR,

EXAMPLES:

BSAVE "SPRITE DATA",B0, Saves the binary file named "SPRITE DATA",
P3584 TO P4096 starting at location 3584 through 4095 (BANK

0).
BSAVE "PROGRAM.SCR",D0, Saves the binary file named "PROGRAM.

U9,B0,P3182 TO P7999 SCR" in the memory address range 3182
through 7999 (BANK 0) on drive 0, unit 9.

CATALOG
Display the disk directory

CATALOG [Ddrive number][<ON|,>Udevice number][,wildcard string]

EXAMPLE:

CATALOG Displays the disk directory on drive 0.

CHAR

Display characters at the specified position on the screen

CHAR [color source],X,Y[,string][,RVS]

This is primarily designed to display characters on a bit mapped screen, but it can also
be used on a text screen. Here's what the parameters mean:

color source 0 = Background
1 = Foreground

X Character column (0-39) (VIC screen)
(0-79) (8563) screen

Y Character row (0-24)

string String to print

reverse Reverse field flag (0 = off, 1 = on)

EXAMPLE:

10 COLOR 2,3: REM MULTI-COLOR 1
20 COLOR 3,7: REM MULTI-COLOR 2
30 GRAPHIC 3,1
30 CHAR 0,10,10, "TEXT",0

RED
BLUE

CIRCLE
Draw circles, ellipses, arcs, etc., at specified positions on the screen

CIRCLE [color source],X,Y[,Xr][,Yr] [,sa][,ea][,angle][,inc]

where:

color source 0 = background color
1 = foreground color
2 = multi-color 1
3 = multi-color 2

X,Y Center coordinate of the CIRCLE

Xr X radius (scaled); (default = 0)

Yr Y radius (sealed default is Xr)

sa Starting arc angle (default 0 degrees)

ea Ending arc angle (default 360 degrees)

angle Rotation is clockwise degrees (default is 0 degrees)

inc Degrees between segments (default is 2 degrees)

sa

EXAMPLES:

CIRCLE 1. 160,100,65,10 Draws an ellipse.

CIRCLE 1, 160,100,65,50 Draws a circle.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 33

CIRCLE1, 60,40,20,18,,,,45 Draws an octagon.

CIRCLE1, 260,40,20,,,,,90 Draws a diamond.

CIRCLE1, 60,140,20,18,,,, 120 Draws a triangle.

CIRCLE 1, + 2, + 2,50,50 Draws a circle (two pixels down and two to the
right) relative to the original coordinates of the
pixel cursor.

CIRCLE 1, 30;90 Draws a circle 30 pixels and 90 degrees to the
right of the current pixel cursor coordinate
position.

You may omit a parameter, but you must still place a comma in the appropriate
position. Omitted parameters take on the default values.

CLOSE
Close logical file

CLOSE file number

EXAMPLE:

CLOSE 2 Logical file 2 is closed.

CLR
Clear program variables

CLR

CMD
Redirect screen output to a logical disk or print file.

CMD logical file number [,write list]

EXAMPLE:

OPEN 1,4 Opens device 4 (printer).

CMD 1 All normal output now goes to the printer.

LIST The LISTing goes to the printer, not the screen—even the word
READY.

PRINT#1 Sends output back to the screen.

CLOSE 1 Closes the file.

COLLECT
Free inaccessible disk space

COLLECT [Ddrive number][<ON|,>Udevice]

EXAMPLE:

COLLECT DO Free all available space which has been incorrectly allocated to
improperly closed files. Such files are indicated with an asterisk
on the disk directory.

COLLISION
Define handling for sprite collision interrupt

COLLISION type [statement]
type Type of interrupt, as follows:

1 = Sprite-to-sprite collision
2 = Sprite-to-display data collision
3 = Light pen (VIC screen only)

statement BASIC line number of a subroutine

EXAMPLE:

Collision 1, 5000 Enables a sprite-to-sprite collision and program control sent to
subroutine at line 5000.

Collision 1 Stops interrupt action which was initiated in above example.

Collision 2, 1000 Enables a sprite-to-data collision and program control directed
to subroutine in line 1000.

COLOR
Define colors for each screen area

COLOR source number, color number

This statement assigns a color to one of the seven color areas:

AREA SOURCE

0 40-column (VIC) background
1 40-column (VIC) foreground
2 multicolor 1
3 multicolor 2
4 40-column (VIC) border
5 character color (40- or 80-coiumn screen)
6 80-column background color

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 35

Colors that are usable are in the range 1-16.

COLOR CODE

1
2
3
4
5
6
7

COLOR

Black
White
Red
Cyan
Purple
Green
Blue

COLOR CODE

9
10
11
12
13
14
15

COLOR

Orange
Brown
Light Red
Dark Gray
Medium Gray
Light Green
Light Blue

Yellow 16 Light Gray

Color Numbers in 40-Column Output

1
2
3
4
5
6
7
8

Black
White
Dark Red
Light Cyan
Light Purple
Dark Green
Dark Blue
Light Yellow

9
10
11
12
13
14
15
16

Dark Purple
Dark Yellow
Light Red
Dark Cyan
Medium Gray
Light Green
Light Blue
Light Gray

Color Numbers in 80-Column Output

EXAMPLES:

COLOR 0 ,1: Changes background color of 40-column screen to black.

COLOR 5,8: Changes character color to yellow.

CONCAT
Concatenate two data files

CONCAT "file 2" [,Ddrive number] TO "file 1"
t,Ddrive number][<ON|,>Udevice]

EXAMPLE:

Concat "Fi leB" to "File A"

Concat (A$) to (B$), Dl, U9

FILE B is attached to FILE A, and the combined
file is designated FILE A.

The file named by B$ becomes a new file with
the same name with the file named by A$ at-
tached to the end of B$. This is performed on
Unit 9, drive 1 (a dual disk drive).

Whenever a variable is used as a filename, as in the last example, the filename variable
must be within parentheses.

CONT
Continue program execution

CONT

COPY
Copy a file from one drive to another within a dual disk drive. Copy one file to
another with a different name within a single drive

COPY [Ddrive number,]"source fiIename"TO[Ddrive number,]"destination
filename"[<ON|,>Udevice]

NOTE: Copying between two single or double disk drive units cannot be
done. This command does not support unit-to-unit copying.

EXAMPLES:

COPY DO, "TEST" TO Dl, "TEST PROG" Copies "test" from drive 0 to drive
1, renaming it "test prog" on drive 1.

COPY DO, "STUFF" TO Dl, "STUFF" Copies "STUFF" from drive 0 to
drive 1.

COPY DO TO Dl Copies all files from drive 0 to drive
1.

COPY "WORK.PROG" TO "BACKUP" Copies "WORK.PROG" as a file
called "BACKUP" on the same disk
(drive 0).

DATA
Define data to be used by a program

DATA list of constants

EXAMPLE:

DATA 100, 200, FRED, "HELLO, MOM",, 3, 14, ABC123

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 37

DCLEAR
Clear all open channels on disk drive

DCLEAR [Ddrive number][<ON|,>Udevice]

EXAMPLES:

DCLEAR DO Clears all open files on drive 0, device number 8.

DCLEAR D1,U9 Clears all open files (channels) on drive 1, device number 9.

DCLOSE
Close disk file

DCLOSE [#logical file number][<ON|,>Udevice]

EXAMPLES:

DCLOSE Closes all channels currently open on unit 8.

DCLOSE #2 Closes the channel associated with the logical file number 2 on
unit 8.

DCLOSE ON U9 Closes all channels currently open on unit 9.

DEF FN
Define a user function

DEF FN name (variable) = expression

EXAMPLE:

lODEFFNA(X) = 12*(34.75-X/.3) + X
20 PRINT FNA(7)

The number 7 is inserted each place X is located in the formula given in the DEF
statement. In the example above, the answer returned is 144.

NOTE: If you plan to define a function in a program that will use BASIC
7.0 graphics commands, invoke the GRAPHIC command before defining
your function. The portion of memory where functions are defined and
where the graphics screen is located is shared. Once you allocate your
graphics area, the function definitions are safely placed somewhere else
in memory. If you don't take this precaution and you invoke the GRAPHIC
command after you define a function, the function definition (between
$IC00 and $4000) is destroyed.

DELETE
Delete lines of a BASIC program in the specified range

DELETE [first line] [-last line]

EXAMPLES:

DELETE 75 Deletes line 75.

DELETE 10-50 Deletes lines 10 through 50, inclusive.

DELETE-50 Deletes all lines from the beginning of the program up to and
including line 50.

DELETE 75- Deletes all lines from 75 to the end of the program, inclusive.

DIM
Declare number of elements in an array

DIM variable (subscripts) [,variable(subscripts)] . . .

EXAMPLE:

10 DIM A$(40),B7(15),CC%(4,4,4)

Dimension three arrays where arrays A$, B7 and CC% have 41 elements, 16 elements
and 125 elements respectively.

DIRECTORY
Display the contents of the disk directory on the screen

DIRECTORY [Ddrive number][<ON|,>Udevice][,wildcard]

EXAMPLES:

DIRECTORY Lists all files on the disk in unit 8.

DIRECTORY Dl, U9, "WORK" Lists the file named "WORK," on drive 1 of
unit 9.

DIRECTORY "AB*" Lists all files starting with the letters "AB"
like ABOVE, ABOARD, etc. on unit 8. The
asterisk specifies a wild card, where all files
starting with "AB" are displayed.

DIRECTORY DO, "?.BAK" The ? is a wild card that matches any single
character in that position. For example: FILE
l.BAK, FILE 2.BAK, FILE 3.BAK all match
the string.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 39

DIRECTORY D1,U9,(A$) LISTS the filename stored in the variable A$
on device number 9, drive 1. Remember, when-
ever a variable is used as a filename, put the
variable in parentheses.

NOTE: To print the DIRECTORY of the disk in drive 0, unit 8, use the
following example:

LOAD"$0",8
OPEN4,4:CMD4:L1ST
PRINT#4:CLOSE4

DLOAD
Load a BASIC program from the disk drive, device 8.

DLOAD "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:

DLOAD "BANKRECS" Searches the disk for the program "BANKRECS"
and LOADS it.

DLOAD (AS) LOADS a program from disk in which the name is
stored in the variable A$. An error message is given if
A$ is null. Remember, when a variable is used as a
filename, it must be enclosed in parentheses.

DO / LOOP / WHILE / UNTIL / EXIT
Define and control a program loop

DO [UNTIL condition | WHILE condition]
statements [EXIT]
LOOP [UNTIL condition | WHILE condition]

This loop structure performs the statements between the DO statement and the LOOP
statement. If no UNTIL or WHILE modifies either the DO or the LOOP statement,
execution of the statements in between continues indefinitely. If an EXIT statement is
encountered in the body of a DO loop, execution is transferred to the first statement
following the LOOP statement. DO loops may be nested, following the rules defined by
the FOR-NEXT structure. If the UNTIL parameter is specified, the program continues
looping until the condition is satisfied (becomes true). The WHILE parameter is the
opposite of the UNTIL parameter: the program continues looping as long as the
condition is TRUE. As soon as the condition is no longer true, program control resumes
with the statement immediately following the LOOP statement. An example of a
condition (boolean argument) is A = 1, or G>65.

EXAMPLES:

10 X = 25
20 DO UNTIL X = 0
30 X = X-l
40 PRINT " X = " ; X
50 LOOP
60 PRINT "End of Loop"

This example performs the statements X = X-l
and PRINT " X = " ; X until X = 0.WhenX = 0 the
program resumes with the PRINT "End of Loop"
statement immediately following LOOP.

10 DO WHILE A$<> CHR$ (13):GETKEY A$:PRINT A$:LOOP
20 PRINT "THE RETURN KEY HAS BEEN PRESSED"

This DO loop waits for a key to be pressed,
receives input from the keyboard one character at
a time and prints the letter of the key which is
pressed. If the RETURN key is pressed, control is
transferred out of the loop and line 20 is executed.

10DOPEN#8, "SEQFILE" This program opens file "SEQFILE" and gets
20 DO
30 GET #8,A$
40 PRINT A$;
50 LOOP UNTIL ST
60 DCLOSE #8

data until the ST system variable indicates all data
is input.

DOPEN
Open a disk file for a read and/or write operation

DOPEN # logical file number,"filename[,<type>]"[,Lrecord length]
[,Ddrive number][<ON|,>Udevice number][,W]

where type is:

S = Sequential File Type
P = Program File Type
U = User File Type
R = Relative File Type
L = Record Length = the length of records in a relative file only

W = Write Operation (if not specified a read operation occurs)

EXAMPLES:

DOPEN#1, "ADDRESS",W Create the sequential file number 1 (ADDRESS)
for a write operation

DOPEN#2 "RECIPES",D1,U9 Open the sequential file number 2 (RECIPES)
for a read operation on device number 9, drive 1

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 41

DRAW
Draw dots, lines and shapes at specified positions on the screen

DRAW [color source] [,X1, Y1][TO X2, Y2] . . .

where:

Color source 0 = Bit map background
1 = Bit map foreground
2 = Multi-color 1
3 = Multi-color 2

XI,Yl Starting coordinate (0,0 through 319,199)
X2,Y2 Ending coordinate (0,0 through 319,199)

EXAMPLES:

DRAW 1, 100, 50 Draw a dot.

DRAW , 10,10 TO 100,60 Draw a line.

DRAW , 10,10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle.

DRAW 1, 120;45 Draw a dot 45° relative and 120 pixels
away from the current pixel cursor
position.

DRAW Draw a dot at the present pixel cursor
position. Use LOCATE to position the
pixel cursor.

You may omit a parameter but you still must include the comma that would have
followed the unspecified parameter. Omitted parameters take on the default values.

DSAVE
Save a BASIC program file to disk

DSAVE "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:

DSAVE "BANKRECS" Saves the program "BANKRECS" to disk.

DSAVE (A$) Saves the disk program named in the variable A$.

DSAVE "PROG 3",D1,U9 Saves the program "PROG3" to disk on unit num-
ber 9, drive 1.

DVERIFY
Verify the program in memory against the one on disk

DVERIFY "fiIename"[,Ddrive number][<ON|,>Udevice number]

To verify Binary data, see VERIFY "filename",8,1 format, under VERIFY command
description.

EXAMPLES:

DVERIFY "C128" Verifies program "C128" on drive 0, unit 8.

DVERIFY "SPRITES",D0,U9 Verifies program "SPRITES" on drive 0, de-
vice 9.

END
Define the end of program execution

END

ENVELOPE
Define a musical instrument envelope

ENVELOPE n[,atk] [,dec] [,sus] [,rel][,wf] [,pw]

where:

n Envelope number (0-9)
atk Attack rate (0-15)
dec Decay rate (0-15)
sus Sustain (0-15)
rel Release rate (0-15)
wf Waveform: 0 = triangle

1 = sawtooth
2 = variable pulse (square)
3 = noise
4 = ring modulation

pw Pulse width (0-4095)

See the " T " option in the PLAY command to select an envelope in a PLAY string.

EXAMPLE:

ENVELOPE 1, 10, 5, 10, 0, 2, 2048 This .command sets envelope 1 to Attack
= 10, Dcca\ 5, Sustain = 10, Release
= 0. \\a\cfurni = variable pulse (2), and
the pulse width = 2048

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 43

FAST
Sets the 8502 microprocessor at a speed of 2MHz.

FAST

This command initiates 2MHz mode, causing the VIC 40-column screen to be turned off.
All operations are speeded up considerably, Graphics may be used, but will not be visible
until a SLOW command is issued. The Commodore 128 powers up in 1MHz mode. The
DMA operations (FETCH, SWAP, STASH) must be performed at 1MHz (slow) speed.

FETCH
Get data from expansion (RAM module) memory

FETCH #bytes, intsa, expsa, expb

where bytes = Number of bytes to get from expansion memory (0-65535) where 0 =
64K (65535 bytes)

intsa = Starting address of host RAM (0-65535)
expb = 64K expansion RAM bank number (0-7) where expb = 0-1 for 128K

and expb = 0-7 for up to 512K.
expsa = Starting address of expansion RAM (0-65535)

The host BANK for the ROM and I/O configuration is selected with the BANK
command. The DMA(VIC) RAM bank is selected by bits 6 and 7 of the RAM
configuration register within the MMU($D506).

FILTER
Define sound (SID chip) filter parameters

FILTER [freq][,lp] [,bp] [,hp] [,res]

where:

freq Filter cut-off frequency (0-2047)
lp Low-pass filter on (1), off (0)
bp Band-pass filter on (1), off (0)
hp High-pass filter on (1), off (0)
res Resonance (0-15)

Unspecified parameters result in no change to the current value.

EXAMPLES:

FILTER 1024.0.1.0,2 Set the cutoff frequency at 1024, select the band pass
filter and a resonance level of 2.

FILTER 2000,1,0,1,10 Set the cutoff frequency at 2000, select both the low
pass and high pass filters (to form a notch reject) and set
the resonance level at 10.

FOR / TO / STEP / NEXT
Define a repetitive program loop structure.

FOR variable = start value TO end value [STEP increment] NEXT variable

The logic of the FOR/NEXT statement is as follows. First, the loop variable is set to the
start value. When the program reaches a program line containing the NEXT statement, it
adds the STEP increment (default = 1) to the value of the loop variable and checks to
see if it is higher than the end value of the loop. If the loop variable is less than or equal
to the end value, the loop is executed again, starting with the statement immediately
following the FOR statement. If the loop variable is greater than the end value, the loop
terminates and the program resumes immediately following the NEXT statement. The
opposite is true if the step size is negative. See also the NEXT statement.

EXAMPLE:

10 FOR L = 1 TO 10
20 PRINT L
30 NEXT L
40 PRINT " I ' M DONE! L = "L

This program prints the numbers from one to 10 followed by the message I 'M DONE!
L = 11.

EXAMPLE:

10 FOR L = 1 TO 100
20 FOR A = 5 TO 11 STEP .5
30 NEXT A
40 NEXT L

The FOR . . . NEXT loop in lines 20 and 30 are nested inside the one in line 10 and 40.
Using a STEP increment of .5 is used to illustrate the fact that floating point indices are
valid. The inner rested loop must lie completely within the outer rested loop (lines 10
and 40).

GET
Receive input data from the keyboard, one character at a time, without waiting for a key
to be pressed.

GET variable list

EXAMPLE:

10 DO:GETA$:LOOP UNTIL A$ = " A " This line waits for the A key to be
pressed to continue.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 45

20 GET B, C, D GET numeric variables B,C and D from the keyboard without
waiting for a key to be pressed.

GETKEY
Receive input data from the keyboard, one character at a time and wait for a key to be
pressed.

GETKEY variable list

EXAMPLE:

10 GETKEY A$

This line waits for a key to be pressed. Typing any key continues the program.

10 GETKEY AS,B$,C$

This line waits for three alphanumeric characters to be entered from the keyboard.

GET#
Receive input data from a tape, disk or RS232

GET# logical file number, variable list

EXAMPLE:

10 GET#1,A$ This example receives one character, which is stored in the
variable AS, from logical file number 1. This example assumes
that file 1 was previously opened. See the OPEN statement.

GO64
Switch to C64 mode

GO64

To return to C128 mode, press the reset button, or turn off the computer power and
turn it on again.

GOSUB
Call a subroutine from the specified line number

GOSUB line number

EXAMPLE:

20 GOSUB 800 This example calls the subroutine beginning at line 800 and executes
it. All subroutines must terminate with a RETURN statement.

800 PRINT "THE C128 WAS WORTH THE WAIT!": RETURN

GOTO / GO TO
Transfer program execution to the specified line number

GOTO line number

EXAMPLES:

10 PRINT"COMMODORE"
20 GOTO 10

GOTO 100

The GOTO in line 20 makes line 10 repeat continu-
ously until RUN/STOP is pressed.

Starts (RUNs) the program starting at line 100,
without clearing the variable storage area.

GRAPHIC
Select a graphic mode

1) GRAPHIC mode [,clear][,s]
2) GRAPHIC CLR

This statement puts the Commodore 128 in one of the six graphic modes:

MODE DESCRIPTION

0 40-column text (default)
1 standard bit-map graphics
2 standard bit-map graphics (split screen)
3 multi-color bit-map graphics
4 multi-color bit-map graphics (split screen)
5 80-column text

EXAMPLES:

GRAPHIC 1,1 Select standard bit map mode and clear the bit map.

GRAPHIC 4,0,10 Select split screen multi-color bit map mode, do not clear the
bit map and start the split screen at line 10.

GRAPHIC 0 Select 40-column text.

GRAPHIC 5 Select 80-column text.

GRAPHIC CLR Clear and deallocate the bit map screen.

GSHAPE

See SSHAPE.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 47

HEADER
Format a diskette

HEADER "diskname" [,1 i.d.] [,Ddrive number]
[<ON|,>Udevice number]

Before a new disk can be used for the first time, it must be formatted with the HEADER
command. The HEADER command can also be used to erase a previously formatted
disk, which can then be reused.

When you enter a HEADER command in direct mode, the prompt ARE YOU
SURE? appears. In program mode, the prompt does not appear.

The HEADER command is analogous to the BASIC 2.0 command;

OPEN l,8,15,"N0:diskname,i.d."

EXAMPLES:

HEADER "MYDISK",I23, DO This headers "MYDISK" using i.d. 23
on drive 0, (default) device number 8.

HEADER "RECS", 145, Dl ON U9 This headers "RECS" using i.d. 45, on
drive 1, device number 9.

HEADER "C128 PROGRAMS", DO This is a quick header on drive 0, device
number 8, assuming the disk in the drive
was already formatted. The old i.d. is
used.

HEADER (A$),I76,D0,U9 This example headers the diskette with
the name specified by the variable A$,
and the i.d. 76 on drive 0, device num-
ber 9.

HELP
Highlight the line where the error occurred

HELP

The HELP command is used after an error has been reported in a program. When HELP
is typed in 40-column format, the line where the error occurs is listed, with the portion
containing the error displayed in reverse field. In 80-column format, the portion of the
line where the error occurs is underlined.

IF / THEN / ELSE
Evaluate a conditional expression and execute portions of a program depending on the
outcome of the expression

IF expression THEN statements [:ELSE else-clause]

THE IF . . . THEN statement evaluates a BASIC expression and takes one of two
possible courses of action depending upon the outcome of the expression. If the
expression is true, the statement(s) following THEN is executed. This can be any
BASIC statement or a line number. If the expression is false, the program resumes with
the program line immediately following the program line containing the IF statement,
unless an ELSE clause is present. The entire IF . . . THEN statement must be contained
within 160 characters. Also see BEGIN/BEND.

The ELSE clause, if present, must be on the same line as the IF . . . THEN
portion of the statement, and separated from the THEN clause by a colon. When an
ELSE clause is present, it is executed only when the expression is false. The expression
being evaluated may be a variable or formula, in which case it is considered true if
nonzero, and false if zero. In most cases, there is an expression involving relational
operators (=, < , > , < = ,> = , < >) .

EXAMPLE:

50 IF X > 0 THEN PRINT "OK": ELSE END

This line checks the value of X. If X is greater than 0, the statement immediately
following the keyword THEN (PRINT "OK") is executed and the ELSE clause is
ignored. If X is less than or equal to 0, the ELSE clause is executed and the statement
immediately following THEN is ignored.

10 IF X = 10 THEN 100 This example evaluates the value of X.
20 PRINT "X DOES NOT EQUAL 10" IF X equals 10, the program control is
: transferred to line 100 and the message
99 STOP "X EQUALS 10" is printed. IF X
100 PRINT "X EQUALS 10" does not equal 10, the program resu-

mes with line 20, the C128 prints the
prompt "X DOES NOT EQUAL 10"
and the program stops.

INPUT
Receive a data string or a number from the keyboard and wait for the user to press
RETURN

INPUT ["prompt string";! variable list

EXAMPLE:

10 INPUT "PLEASE TYPE A NUMBER";A
20 INPUT "AND YOUR NAME";A$
30 PRINT A$ " YOU TYPED THE NUMBER";A

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 49

INPUT #
Input data from an I/O channel into a string or numeric variable

INPUT# file number, variable list

EXAMPLE:

10 OPEN 2,8,2
20 INPUT#2, A$, C, D$

This statement INPUTs the data stored in variables A$, C and D$ from the disk file
number 2, which was OPENed in line 10.

KEY
Define or list function key assignments

KEY [key number, string]

The maximum length for all the definitions together is 241 characters, (p. 3-41)

EXAMPLE:

KEY 7, "GRAPHICO" + CHR$(13) + "LIST" + CHR$(13)

This tells the computer to select the (VIC) text screen and list the program whenever the
F7 key is pressed (in direct mode). CHR$(13) is the ASCII character for RETURN and
performs the same action as pressing the RETURN key. Use CHR$(27) for ESCape.
Use CHR$(34) to incorporate the double quote character into a KEY string. The keys
may be redefined in a program. For example:

10 KEY 2,"PRINT DS$" + CHR$(13)

This tells the computer to check and display the disk drive error channel variables
(PRINT DS$) each time the F2 function key is pressed.

10 FOR 1=1 to 7 STEP 2
20 KEY I, CHR$(I + 132):NEXT
30 FOR 1 = 2 to 8 STEP 2
40 KEY I, CHR$(I + 132):NEXT

This defines the function keys as they are defined on the Commodore 64.

LET
Assigns a value to a variable

[LET] variable = expression

EXAMPLE:

10 LET A = 5 Assign the value 5 to numeric variable A.

20 B = 6 Assign the value 6 to numeric variable B.

30C = A * B + 3 Assign the numeric variable C, the value resulting from 5
times 6 plus 3.

40 D$ = "HELLO" Assign the string "HELLO" to string variable D$.

LIST
List the BASIC program currently in memory

LIST [first line] [- last line]

In C128 mode, LIST can be used within a program without terminating program execution.

EXAMPLES:

LIST Shows entire program.

LIST 100- Shows from line 100 until the end of the program.

LIST 10 Shows only line 10.

LIST -100 Shows all lines from the beginning through line 100.

LIST 10-200 Shows lines from 10 to 200, inclusive.

LOAD
Load a program from a peripheral device such as the disk drive or Datassette

LOAD "filename" [,device number] [,relocate flag]

This is the command used to recall a program stored on disk or cassette tape. Here, the
filename is a program name up to 16 characters long, in quotes. The name must be
followed by a comma (outside the quotes) and a number which acts as a device number
to determine where the program is stored (disk or tape). If no number is supplied, the
Commodore 128 assumes device number 1 (the Datassette tape recorder).

EXAMPLES:

LOAD Reads in the next program from tape.

LOAD "HELLO" Searches tape for a program called HELLO, and
LOADs it if found.

LOAD (A$),8 LOADs the program from disk whose name is
stored in the variable AS.

LOAD"HELLO",8 Looks for the program called HELLO on disk drive
number 8, drive 0. (This is equivalent to DLOAD
"HELLO").

LOAD"MACHLANG",8,1 LOADs the machine language program called
"MACHLANG" into the location from which it
was SAVEd.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 51

LOCATE

Position the bit map pixel cursor on the screen

LOCATE X,Y

The LOCATE statement places the pixel cursor (PC) at any specified pixel coordinate on
the screen.

The pixel cursor (PC) is the coordinate on the bit map screen where drawing of
circles, boxes, lines and points and where PAINTing begins.

EXAMPLE:

LOCATE 160,100 Positions the PC in the center of the bit map screen. Noth-
ing will be seen until something is drawn.

LOCATE +20,100 Move the pixel cursor 20 pixels to the right of the last PC
position and place it at Y coordinate 100.

LOCATE -30,+ 20 Move the PC 30 pixels to the right and 20 down from the
previous PC position.

The PC can be found by using the RDOT(0) function to get the X-coordinate and
RDOT(l) to get the Y-coordinate. The color source of the pixel at the PC can be found
by PRINTing RDOT(2).

MONITOR

Enter the Commodore 128 machine language monitor

MONITOR

See Chapter 6 for details on the Commodore 128 Machine Language Monitor.

MOVSPR

Position or move sprite on the screen

1) MOVSPR number,X,Y Place the specified sprite at absolute
sprite coordinate X,Y.

2) MOVSPR number, +/-X, +/-Y Move sprite relative to the position
of the sprite's current position.

3) MOVSPR number,X;Y Move sprite distance X at angle Y
relative to the sprite's current position.

4) MOVSPR number, angle # speed Move sprite at an angle relative to
its current coordinate, in the clock-
wise direction and at the specified
speed.

where:

number is sprite's number (1 through 8)
X,Y is coordinate of the sprite location.

angle is the angle (0-360) of motion in the clockwise direction relative to the
sprite's original coordinate.

speed is a speed (0-15) in which the sprite moves.

This statement moves a sprite to a specific location on the screen according to
the SPRITE coordinate plane (not the bit map plane) or initiates sprite motion at a
specified rate. See MOVSPR in Chapter 9 for a diagram of the sprite coordinate
system.

EXAMPLES:

MOVSPR 1,150,150 Position sprite 1 near the center of the screen, x,y
coordinate 150,150.

MOVSPR 1,-1-20,-30 Move sprite 1 to the right 20 coordinates and up 30
coordinates.

MOVSPR 4, -50, + 100 Move sprite 4 to the left 50 coordinates and down 100
coordinates.

MOVSPR 5, 45 #15 Move sprite 5 at a 45 degree angle in the clockwise
direction, relative to its original x and y coordinates.
The sprite moves at the fastest rate (15).

NOTE: Once you specify an angle and a speed as in the fourth example
of the MOVSPR statement, the sprite continues on its path (even if the
sprite display is disabled) after the program stops, until you set the speed
to 0 or press RUN/STOP and RESTORE. Also, keep in mind that the
SCALE command affects the MOVSPR coordinates. If you add SCALing
to your programs, you also must adjust the sprites' new coordinates so
they appear correctly on the screen.

NEW
Clear (erase) BASIC program and variable storage

NEW

BASIC BUILDING BLOCKS AND BASIC 7,0 ENCYCLOPEDIA 53

ON
Conditionally branch to a specified program line number according to the results of the
specified expression

ON expression <GOTO/GOSUB> line #1 f, line #2 , . . .]

EXAMPLE:

10 INPUT X:IF X<0 THEN 10
20 ON X GOTO 30, 40, 50, 60 When X = 1, ON sends control to the first line
25 STOP number in the list (30). When X = 2, ON sends
30 PRINT "X = 1" control to the second line (40), etc.
40 PRINT "X = 2"
50 PRINT "X = 3"
60 PRINT "X = 4"

OPEN
Open files for input or output

OPEN logical file number, device number [secondary address] [<,"filename
[,filetype[, [mode"]]|<,cmd string>]

EXAMPLES:

10 OPEN 3,3

20 OPEN 1,0

30 OPEN 1,1,0,"DOT'

OPEN 4,4

OPEN 15,8,15

5 OPEN 8,8,12,"TESTFILE,S,W'

OPEN the screen as file number
3.

OPEN the keyboard as file num-
ber 1.

OPEN the cassette for reading, as
file number 1, using "DOT" as
the filename.

OPEN the printer as file number 4.

OPEN the command channel on
the disk as file 15, with secondary
address 15. Secondary address 15
is reserved for the disk drive error
channel.

OPEN a sequential disk file for
writing called TESTFILE as file
number 8, with secondary address
12.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements and system
variables ST, DS, and DS$.

PAINT
Fill area with color

PAINT [color source],X,Y[,mode]

where:

color source 0 = bit map foreground
1 = bit map background (default)
2 = multi-color 1
3 = multi-color 2

X,Y starting coordinate, scaled (default at pixel cursor (PC))

mode 0 = paint an area defined by the color source selected
1 = paint an area defined by any nonbackground source

The PAINT command fills an area with color. It fills in the area around the specified
point until a boundary of the same specified color source is encountered. For example, if
you draw a circle in the foreground color source, start PAINTing the circle where the
coordinate assumes the background source. The Commodore 128 will only PAINT
where the specified source in the PAINT statement is different from the source of the x
and y pixel coordinate. It cannot PAINT points where the sources are the same in the
PAINT statement and the specified coordinate. The X and Y coordinate must lie
completely within the boundary of the shape you intend to PAINT, and the source of the
starting pixel coordinate and the specified color source must be different.

EXAMPLE:

10 CIRCLE 1, 160,100,65,50 Draws an outline of a circle.

20 PAINT 1, 160,100 Fills in the circle with color from source 1 (VIC
foreground), assuming point 160,100 is colored in
the background color (source 0).

10 BOX 1, 10, 10, 20, 20 Draws an outline of a box.

20 PAINT 1, 15, 15 Fills the box with color from source 1, assuming
point 15,15 is colored in the background source
(0).

30 PAINT 1, + 10, + 10 PAINT the screen in the foreground color source
at the coordinate relative to the pixel cursor's
previous position plus 10 in both the vertical and
horizontal positions.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 55

100 PAINT 1, 100;90 Paint the screen area 90° relative to and 100
pixels away from the current pixel cursor co-
ordinate.

PLAY
Defines and plays musical notes and elements within a string or string variable.

PLAY "Vn,On,Tn,Un,Xn,eIements, notes"

where the string or string variable is composed of the following

Vn = Voice (n = 1-3)
On = Octave (n = 0-6)
Tn = Tune Envelope Defaults (n = 0-9)

0 = piano
1 = accordion
2 = calliope
3 = drum
4 = flute
5 = guitar
6 = harpsichord
7 = organ
8 = trumpet
9 = xylophone

Un = Volume (n = 0-8)
Xn = Filter on (n = 1), off(n = 0)
notes: A,B,C,D,E,F,G
elements: # Sharp

$ Flat
W Whole note
H Half note
Q Quarter note
I Eighth note
S Sixteenth note

Dotted
R Rest
M Wait for all voices currently playing to end

the current "measure"

The PLAY statement gives you the power to select voice, octave and tune envelope
(including ten predefined musical instrument envelopes), the volume, the filter, and the
notes you want to PLAY. All these controls are enclosed in quotes. You may include
spaces in a PLAY string for readability.

All elements except R and M precede the musical notes in a PLAY string.

EXAMPLES:

PLAY "V1O4T0U5X0CDEFGAB" Play the notes C,D,E,F,G,A and B
in voice 1, octave 4, tune envelope
0 (piano), at volume 5, with the
filter off.

PLAY"V3O5T6U7X1#B$AW.CHDQEIF" Play the notes B-sharp, A-flat, a
whole dotted-C note, a half D-note,
a quarter E-note and an eighth
F-note.

A$ = "V3O5T6U3ABCDE": PLAY A$ PLAY the notes and elements within
A$.

PLAY "V1CV2EV3G" Plays a chord in the default setting.

POKE
Change the contents of a RAM memory location

POKE address, value

EXAMPLE:

10 POKE 53280,1 Changes VIC border color

PRINT
Output to the text screen

PRINT [print list]

The word PRINT can be followed by any of the following:

Characters inside quotes ("text")
Variable names (A, B, A$, X$)

Functions (SIN(23), ABS(33))
Expressions (2 + 2),A + 3,A = B)

Punctuation marks (;,)

EXAMPLES: RESULTS

10 PRINT "HELLO" HELLO
20 A$ = " THERE":PRINT "HELLO";A$ HELLO THERE
30 A = 4:B = 2:?A + B 6
40 J = 4LPRINT J;:PRINT J - 1 41 40
50 PRINT A;B;:D = A + B:PRINT D;A-B 4 2 6 2

See also POS, SPC, TAB and CHAR functions.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 57

PRINT#
Output data to files

PRINT# file number[, print list]

PRINT# is followed by a number which refers to the data file previously OPENed.

EXAMPLE:

10 OPEN 4,4 Outputs the data "HELLO THERE"
20 PRINT#4,"HELLO THERE!",A$,B$ and the variables A$ and B$ to the

printer.

10 OPEN 2,8,2 Outputs the data variables A, B$, C
20 PRINT#2,A,B$,C,D and D to the disk file number 2.

NOTE: The PRINT# command is used by itself to close the channel to
the

10
30
40
50

printer before closing

OPEN 4,4
PRINT#4, "PRINT
PRINT#4
CLOSE 4

the file, as follows:

WORDS"

PRINT USING
Output using format

PRINT [#file number,] USING"format list"; print list

This statement defines the format of string and numeric items for printing to the text
screen, printer or other device.

EXAMPLE:

5 X = 32: Y = 100.23: A$ = "CAT"
10 PRINT USING " $ # # . # # # ";13.25,X,Y
20 PRINT USING " # # # > # " ; " C B M " , A $

When this is RUN, line 10 prints:

$13.25 $32.00 $***** Five asterisks (*****) are printed instead of a Y
value because Y has five digits, and this condition
does not conform to format list (as explained below).

Line 20 prints this:

CBM CAT Leaves two spaces before printing "CBM" as de-
fined in format list.

The pound sign (#) reserves room for a single character in the output field. If the data
item contains more characters than there are # signs in the format field, the entire field
is filled with asterisks (*): no characters are printed.

EXAMPLE:

10 PRINT USING " # # # # " ; X

For these values of X, this format displays:

A =
A =
A =

12.34
567.89
123456

12
568

For a STRING item, the string data is truncated at the bounds of the field. Only as many
characters are printed as there are pound signs (#) in the format item. Truncation occurs
on the right.

EXAMPLES:

FIELD

####

####

EXPRESSION

-.1

1

-100.5

-1000

10

1

RESULT

-0.1

1.0

-101

10.

$1

COMMENT

Leading zero added.

Trailing zero added.

Rounded to no decimal

Overflow because four
cannot fit in field.

Decimal point added.

Floating dollar sign.

places.

digits and a minus sign

PUDEF
Redefine symbols in PRINT USING statement

PUDEF "nnnn"

Where "nnnn" is any combination of characters, up to four in all. PUDEF allows you to
redefine any of the following four symbols in the PRINT USING statement: blanks, commas,
decimal points and dollar signs. These four symbols can be changed into some other char-
acter by placing the new character in the correct position in the PUDEF control string.

Position 1 is the filler character. The default is a blank. Place a new character here
for another character to appear in place of blanks.

Position 2 is the comma character. Default is a comma.
Position 3 is the decimal point. Default is a decimal point.
Position 4 is the dollar sign. Default is a dollar sign.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 59

EXAMPLES:

10 PUDEF"*" PRINT * in the place of blanks.
20 PUDEF'' < " PRINT < in the place of commas.

READ
Read data from DATA statements and input it into a numeric or string variable)

READ variable list

This statement inputs information from DATA statements and stores it in variables,
where the data can be used by the RUNning program.

In a program, you can READ the data and then re-read it by issuing the
RESTORE statement. The RESTORE sets the sequential data pointer back to the
beginning, where the data can be read again. See the RESTORE and DATA statements.

EXAMPLES:

10 READ A, B, C READ the first three numeric variables from
20 DATA 3, 4, 5 the closest data statement.

10 READ A$, B$, C$ READ the first three string variables from
20 DATA JOHN, PAUL, GEORGE the nearest data statement.

10 READ A, B$, C READ (and input into the C128 memory) a
20 DATA 1200, NANCY, 345 numeric variable, a string variable and an-

other numeric variable.

RECORD
Position relative file pointers

RECORD# logical file number, record number [,byte number]

This statement positions a relative file pointer to select any byte (character) of any
record in the relative file.

When the record number value is set higher than the last record number in the file,
the following occurs:

For a write (PRINT#) operation, additional records are created to expand the file
to the desired record number.

For a read (INPUT#) operation, a null record is returned and a "RECORD NOT
PRESENT ERROR occurs". See your disk drive manual for details about relative
files.

EXAMPLES:

10 DOPEN#2,"FILE"
20RECORD#2,10,1
30 PRINT#2,A$
40 DCLOSE#2

This example opens an existing relative file called "FILE" as file number 2 in
line 10. Line 20 positions the relative file pointer at the first byte in record number 10.
Line 30 actually writes the data, A$, to file number 2.

REM
Comments or remarks about the operation of a program line

REM message

EXAMPLE:

10 NEXT X:REM THIS LINE INCREMENTS X.

RENAME
Change the name of a file on disk

RENAME "old filename" TO "new filename" [,Ddrive number][<ON!,>
Udevice number]

EXAMPLES:

RENAME "TEST" TO "FINALTEST",D0 Change the name of the file
"TEST" to "FINAL TEST".

RENAME (A$) TO (B$),D0,U9 Change the filename specified in
A$ to the filename specified in B$
on drive 0, device number 9. Re-
member, whenever a variable name
is used as a filename, it must be
enclosed in parentheses.

RENUMBER
Renumber lines of a BASIC program

RENUMBER [new starting line number][,increment]!,old starting line
number]

EXAMPLES:

RENUMBER Renumbers the program starting at 10, and increments
each additional line by 10.

RENUMBER 20, 20, 1 Starting at line 1, renumbers the program. Line 1 be-
comes line 20, and other lines are numbered in incre-
ments of 20.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 61

RENUMBER,, 65 Starting at line 65, renumbers in increments of 10. Line
65 becomes line 10. If you omit a parameter, you must
still enter a comma in its place.

RESTORE
Reset READ pointer so the DATA can be reREAD

RESTORE [line#]

If a line number follows the RESTORE statement, the READ pointer is set to the first
data item in the specified program line. Otherwise the pointer is reset to the beginning of
the first DATA statement in the BASIC program.

EXAMPLES:

10 FOR I = 1 TO 3
20 READ X
30 ALL = X + ALL
40 NEXT
50 RESTORE
60 GOTO 10
70 DATA 10,20,30

10 READ A,B,C
20 DATA 100,500,750
30 READ X,Y,Z
40 DATA 36,24,38
50 RESTORE 40
60 READ S,P,Q

This example READs the data in line 70 and stores it in
numeric variable X. It adds the total of all the numeric
data items. Once all the data has been READ, three
cycles through the loop, the READ pointer is RE-
STOREd to the beginning of the program and it returns
to line 10 and performs repetitively.

Line 50 of this example RESTORES the DATA pointer
to the beginning data item in line 40. When line 60 is
executed, it will READ the DATA 36,24,38 from line
40, and store it in numeric variables S, P, and Q,
respectively.

RESUME
Define where the program will continue (RESUME) after an error has been trapped

RESUME [line number | NEXT]

This statement is used to restart program execution after TRAPping an error. With no
parameters, RESUME attempts to re-execute the statement in which the error occurred.
RESUME NEXT resumes execution at the statement immediately following the one indi-
cating the error. RESUME followed by a line number will GOTO the specific line and
resume execution from that line number. RESUME can only be used in program mode.

EXAMPLE:

10 TRAP 100
15 INPUT " ENTER A NUMBER";A
20 B = 100/A
40 PRINT'THE RESULT = ";B

50 INPUT "DO YOU WANT TO RUN IT AGAIN (Y/N)";Z$:IF Z$ = " Y "
THEN 10
60 STOP
100 INPUT"ENTER ANOTHER NUMBER (NOT ZERO)";A
110 RESUME 20

This example traps a "DIVISION BY ZERO ERROR" in line 20 if 0 is entered in line
15. If zero is entered, the program goes to line 100, where you are asked to input another
number besides 0. Line 110 returns to line 20 to complete the calculation. Line 50 asks
if you want to repeat the program again. If you do, press the Y key.

RETURN
Return from subroutine

RETURN

EXAMPLE:

10 PRINT "ENTER MAIN PROGRAM"
20 GOSUB 100
30 PRINT "END OF PROGRAM"

90 STOP
100 PRINT "SUBROUTINE 1"
110 RETURN

This example calls the subroutine at line 100 which prints the message "SUBROU-
TINE 1" and RETURNS to line 30, the rest of the program.

RUN
Execute BASIC program

1) RUN [line number]
2) RUN "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:

RUN Starts execution from the beginning of the program.

RUN 100 Starts program execution at line 100.

RUN"PRG1" DLOADs "PRG1" from disk drive 8, and runs it from the
starting line number.

RUN(A$) DLOADs the program named in the variable A$.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 63

SAVE

Store the program in memory to disk or tape

SAVE ["filename"][,device number][,EOT flag]

EXAMPLES:

SAVE Stores program on tape, without a name.

SAVE "HELLO" Stores a program on tape, under the name HELLO.

SAVE A$,8 Stores on disk, with the name stored in variable A$.

SAVE "HELLO",8 Stores on disk, with name HELLO (equivalent to
DSAVE "HELLO").

SAVE "HELLO", 1, 2 Stores on tape, with name HELLO, and places an END
OF TAPE marker after the program.

SCALE

Alter scaling in graphics mode

SCALE n [,Xmax,Ymax]

where:

n = 1 (on) or 0 (off)

Coordinates may be scaled from 0 to 32767 (default = 1023) in both X and Y (in either
standard or multicolor bit map mode), rather than the normal scale values, which are:

multi-color mode X = 0 to 159 Y = 0 to 199
bit m a p m o d e X = 0 to 319 Y = 0 t o l 9 9

EXAMPLES:

10 GRAPHIC 1,1 Enter standard bit map, turn scaling
20 SCALE LCIRCLE 1,180,100,100,100 on to default size (1023, 1023) and

draw a circle.

10 GRAPHIC 1,3 Enter multi-color mode, turn scaling
20 SCALE 1,1000,5000 on to size (1000, 5000) and draw a
30 CIRCLE 1,180,100,100,100 circle.

The SCALE command affects the sprite coordinates in the MOVSPR command. If
you add scaling to a program that contains sprites, adjust the MOVSPR coordinates
accordingly.

SCNCLR
Clear screen

SCNCLR mode number

The modes are as follows:

MODE NUMBER

0
1
2
3
4
5

MODE

40 column (VIC) text
bit map
split screen bit map
multi-color bit map
split screen multi-color bit map
80 column (8563) text

This statement with no argument clears the graphic screen, if it is present, otherwise the
current text screen is cleared.

EXAMPLES:

SCNCLR 5 Clears 80 column text screen.
SCNCLR 1 Clears the (VIC) bit map screen.
SCNCLR 4 Clears the (VIC) multicolor bit map and 40-column text split screen.

SCRATCH
Delete file from the disk directory

SCRATCH "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLE:

SCRATCH "MY BACK", DO

This erases the file MY BACK from the disk in drive 0.

SLEEP

Delay program for a specific period of time

SLEEP N

where N is seconds 0< N < = 65535.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 65

SLOW
Return the Commodore 128 to 1MHz operation

SLOW

SOUND
Output sound effects and musical notes

SOUND v,f,d[,dir][,m][,s][,w][,p]

where: v = voice (1..3)
f = frequency value (0..65535)
d = duration (0..32767)
dir = step direction (0(up), l(down) or 2(oscillate)) default = 0
m = minimum frequency (if sweep is used) (0..65535) default = 0
s = step value for sweep (0..32767) default = 0
w = waveform (0 = triangle, 1 = sawtooth, 2 = variable, 3 = noise)

default = 2
p = pulse width (0..4095) default = 2048

EXAMPLES:

SOUND 1,40960,60 Play a SOUND at frequency 40960 in voice 1
for 1 second.

SOUND 2,20000,50,0,2000,100 Output a sound by sweeping through frequen-
cies starting at 2000 and incrementing upward
in units of 100 up to 20,000. Each frequency is
played for 50 jiffies.

SOUND3,5000,90,2,3000,500,1 This example outputs a range of sounds start-
ing at a minimum frequency of 3000, through
5000, in increments of 500. The direction of
the sweep is back and forth (oscillating). The
selected waveform is sawtooth and the voice
selected is 3.

SPRCOLOR
Set multi-color 1 and/or multi-color 2 colors for all sprites

SPRCOLOR [smcr-l][,smcr-2]

where:

smcr-1 Sets multi-color 1 for all sprites.
smcr-2 Sets multi-color 2 for all sprites.

Either of these parameters may be any color from 1 through 16.

EXAMPLES:

SPRCOLOR 3,7 Sets sprite multi-color 1 to red and multi-color 2 to blue.

SPRCOLOR 1,2 Sets sprite multi-color 1 to black and multi-color 2 to white.

SPRDEF
Enter the SPRite DEFinition mode to create and edit sprite images.

SPRDEF

The SPRDEF command defines sprites interactively
Entering the SPRDEF command displays a sprite work area on the screen which

is 24 characters wide by 21 characters tall. Each character position in the grid corre-
sponds to a sprite pixel in the sprite displayed to the right of the work area. Here
is a summary of the SPRite DEFinition mode operations and the keys that perform
them:

USER INPUT

1-8
A
CRSR keys
RETURN KEY
RETURN key

HOME key
CLR key
1-4
CTRL key, 1-8
Commodore key, 1-
STOP key
SHIFT RETURN
X
Y
M
C

DESCRIPTION

Selects a sprite number at the SPRITE NUMBER? prompt only.
Turns on and off automatic cursor movement.
Moves cursor in work/area.
Moves cursor to start of next line.
Exits sprite designer mode at the SPRITE NUMBER? prompt
only.
Moves cursor to top left corner of sprite work area.
Erases entire grid.
Selects color source (enables/disables pixels).
Selects sprite foreground color (1-8).
Selects sprite foreground color (9-16).
Cancels changes and returns to prompt.
Saves sprite and returns to SPRITE NUMBER? prompt.
Expands sprite in X (horizontal) direction.
Expands sprite in Y (vertical) direction.
Multi-color sprite mode.
Copies sprite data from one sprite to another.

SPRITE

Turn on and off, color, expand and set screen priorities for a sprite

SPRITE <number> [,on/off|[,fgnd][,priority][,x-exp] [,y-exp][,mode]

The SPRITE statement controls most of the characteristics of a sprite.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 67

PARAMETER DESCRIPTION

number Sprite number (1-8)
on/off Turn sprite on (1) or off (0)
foreground Sprite foreground color (1-16) (default = sprite number)
priority Priority is 0 if sprites appear in front of objects on the screen. Priority

is 1 if sprites appear in back of objects on the screen,
x-exp Horizontal EXPansion on (1) or off (0)
y-exp Vertical EXPansion on (1) or off (0)
mode Select standard sprite (0) or multi-color sprite (1)

Unspecified parameters in subsequent sprite statements take on the characteristics of the
previous SPRITE statement. You may check the characteristics of a SPRITE with the
RSPRITE function.

EXAMPLES:

SPRITE 1,1,3 Turn on sprite number 1 and color it red.

SPRITE 2,1,7,1,1,1 Turn on sprite number 2, color it blue, make it pass
behind objects on the screen and expand it in the vertical
and horizontal directions.

SPRITE 6,1 ,1,0,0,1,1 Turn on SPRITE number 6, color it black. The first 0
tells the computer to display the sprites in front of objects
on the screen. The second 0 and the 1 following tell the
C128 to expand the sprite vertically only. The last 1
specifies multi-color mode. Use the SPRCOLOR com-
mand to select the sprite's multi-colors.

SPRSAV
Copy sprite data from a text string variable into a sprite or vice versa, or copy data from
one sprite to another.

SPRSAV <origin>,<destination>

Either the origin or the destination can be a sprite number or a string variable but they
both cannot be string variables. They can both be sprite numbers. If you are storing a
string into a sprite, only the first 63 bytes of data are used. The rest are ignored since a
sprite can only hold 63 data bytes.

EXAMPLES:

SPRSAV 1,A$ Transfers the image (data) from sprite 1 to the string named AS.

SPRSAV B$,2 Transfers the data from string variable B$ into sprite 2.

SPRSAV 2,3 Transfers the data from sprite 2 to sprite 3.

SSHAPE/GSHAPE
Save/retrieve shapes to/from string variables

SSHAPE and GSHAPE are used to save and load rectangular areas of bit map
screens to/from BASIC string variables. The command to save an area of the bit map
screen into a string variable is:

SSHAPE string variable, XI, Yl [,X2,Y2]

where:

string variable String name to save data in
X1,Y1 Corner coordinate (0,0 through 319,199) (scaled)
X2,Y2 Corner coordinate opposite (X1,Y1) (default is the PC)

The command to retrieve (load) the data from a string variable and display it on
specified screen coordinates is:

GSHAPE string variable [X,Y][,mode]

where:

string Contains shape to be drawn
X,Y Top left coordinate (0.0 through 319,199) telling where to draw the shape

(scaled—the default is the pixel cursor)
mode Replacement mode:

0 = place shape as is (default)
1 = invert shape
2 = OR shape with area
3 = AND shape with area
4 = XOR shape with area

The replacement mode allows you to change the data in the string variable so you can
invert it, perform a logical OR, exclusive OR (turn off bytes that are on) or AND
operation on the image.

EXAMPLES:

SSHAPE A$,10,10 Saves a rectangular area from the coordinates 10,10
to the location of the pixel cursor, into string vari-
able A$.

SSHAPE B$,20,30,43,50 Saves a rectangular area from top left coordinate
(20,30) through bottom right coordinate (43,50) into
string variable B$.

SSHAPE D$, + 10, + 10 Saves a rectangular area 10 pixels to the right and
10 pixels down from the current position of the pixel
cursor.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 69

GSHAPE AS, 120,20 Retrieves shape contained in string variable A$ and
displays it at top left coordinate (120,20).

GSHAPE B$,30,30,1 Retrieves shape contained in string variable B$ and
displays it at top left coordinate 30,30. The shape is
inverted due to the replacement mode being selected
by the 1.

GSHAPE C$, + 20, + 30 Retrieves shape from string variable C$ and displays
it 20 pixels to the right and 30 pixels down from the
current position of the pixel cursor.

NOTE: Beware using modes 1-4 with multi-color shapes. You may
obtain unpredictable results.

STASH
Move contents of host memory to expansion RAM

STASH #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

STOP
Halt program execution

STOP

SWAP
Swap contents of host RAM with contents of expansion RAM

SWAP #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

SYS
Call and execute a machine language subroutine at the specified address

SYS address [,a][,x][,y][,s]

This statement calls a subroutine at a given address in a memory configuration previously
set up according to the BANK command. Optionally, arguments a,x,y and s are loaded into
the accumulator, x, y and status registers, respectively, before the subroutine is called.

The address range is 0 to 65535. The 8502 microprocessor begins executing the
machine-language program starting at the specified memory location. Also see the
BANK command.

EXAMPLES:

SYS 32768 Calls and executes the machine-language routine at location 32768
($8000).

SYS 6144,0 Calls and executes the machine-language routine at location 6144
($1800) and loads zero into the accumulator.

TEMPO
Define the speed of the song being played

TEMPO n

where n is a relative duration between (1 and 255)
The default value is 8, and note duration increases with n.

EXAMPLES:

TEMPO 16 Defines the Tempo at 16.

TEMPO 1 Defines the TEMPO at the slowest speed.

TEMPO 250 Defines the TEMPO at 250.

TRAP
Detect and correct program errors while a BASIC program is RUNning

TRAP [line number]

The RESUME statement can be used to resume program execution. TRAP with no line
number turns off error trapping. An error in a TRAP routine cannot be trapped. Also see
system variables ST, EL, DS and DS$.

EXAMPLES:

. 100 TRAP 1000 If an error occurs, GOTO line 1000.

. 1000?ERR$(ER);EL Print the error message, and the error number.

.1010 RESUME Resume with program execution.

TROFF
Turn off error tracing mode

TROFF

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 71

TRON
Turn on error tracing

TRON

TRON is used in program debugging. This statement begins trace mode. When you
RUN the program, the line numbers of the program appear in brackets before any action
for that line occurs.

VERIFY
Verify program in memory against one saved to disk or tape

VERIFY "filename" [,device number][,relocate flag]

Issue the VERIFY command immediately after you SAVE a program.

EXAMPLES:

VERIFY Checks the next program on the tape.

VERIFY "HELLO" Searches for HELLO on tape, checks it against memory.

VERIFY "HELLO",8,1 Searches for HELLO on disk, then checks it against
memory.

VOL
Define output level of sound for SOUND and PLAY statements

VOL volume level

EXAMPLES:

VOL 0 Sets volume to its lowest level.

VOL 15 Sets volume for SOUND and PLAY statements to its highest output.

WAIT
Pause program execution until a data condition is satisfied

WAIT <Iocation>, <mask-l> [,mask-2>]

where:

location = 0-65535
masks = 0-255

The WAIT statement causes program execution to be suspended until a given memory
address recognizes a specified bit pattern or value.

The first example below WAITs until a key is pressed on the tape unit to
continue with the program. The second example will WAIT until a sprite collides with
the screen background.

EXAMPLES:

WAIT i, 32, 32
WAIT 53273, 2
WAIT 36868, 144, 16

WIDTH

Set the width of drawn lines

WIDTH n

EXAMPLES:

WIDTH 1 Set single width for graphic commands
WIDTH 2 Set double width for drawn lines

WINDOW

Define a screen window

WINDOW top left col,top left row,bot right col,bot right row[,clear]

This command defines a logical window within the 40 or 80 column text screen. The
coordinates must be in the range 0-39/79 for 40- and 80-column values respectively and
0-24 for row values. The clear flag, if provided (1), causes a screen-clear to be
performed (but only within the limits of the newly described window).

EXAMPLES:

WINDOW 5,5,35,20 Defines a window with top left corner coordinate as
5,5 and bottom right corner coordinate as 35,20.

WINDOW 10,2,33,24,1 Defines a window with upper left corner coordinate
10,2 and lower right corner coordinate 33,24. Also
clears the portion of the screen within the window as
specified by the 1.

BASIC FUNCTIONS

The format of the function description is:

FUNCTION (argument)

where the argument can be a numeric value, variable or string.
Each function description is followed by an EXAMPLE. The first line appearing

below the word "EXAMPLE" is the function you type. The second line without bold is
the computer's response.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 73

ABS
Return absolute value of argument X

ABS (X)

EXAMPLE:

PRINT ABS (7*(-5))

35

ASC

Return CBM ASCII code for the first character in X$

ASC(X$)

This function returns the CBM ASCII code of the first character of X$.

EXAMPLE:

X$ = "C128":PRINT ASC (X$)

67

ATN
Return the arctangent of X in radians

ATN (X)

The value returned is in the range - TT/2 through TT/2.

EXAMPLE:

PRINT ATN (3)

1.24904577

BUMP

Return sprite collision information

BUMP (N)

To determine which sprites have collided since the last check, use the BUMP function.
BUMP(l) records which sprites have collided with each other, and BUMP(2) records
which sprites have collided with other objects on the screen. COLLISION need not be
active to use BUMP. The bit positions (0-7) in the BUMP value correspond to sprites 1
through 8 respectively. BUMP(n) is reset to zero after each call.

Here's how the sprite numbers and BUMP values that are returned correspond:

BUMP Value: 128

Sprite Number: 8

64

7

32

6

16

5

8

4

4

3

2

9

1

1

EXAMPLES:

PRINT BUMP (1) 12 indicates that sprites 3 and 4 have collided.

PRINT BUMP (2) 32 indicates the sprite 6 has collided with an object on the screen.

CHR$
Return character for specified CBM ASCII code X

CHR$(X)

The argument (X) must be in the range 0-255. This is the opposite of ASC and returns the
string character whose CBM ASCII code is X. Refer to Appendix E for a table of CHR$ codes.

EXAMPLES:

PRINT CHR$ (65) Prints the A character.
A
PRINT CHR$ (147) Clears the text screen.

COS
Return cosine for angle of X in radians

COS(X)

EXAMPLE:

PRINT COS (TT/3)

.5

FNxx
Return value from user defined function xx

FNxx(X)

This function returns the value from the user defined function xx created in a DEF
FNxx statement

EXAMPLE:

10 DEF FNAA(X) = (X-32)*5/9
20 INPUT X
30 PRINT FNAA(X)
RUN
?40 (? is input prompt)
4.44444445

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 75

NOTE: If GRAPHIC is used in a program that defines a function, issue
the GRAPHIC command before defining the function or the function
definition is destroyed.

FRE
Return number of available bytes in memory

FRE (X)

where X is the RAM bank number. X = 0 for BASIC program storage and X = 1 to
check for available BASIC variable storage.

EXAMPLES:

PRINT FRE (0) Returns the number of free bytes for BASIC programs.
58109

PRINT FRE (1) Returns the number of free bytes for BASIC variable storage.
64256

HEX$
Return hexadecimal string equivalent to decimal number X

HEX$(X)

EXAMPLE:

PRINT HEX$(53280)
D020

INSTR
Return starting position of string 2 within string 1

INSTR (string 1, string 2 [,starting position])

EXAMPLE:

PRINT INSTR ("COMMODORE 128","128")
11

INT
Return integer form (truncated) of a floating point value

INT(X)

This function returns the integer value of the expression. If the expression is positive,
the fractional part is left out. If the expression is negative, any fraction causes the next
lower integer to be returned.

EXAMPLES:

PRINT INT(3.14)
3

PRINT INT(-3.14)
-4

JOY
Return position of joystick and the status of the fire button

JOY(N)

when N equals:

1 JOY returns position of joystick 1.
2 JOY returns position of joystick 2.

Any value of 128 or more means that the fire button is also pressed. To find the joystick
position if the fire button is pressed subtract 128 from the JOY value. The direction is
indicated as follows.

1
8 2

7 0 3
6 4

5

EXAMPLES:

PRINT JOY (2) Joystick 2 fires to the left.
135

IF (JOY (1) > 127) THEN PRINT "FIRE" Determines whether the fire button
is pressed.

DIR = JOY(l) AND 15 Returns direction (only) of joystick 1.

LEFT$
Return the leftmost characters of string

LEFTS (string,integer)

EXAMPLE:

PRINT LEFT$("COMMODORE",5)
COMMO

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 77

LEN
Return the length of a string

LEN (string)

The returned integer value is in the range 0-255.

EXAMPLE:
PRINT LEN ("COMMODORE 128")
12

LOG
Return natural log of X

LOG(X)

The argument X must be greater than 0.

EXAMPLE:
PRINT LOG (37/5)
2.00148

MID$
Return a substring from a larger string

MID$ (string,starting position^length])

This function extracts the number of characters specified by length (0-255), from string,
starting with the character specified by starting position (1-255).

EXAMPLE:
PRINT MID$("COMMODORE 128",3,5)
MMODO

PEEK
Return contents of a specified memory location

PEEK(X)
The data will be returned from the bank selected by the most recent BANK command.
See the BANK command.

EXAMPLE:
10 BANK 15:VIC = DEC("D000")
20 FOR I = 1 TO 47
30 PRINT PEEK(VIC + I)
40 NEXT

This example displays the contents of the registers of the VIC chip (some of which
are ever-changing).

PEN
Return X and Y coordinates of the light pen

PEN(n)

where n = 0 PEN returns the X coordinate of light pen position on any VIC screen.
n = 1 PEN returns the Y coordinate of light pen position on any VIC screen.
n = 2 PEN returns the character column position of the 80 column display.
n = 3 PEN returns the character row position of the 80 column display.
n = 4 PEN returns the (80-column) light pen trigger value.

The VIC PEN values are not sealed and are taken from the same coordinate plane as
sprites use. Unlike the 40 column (VIC) screen, the 80 column (8563) coordinates are
character row and column positions and not pixel coordinates like the VIC screen. Both
the 40 and 80 column screen coordinate values are approximate and vary, due to the
nature of light pens. The 80-column read values are not valid until PEN(4) is true.

Light pens are always plugged in to control port 1.

EXAMPLES:

10 PRINT PEN(0);PEN(l) Displays the X and Y coordinates of the light
pen (for the 40 column screen).

10 DO UNTIL PEN(4):LOOP Ensures that the read values are valid (for the
80 column screen).

20 X = PEN(2)
30 Y = PEN(3)
40 REM:REST OF PROGRAM

IT
Return the value of pi (3.14159265)

EXAMPLE:

PRINT This returns the result 3.14159265.

POINTER
Return the address of a variable

POINTER (variable name)

This function returns a zero if the variable is not defined.

EXAMPLE:

A = POINTER (Z) This example returns the address of variable Z.
NOTE: Address returned is in RAM BANK 1.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 79

POS

Return the current cursor column position within the current screen window

POS(X)

The POS function indicates where the cursor is within the defined screen window. X is a
dummy argument, which must be specified, but the value is ignored. The values
returned range from 0-39 on the VIC screen and 0-79 on the 80-column screen.

EXAMPLE:

FOR I = 1 to 10 : ?SPC(I); POS(O): NEXT

This displays the current cursor position within the defined text window.

POT

Returns the value of the game-paddle potentiometer

POT (n)

when:

n = 1, POT returns the position of paddle # 1 (control port 1)
n = 2, POT returns the position of paddle #2 (control port 1)
n = 3, POT returns the position of paddle #3 (control port 2)
n = 4, POT returns the position of paddle #4 (control port 2)

The values for POT range from 0 to 255. Any value of 256 or more means that the fire
button is also depressed.

EXAMPLE:

10 PRINT POT(l)
20 IF POT(l) > 256 THEN PRINT "FIRE"

This example displays the value of game paddle 1.

RCLR

Return color of color source

RCLR(N)

This function returns the color (1 through 16) assigned to the color source N (0< = N = <
6), where the following N values apply:

SOURCE

0
1
2
3
4
5
6

DESCRIPTION

40-column background
bit map foreground
multi-color 1
multi-color 2
40-column border
40- or 80-column character color
80-column background color

The counterpart to the RCLR function is the COLOR command.

EXAMPLE:

10 FOR I = 0 TO 6
20 PRINT "SOURCE";I;"IS COLOR CODE";RCLR(I)
30 NEXT

This example prints the color codes for all six color sources.

RDOT
Return current position or color source of pixel cursor

RDOT (N)

where:

N = 0 returns the X coordinate of the pixel cursor
N = 1 returns the Y coordinate of the pixel cursor
N = 2 returns the color source (0-3) of the pixel cursor

This function returns the location of the current position of the pixel cursor or the
current color source of the pixel cursor.

EXAMPLES:

PRINT RDOT(0) Returns X position of pixel cursor
PRINT RDOT(1) Returns Y position of pixel cursor
PRINT RDOT(2) Returns color source of pixel cursor

RGR

Return current graphic mode

RGR(X)

This function returns the current graphic mode. X is a dummy argument, which must be
specified. The counterpart of the RGR function is the GRAPHIC command. The value
returned by RGR(X) pertains to the following modes:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 81

VALUE

0
1
2
3
4
5

EXAMPLE:

GRAPHIC MODE

40 column (VIC) text
Standard bit map
Split screen bit map
Multi-color bit map
Split screen Multi-color bit map
80 column (8563) text

PRINT RGR(O) Displays the current graphic mode; in this case, standard bit
1 map mode.

PRINT RGR(O) Both multi-color bit map and 80-column text modes are enabled.
8

RiGHT$

Return sub-string from rightmost end of string

RIGHT$(string, numeric)

EXAMPLE:

PRINT RIGHT$("BASEBALL",5)
EBALL

RND

Return a random number

RND (X)

If X = 0 RND returns a random number based on the hardware clock.
If X > 0 RND generates a reproducible random number based on the seed

value below.
If X < 0 produces a random number which is used as a base called a seed.

EXAMPLES:

PRINT RND(O) Displays a random number between 0 and 1.
.507824123

PRINT INT(RND(l)*100 + 1) Displays a random number between 1 and 100.
89

RSPCOLOR
Return sprite multicolor values

RSPCOLOR (X)

When:

X = 1 RSPCOLOR returns the sprite multi-color 1.
X = 2 RSPCOLOR returns the sprite multi-color 2.

The returned color value is a value between 1 and 16. The counterpart of the RSPCOLOR
function is the SPRCOLOR statement. Also see the SPRCOLOR statement.

EXAMPLE:

10 SPRITE 1,1,2,0,1,1,1
20 SPRCOLOR 5,7
30 PRINT "SPRITE MULTI-COLOR 1 IS";RSPCOLOR(1)
40 PRINT "SPRITE MULTI-COLOR 2 IS";RSPCOLOR(2)
RUN

SPRITE MULTI-COLOR 1 IS 5
SPRITE MULTI-COLOR 2 IS 7

In this example line 10 turns on sprite 1, colors it white, expands it in both the X and Y
directions and displays it in multi-color mode. Line 20 selects sprite multi-colors 1 and 2
(5 and 7 respectively). Lines 30 and 40 print the RSPCOLOR values for multi-color 1 and 2.

RSPPOS
Return the speed and position values of a sprite

RSPPOS (sprite number,position|speed)

where sprite number identifies which sprite is being checked, and position and speed
specifies X and Y coordinates or the sprite's speed.

When position equals;

0 RSPPOS returns the current X position of the specified sprite.

1 RSPPOS returns the current Y position of the specified sprite.

When speed equals:

2 RSPPOS returns the speed (0-15) of the specified sprite.

EXAMPLE:

10 SPRITE 1,1,2
20MOVSPR 1.45#13
30 PRINT RSPPOS (1.0);RSPPOS (1,1);RSPPOS (1,2)

This example returns the current X and Y sprite coordinates and the speed (13).

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 83

RSPRiTE
Return sprite characteristics

RSPRITE (sprite number,characteristie)

RSPRITE returns sprite characteristics that were specified in the SPRITE command.
Sprite number specifies the sprite (1-8) you are checking and the characteristic specifies
the sprite's display qualities as follows:

CHARACTERISTIC

0
1
2

3
4
5

RSPRITE RETURNS

THESE VALUES:

Enabled! 1) / disabled(O)
Sprite color (1-16)
Sprites are displayed in front of (0) or behind
(1) objects on the screen
Expand in X direction
Expand in Y direction
Multi-color

yes
yes
yes

= 1, no =
= 1, no =
= 1, no =

0
0
0

EXAMPLE:

10 FOR 1 = 0 TO 5 This example prints all 6 characteristics of sprite 1.
20 PRINT RSPRITE (1,1)
30 NEXT

RWINDOW
Returns the size of the current window or the number of columns of the current
screen

RWINDOW (n)

When n equals:

0 RWINDOW returns the number of lines in the current window.
1 RWINDOW returns the number of rows in the current window.
2 RWINDOW returns either of the values 40 or 80, depending on the current

screen output format you are using.

The counterpart of the RWINDOW function is the WINDOW command.

EXAMPLE:

10 WINDOW 1,1,10,10
20 PRINT RWINDOW(0);RWINDOW(1);RWINDOW(2)
RUN
9 9 40

This example returns the lines (10) and columns (10) in the current window. This
example assumes you are displaying the window in 40 column format.

SGN
Return sign of argument X

SGN(X)

EXAMPLE:

PRINT SGN(4,5);SGN(0);SGN(-2.3)
1 0 - 1

SIN
Return sine of argument

SIN(X)

EXAMPLE:

PRINT SIN (TT/3)

.866025404

SPG

Skip spaces on printed output

SPC (X)

EXAMPLE:

PRINT "COMMODORE";SPC(3);" 128'
COMMODORE 128

SQR

Return square root of argument

SQR (X)

EXAMPLE:

PRINT SQR(25)
5

STH$

Return string representation of number

STR$ (X)

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 85

EXAMPLE:

PRINT STR$(123.45)
123.45

PRINT STR$(-89.03)
-89.03

PRINT STR$(1E2O)
IE + 20

TAB
Moves cursor to tab position in present statement

TAB (X)

EXAMPLE:

10 PRINT"COMMODORE"TAB(25)"128"
COMMODORE 128

TAN
Return tangent of argument in radians

TAN(X)

This function returns the tangent of X, where X is an angle in radians

EXAMPLE:

PRINT TAN(.785398163)
1

USR
Call user-defined subprogram

USR(X)

When this function is used, the BASIC program jumps to a machine language program
whose starting point is contained in memory locations 4633(11219) and 4634($121A), (or
785($0311) and 786($0312) in C64 mode). The parameter X is passed to the machine-
language program in the floating-point accumulator ($63-$68 in C128 mode). A value is
returned to the BASIC program through the calling variable. You must direct the value
into a variable in your program in order to receive the value back from the floating-point
accumulator. An ILLEGAL QUANTITY ERROR results if you don't specify this
variable. This allows the user to exchange a variable between machine code and
BASIC.

EXAMPLE:
10 POKE 4633,0
20 POKE 4634,48
30 A = USR(X)
40 PRINT A

Place starting location ($3000 = 12288:$00 = 0:$30) = 48 of machine language
routine in location 4633 and 4634. Line 30 stores the returning value from the floating-
point accumulator. The USER vector is assumed to be in BANK 15. Your machine
language routine MUST be in RAM bank 0 below address $4000.

VAL
Return the numeric value of a number string

VAL(X$)

EXAMPLE:

10 A$ = "120"
20 B$ = "365"
30 PRINT VAL (A$ + B$)
RUN
485

XOR
Return exclusive OR value

XOR (nl,n2)

This function returns the exclusive OR of the numeric argument values nl and n2.

X = XOR (nl,n2)

where n l , n2, are 2 unsigned values (0-65535)

EXAMPLE:

PRINT XOR(128,64)
192

RESERVED SYSTEM WORDS
(KEYWORDS)

This section lists the words used to make up the BASIC 7.0 language. These words
cannot be used within a program as other than a component of the BASIC language. The
only exception is that they may be used within quotes (in a PRINT statement, for example).

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 87

4BS
AND
APPEND
ASC
ATN
AUTO
BACKUP
BANK
BEGIN
BEND
BLOAD
BOOT
BOX
BSAVE
BUMP
CATALOG
CHAR
CHR$
CIRCLE
CLOSE
CLR
CMD
COLLECT
COLLISION
COLOR
CONCAT
CONT
COPY
COS
DATA
DCLEAR
DCLOSE
DEC
DEFFN

DELETE
DIM
DIRECTORY
DLOAD
DO
DOPEN
DRAW
DS
DS$
DSAVE
DVERIFY
EL
ELSE
END
ENVELOPE
ER
ERR$
EXIT
EXP
FAST
FETCH
FILTER
FN
FOR
FRE
GET
GET#
G064
GOSUB
GOTO
GOTO
GRAPHIC
GSHAPE
HEADER

NOTE: Keywords shown
BASIC 7.0

HELP
HEX$
IF
INPUT
INPUT#
INSTR
INT
JOY
KEY
LEFTS
LEN
LET
LIST
LOAD
LOCATE
LOG
LOOP
MID$
MONITOR
MOVSPR
NEW
NEXT
NOT
(OFF)
ON
OPEN
OR
PAINT
PEEK
PEN
PLAY
POINTER
POKE
POS

POT
PRINT
PRINT#
PUDEF
(QUIT)
RCLR
RDOT
READ
RECORD
REM
RENAME
RENUMBER
RESTORE
RESUME
RETURN
RGR
RIGHTS
RND
RREG
RSPCOLOR
RSPPOS
RSPRITE
RUN
RWINDOW
SAVE
SCALE
SCNCLR
SCRATCH
SGN
SIN
SLEEP
SLOW
SOUND
SPC

SPRCOLOR
SPRDEF
SPRITE
SPRSAV
SQR
SSHAPE
ST
STASH
STEP
STOP
STR$
SWAP
SYS
TAB
TAN
TEMPO
THEN
TI
TI$
TO
TRAP
TROFF
TRON
UNTIL
USING
USR
VAL
VERIFY
VOL
WAIT
WHILE
WIDTH
WINDOW
XOR

in parentheses are not implemented in C128

Reserved variable names are names reserved for the variables DS, DS$, ER, EL,
ST, TI and TI$, and the function ERRS. Keywords such as TO and IF or any other
names that contain keywords, such as RUN, NEW or LOAD cannot be used.

ST is a status variable for input and output (except normal screen/keyboard
operations). The value of ST depends on the results of the last I/O operation. In general,
if the value of ST is 0, then the operation was successful.

TI and TI$ are variables that relate to the real time clock built into the Commodore
128. The system clock is updated every l/60th of a second. It starts at 0 when the
Commodore 128 is turned on, and is reset only by changing the value of TI$. The
variable TI gives the current value of the clock in l/60th of a second. TI$ is a string that
reads the value of the real time clock as a 24-hour clock. The first two characters of TI$
contain the hour, the third and fourth characters are minutes and the fifth and sixth
characters are seconds. This variable can be set to any value (so long as all characters
are numbers) and will be updated automatically as a 24-hour clock.

EXAMPLE:

TI$ = "101530" Sets the clock to 10:15 and 30 seconds (AM).

The value of the clock is lost when the Commodore 128 is turned off. It starts at
zero when the Commodore 128 is turned on, and is reset to zero when the value of the
clock exceeds 235959 (23 hours, 59 minutes and 59 seconds).

The variable DS reads the disk drive command channel and returns the current
status of the drive. To get this information in words, PRINT DS$. These status variables
are used after a disk operation, like DLOAD or DSAVE, to find out why the error light
on the disk drive is blinking.

ER, EL and the ERR$ function are variables used in error trapping routines. They
are usually only useful within a program. ER returns the last error number encountered
since the program was RUN. EL is the line where the error occurred. ERR$ is a
function that allows the program to print one of the BASIC error messages. PRINT
ERR$(ER) prints out the proper error message.

RESERVED SYSTEM SYMBOLS
The following characters are reserved system symbols.

SYMBOL USE(S)

Plus sign Arithmetic addition; string concatenation; relative pixel
cursor/sprite movement; declare decimal number in ma-
chine language monitor

Minus sign Arithmetic subtraction; negative number; unary minus;
relative pixel cursor/ sprite movement
Arithmetic multiplication
Arithmetic division
Arithmetic exponentiation
Separate keywords and variable names
Value assignment; relationship testing
Relationship testing
Relationship testing
Format output in variable lists; command/statement func-
tion parameters

/

t

=
<
>

Asterisk
Slash
Up arrow
Blank space
Equal sign
Less than
Greater than
Comma

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 89

USE(S)

Decimal point in floating-point constants
Format output in variable lists; delimiter
Separate multiple BASIC statements on a program line
Enclose string constants
Abbreviation for the keyword PRINT
Expression evaluation and functions
Expression evaluation and functions
Declare a variable name as integer; declare binary num-
ber in machine language monitor
Precede the logical file number in input/output statements
Declare a variable name as a string and declare hexadeci-
mal number in machine language monitor
Declare octal number in machine language monitor
Declare the numeric constant 3.141592654

(
)
%

#
$

&

SYMBOL

Period
Semicolon
Colon
Quotation mark
Question mark
Left parenthesis
Right parenthesis
Percent

Number
Dollar sign

And sign
Pi

3
ONE STEP
BEYOND
SIMPLE BASIC

This chapter takes you one step beyond simple BASIC and presents a collection of useful
routines. You can incorporate these routines into your own programs as needed. In most
cases the routines will require only line number changes to be fitted into your programs.

CREATING A MENU
A menu is a list of choices you select to perform a specific operation within an
application program. A menu directs the computer to a particular part of a program.
Here is a general example of a menu program:

5 REM MENU SKELETON
10 SCNCLR 0
20 PRINT"1. FIRST ITEM"
30 PRINT"2. SECOND ITEM"
40 PRINT"3. THIRD ITEM"
50 PRINT"4. FOURTH ITEM"
100 PRINT:PRINT"SELECT AN ITEM FROM ABOVE"
110 GETKEY AS
120 A=VAL (ASS: IF A>4 THEN 10
130 ON A GOSUB 1000,2000,3000,4000
140 GOTO 10:REM RETURN TO MENU
99 9 STOP
1000 REM START FIRST ROUTINE FOR ITEM ONE HERE
1999 RETURN
2000 REM START SECOND ROUTINE HERE
2 99 9 RETURN
3000 REM START THIRD ROUTINE HERE
3999 RETURN
4000 REM START FOURTH ROUTINE HERE
4 99 9 RETURN

Program 3-1. Menu Skeleton

The SCNCLR 0 command in line 10 clears the 40-column screen. (Use SCNCLR
5 if you are using the 80-column screen. The easiest selection is by a number. You may
use as many selections as can fit on the screen. Line 100 displays a message to the user.
The GETKEY command in line 110 forces the computer to wait for a key to be pressed.
Since a key represents a character symbol, A$ is a string variable. So that it can be
interpreted as a numeric value in an ON GOTO statement, the string variable is
converted to a number with the VAL function in line 120. The IF . . . THEN statement
in line 120 screens user errors by preventing the user from selecting a number that is not
in the range of numbers used for choices (4). Line 130 directs control to the appropriate
section (i.e., line number) in your program. Since four selections are offered in this
example, you must include at least four line numbers. Line 1999 returns to the menu at
the end of each subroutine that you add at lines 1000, 2000, 3000 and 4000 in the menu
skeleton.

ONE STEP BEYOND SIMPLE BASIC 93

BUFFER ROUTINE
The C128 keyboard buffer can hold and dispense up to ten characters from the
keyboard. This is useful in a word processing program where it is possible at certain
moments to type faster than the software can actually process. The characters that
haven't been displayed yet are temporarily stored in the keyboard buffer. The computer
can hold the next instruction in the buffer for use when the program is ready. This buffer
allows a maximum of ten characters in queue. To see the buffer in action, enter the
command SLEEP 5 and immediately press ten different letter keys. After five seconds,
all ten characters are displayed on the screen.

Here is a buffer routine that allows you to put items in the keyboard buffer
from within a program so they are dispensed automatically as the computer is able to act
upon them.

In line 10, memory location 208 (198 in C64 mode) is filled with a number
between 0 and 10—the number of keyboard characters in the keyboard buffer. In line
20, memory locations 842 through 851 (631-640 in C64 mode) are filled with any ten
characters you want placed there. In this example, seven characters are in the buffer,
each a carriage RETURN character. CHR$(13) is the character string code for the
carriage return character.

Line 40 places the text "?CHR$(156)" on the screen, but does not execute the
instruction. Line 50 displays the word "LIST" on the screen. Neither command is
executed until the program ends. In the C128, the keyboard buffer automatically empties
when a program ends. In this case, the characters in the buffer (carriage return) are
emptied and act as though you are pressing the RETURN key manually. When this occurs
on a line where the commands from lines 40 and 50 are displayed, they are executed
as though you typed them in direct mode and pressed the RETURN key yourself. When
this program ends, the character color is changed to putple and the program is LISTED
to the screen. This technique is handy in restarting programs (with RUN or GOTO).

The next section gives a practical example of using the buffer routine.

10 POKE 208,7:REM SPECIFY # OF CHARS IN BUFFER
20 FOR 1=842 TO 849:POKE I,13:NEXT:REM PLACE CHARS IN BUFFER
3 0 SLEEP 2 :REM DELAY
4 0 SCNCLR:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT"? CHR?(156)"
50 PRINT:PRINT:PRINT:PRINT"LIST":REM PLACE LIST ON SCREEN
60 PRINT CHR$(19):PRINT:PRINT:REM GO HOME AND CURSOR DOWN TWICE
7 0 REM WHEN PROGRAM ENDS, BUFFER EMPTIES AND EXECUTES 7 RETURNS.
80 REM THIS CHANGES CHAR COLOR TO PURPLE AND LISTS THE PROGRAM AUTOMATICALLY
9 0 REM AS IF YOU PRESSED THE RETURN KEY MANUALLY

Program 3-2. Buffer Return

LOADING ROUTINE
The buffer can be used in automatic loader routines. Many programs often involve the
loading of several machine code routines as well as a BASIC program. The results of
the following loader are similar to many found on commercial software packages.

2 COLOR 4,1:COLOR 0,1:COLOR 5,1
5 A$="PICTURE"
10 SCNCLR:PRINT:PRINT:PRINT:PRINT"LOAD"CHR$(34)A$CHR$(3 4)",8,1'
15 PRINT:PRINT:PRINT"NEW"
25 B$="FILE3.BIN"
30 PRINT:PRINT:PRINT"LOAD"CHR$(34)B$CHR$(34)",8,1"
4 5 PRINT:PRINT:PRINT:PRINT:PRINT:PRINT"SYS12*256"
90 PRINT CHRS(5):PRINT" GREETINGS FROM COMMODORE"
100 PRINT" PLEASE STAND BY - LOADING":PRINT CHRS(144)
200 PRINT CHR$(19)
300 POKE2 0 8,7:FORI=8 4 2T08 51:POKEI,13:NEXT

Program 3-3. Loading Routine

Line 2 colors the border, screen and characters black. Line 5 assigns A$ the
filename "PICTURE", which in this example assumes that it is an 8K binary file of a
bit-mapped screen. Line 10 places the LOAD instruction for the picture file on the
screen, but does not execute it. A carriage return from the keyboard buffer executes the
load instruction once the program ends and the keyboard buffer empties. Line 15 prints
the word "NEW" on the screen. Again, this operation is not carried out until a carriage
return is executed on the same line once the keyboard buffer empties. After loading a
machine language program, a NEW is performed to set pointers to their original
positions and clear the variable storage area. Line 30 displays the second load instruc-
tion for the machine language program "FILE3.BIN". This hypothetical program
enables the bit mapped PICTURE, and anything else you want to supply in the program.
Line 45 initiates (SYS12*256), the "FILE3.BIN" program starting at 3072 ($0C00)
once the keyboard buffer empties. This is only a template sample for you to follow.
"PICTURE" and "FILE3.BIN" are programs you supply and are only used to illustrate
one technique of automatic loading. Since the previous character color was black, all the
loading instructions are displayed in black on a black background, so they can't be seen.
The CHR$(5) in line 90 changes the character color to white, so the only visible
messages are the ones in white in lines 90 and 100, while the disk drive is loading
"PICTURE" and "FILE3.BIN". Line 300 is the buffer routine.

If you were to do each step manually it would require seven "RETURNS". This
program places seven carriage return characters in the keyboard buffer, and they are
dispensed automatically when the program ends. As each RETURN is accepted, the
corresponding screen instruction is enacted automatically as if you had pressed the
RETURN key manually.

PROGRAMMING THE
CI28 FUNCTION KEYS

As each of the function keys (Fl through F8) is pressed, the computer displays a BASIC
command on the screen and in some cases acts immediately. These are known as the
default values of the function keys. Enter a KEY command to get a list of function key
values at any time.

ONE STEP BEYOND SIMPLE BASIC 95

CHANGING FUNCTION KEYS
You can change the value assigned to any function key by entering the KEY command
followed by the number (1 through 8) of the key you want changed, a comma, and the
new key instruction in a string format. For example:

KEY1, "DLOAD"+CHR$(34)+ "PROGRAM NAME"
+ CHR$(34) + CHR$(1 3) + ' 'LIST'' + CHR$(13)

This tells the computer to automatically load the BASIC program called "program
name" and list it immediately (whenever Fl is pressed). The character string code value
for the quote character is 34. It is necessary for LOAD and SAVE operations. The
character string code value for RETURN is 13 and provides immediate execution.
Otherwise, the instruction is only displayed on the screen and requires you to supply the
additional response and press the RETURN key.

The following example uses the ASCII value for the ESCape key to assign the F3
key to cause a downward scroll:

KEY 3,CHR$(27) + " W "

NOTE: All eight KEY definitions in total must not exceed 246 characters.

USING C64 FUNCTION KEY VALUES
IN C128 MODE
Programs previously written for the C64 which incorporate the function keys may still
be used in C128 mode by first assigning the C64 ASCII values to them with this
instruction:

10J= 132:FORA= 1TO2:FORK = ATO8STEP2:J = J+ 1:KEYK,CHR$(J):NEXT:
NEXT

HOW TO CRUNCH BASIC PROGRAMS
Several techniques known collectively as memory crunching allow you to get the most
out of your computer's memory. These techniques include eliminating spaces, using
multiple instructions, having syntax relief, removing remark statements, using variables,
and in general using BASIC intelligently.

ELIMINATING SPACES
In most BASIC commands, spacing is unnecessary, except inside quotes when you want
the spaces to appear on the screen. Although spaces improve readability, the extra space
consumes additional memory. Here is an instructional line presented both ways:

10INPUT"FIRST NAME";N$:FOR T = A TO M.PRINT "OK":

10INPUT"FIRSTNAME";N$:FORT = ATOM:PRINT"OK":

USING MULTIPLE INSTRUCTIONS
Colons allow you to place several instructions within a single program line. Each
program line consumes additional memory. Be careful, however, crunching IF state-
ments. Any instruction after the IF statement with the same line number can be bypassed
along with the IF . . . THEN condition. The following line is the equivalent of five
lines:

(A)
10 PRINTX:INPUTY:PRINTY:SCNCLRO:?J

(B)
10 PRINTX
20 INPUTY
30 PRINTY
40 SCNCLR0
50 PRINTJ

Example A requires less space in memory and on disk. Example B requires 16
additional bytes; 2 bytes for each additional line number and 2 bytes for the link to the
next line number.

SYNTAX RELIEF
Some BASIC syntax is very flexible and this flexibility can be used to your advantage.
The LET statement, for example, can be written without LET. LET Y= 2 is the same as
Y = 2. Although it is good practice to initialize all variables to zero, it is not necessary
since the computer automatically sets all variables to zero, including subscripted vari-
ables. DIMension all arrays (subscripted variables) to have twelve or more elements. The
C128 automatically dimensions each variable to have eleven subscripted elements if no
dimension is specified following DIM and the variable names. Often semicolons are not
required in PRINT statements. Both of these perform the same results:

10 PRINT"A";Z$;"WORD";CHR$(65);"NOW $"
20 PRINT"A"Z$"WORD"CHR$(65)"NOW $"

REMOVING REM STATEMENTS
Although REM statements are useful to the programmer, removing them makes a
considerable amount of memory available again. It might be a good idea to create a
separate listing with REM statements.

USING VARIABLES
Replace repeated numbers with a variable. This is especially important with large
numbers such as memory addresses. POKEing several numbers in sequence conserves
memory if a variable is used, such as POKE 54273 + V, etc. Of course, single-letter
variable names require the least memory. Reuse old variables such as those used in FOR
. . . NEXT loops. Whenever possible, make use of integer variables since they consume
far less memory than floating-point variables.

ONE STEP BEYOND SIMPLE BASIC 97

USING BASIC INTELLIGENTLY
If information is used repeatedly, store the data in integer arrays, if possible. Use DATA
statements where feasible. Where a similar line is used repeatedly, create a single line
with variables and access it with GOSUBs. Use TAB and SPC functions in place of
extensive cursor controls.

MASKING BITS

Any of the bits within a byte can be controlled individually, using the Boolean operators
AND and OR. Calculations with AND and OR are based on a truth table (Table 3-1)
showing the results given all possible true and false combinations of the arguments X and Y.

X

0
0
1
1

Y

0
1
0
1

X AND Y

0
0
0
1

X OR Y

0
1
1
1

Table 3-1. AND and OR Truth Table

With " 0 " representing False and " 1 " Truth, Table 3-1 shows how the operators
AND and OR work. The result of an AND operation between two bits is only true if
both bits are true (1). Otherwise the combination is false. Any bit combination with a
zero yields a zero in an AND operation. The result of an AND operation is only true
(equal to 1) if both bits are true (equal to 1).

The result of an OR operation is only false if each bit is false. Otherwise the result
is true. Any bit combination with a one yields a one in an OR operation. ONLY two
zeros result in a zero.

Observe the following example with the numbers 5 and 6 in binary form. When
you type the command PRINT 5 AND 6, the result is 4. Here's why:

5= 0000 0101
6= 0000 0110

ANDed 4= 0000 0100

Instead of adding, ANDing performs a bit-by-bit comparison in accordance with
the rules of the AND truth table. Compare column-for-column from the right: 1 AND
0 = 0, 0 AND 1=0, 1 AND 1 = 1, 0 AND 0 = 0. The result "0100" converted to
decimal is the number 4.

What is the effect of ORing 5 and 6? Again comparing bit-by-bit, using the rules
from the OR truth table:

5= 0000 0101
6= 0000 0110

ORing 7= 0000 0111

The result 0111 is decimal 7. Notice from the right that 1 OR 0 = 1, 0 OR 1 = 1, 1 OR
1 = 1 and 0 OR 0 = 0.

Understanding how these OR and AND combinations work gives you the power to
control individual bits within your computer's memory. Many of the 8-bit bytes utilize
each bit for separate control parameters.

USING OR AND AND TO MODIFY
THE BIT VALUES IN A BYTE
A byte is a group of eight binary digits labeled, from right to left, 0 to 7. Each binary
digit position represents a decimal value equal to two raised to the power of the position
number. For example, the decimal value of position 6 is 2**6 or 64. From left to right
the positions are:

7 6 5 4 3 2 1 0

and the corresponding values in decimal are:

128 64 32 16 8 4 2 1

To turn on a bit, place a " 1" in its position. To turn it off, enter a " 0 " . Hence the
binary 10010000 has bits 4 and 7 on. Their values are 128 and 16. So if a particular byte
is POKED with 144 (128+16), these two bits are turned on. To turn bits on, store
(POKE) a new value to that byte—a value equal to the sum of all the decimal
equivalents of all the bits that are enabled (on). Of course, you do not always know
which bits are already on. You may only want to turn on specific bits without
affecting the others. That's the purpose of the logical operations AND and OR.

First, obtain the decimal value of the byte by PEEKing. Then add the decimal
value of the bit you wish to turn on. The following command turns on bit 2 of memory
address "V":

POKEV, PEEK(V) + 4

This assumes bit 2 (third bit from the right) had a value of 0. Had it already been
"on," it would have no effect. To prevent such confusion, the C128 uses the power of
Boolean Logic.

Ideally you want to read (PEEK) each bit. The proper approach is to OR the byte
with an operand byte which will yield the desired binary value. Suppose we want to
turn on bit 5; the operand byte becomes 00100000. By ORing this with any byte it will
affect only bit 5, because any combination involving 1 in an OR operation results in 1.
Thus no bit already ON can be inadvertently turned off.

POKEV,PEEK(V) OR 32

Just as OR turns a switch on, AND can turn a switch off—with a slight difference.
AND results in a " 1 " only if both bits compared are " 1 . " The trick is to compare the

ONE STEP BEYOND SIMPLE BASIC 99

byte in question with an operand byte of all ON bits except the bit you want turned off.
Bits to remain on will not be affected. To turn off bit 5, AND the byte in question with
the mirror image of 00100000 or the operand byte 11011111. In decimal this value is
always 255 minus the value of the bit(s) you want to turn off. Thus:

POKEV,PEEK(V) AND (255-32)

turns off bit 5.
Use OR to turn bits ON
Use AND to turn bits OFF

EXAMPLES:

POKEW,PEEK(W) OR 129 Turns ON bits 0 and 7 of memory address W.

POKES,PEEK(S) AND 126 Turns OFF bits 0 and 7 of memory register S

(Remember 255-129 = 126)

POKEC,PEEK(C)AND254 Turns OFF bit 0

POKEC,PEEK(V)OR63 Turns ON all bits except 6 and 7

DEBUGGING PROGRAMS
No program when first written is free of "bugs" or errors. The process of finding errors
and removing them, debugging, combines editing with problem solving.

SYNTAX ERRORS
Syntax errors result from misspelling or misusing the guidelines and formats of BASIC
commands. An error message is displayed on the screen defining the line where the
error occurs. Typing HELP <RETURN> or pressing the HELP key also highlights the
line with the error. Common syntax errors include misspelled BASIC terms, misplaced
punctuation, unpaired parentheses, reserved variable names such as TIS, use of line
numbers that do not exist, etc.

LOGIC ERRORS
Sometimes errors exist in the program logic, with the result that the program doesn't do
exactly what you think it is supposed to do. Some logic errors are caused by the order of
instructions. One common fault occurs when you forget that anything on a line after an
IF statement is affected by the IF condition.

Some errors in logic require a trial-and-error investigation. This is best initiated by
asking the computer for help in BASIC.

USING A DELAY
Where the computer responds rapidly, it often helps to see a response by inserting a
SLEEP command for a temporary time delay. This gives you a chance to see exactly
what is happening in the program.

USING PRINT AND STOP
Insert STOP statements within your program prior to the suspect instruction line. Good
locations are at the end of specific tasks. Run the program. After the STOP statement
puts you into direct mode, use the PRINT command to identify clues to the problem by
determining the values of the various variables, especially those within loops. Check
these with what you expect. Continue the program with CONT to the next STOP
statement until you modify your program.

TRAPPING AN ERROR
Debugging is the art of detecting the source of problem. The following program is
perfectly valid; however, it produces an error when B equals zero.

10 INPUT A,B
20 PRINT A/B
30 GOTO 10

Although in this case the computer defines the error as a DIVISION BY ZERO
error, it is not always obvious how the variable B became a zero. It could have been
derived from a complex formula embedded in your program, or directly inputting the
value zero into a variable.

The BASIC TRAP command has a technique of trapping such an error in a
program without crashing. Since you can't always foresee all the possible values of the
variable B, you can screen the probable error of division of zero by including a TRAP at
the beginning of the program.

5 TRAP 50
10 INPUT A,B
20 PRINTA/B
30 GOTO 10
50 PRINT''DIVISION BY ZERO IS NOT POSSIBLE"
60 PRINT"ENTER ANOTHER NUMBER FOR B BESIDES ZERO"
70 RESUME

RESUME is required after the TRAP response in order to reactivate the TRAP. If
you include the option to enter a replacement for B, RESUME without a line number
returns to the cause of the error—line 20—and executes it as follows:

65 INPUT B

The use of RESUME NEXT proceeds with the next line after the TRAP command,
i.e., line 10.

TRAP tells the computer to go to a specific line number whenever an error occurs.
Do NOT use TRAP until you have removed all syntax errors first. TRAP can only catch
the error condition it is looking for. An error in the syntax or the logic of your TRAP
routine may cause an error, or may not catch the error that you are looking for. In other
words, TRAP routines are sensitive to errors, too.

ONE STEP BEYOND SIMPLE BASIC 101

ERROR FUNCTIONS
Several reserved variables inherent in the system store information about program
errors. ER stores the error number. EL stores the relevant program line number.
ERR$(N) returns the string representing ER or EL. In the example of division by zero,
ERR$(ER) returns "DIVISION BY ZERO" and ERR$(EL) returns "BREAK". Add
this to the program in the previous section. See Appendix A for a complete listing of
errors.

DOS ERRORS
Information on disk errors is determined from the variables DS and DS$ where DS is the
error number (See Appendix B) and DS$ provides the error number, error message, and
track and sector of the error. DS$ reads the disk error channel and is used during a disk
operation to determine why the disk drive error light is blinking.

Trying to read a directory without a disk in place results in the following error
when the PRINT DS$ command is issued:

74, DRIVE NOT READY, 00, 00

Appendix B highlights specific causes of errors. To convert a function key to read
the disk-drive error channel automatically, use:

KEY 1, "PRINT DS$ + CHR$(13)

TRACING AN ERROR
Some programs have many complex loops that are tedious to follow. A methodical
step-by-step trace is useful. The BASIC TRON and TROFF commands can be used
within a program as a debugging tool to trace specific routines.

Some errors can only be found by acting like the computer and methodically
following each instruction step-by-step, and then doing all the calculations until you
discover something wrong. Fortunately the Commodore 128 can trace errors for you.
Enter the direct command TRON prior to running a program. The program displays each
line number as they occur in brackets, followed by each result. (To slow down the
display, hold the Commodore (C=) key down.)

Try it with this double loop:

10 FORA=1T05
20 FOR B = 2T06
30 C = B*A:K = K + C:PRINTK
40 NEXTB:NEXTA
50 PRINTK

The results will start off like this:

[10] [20] [30] [30] [30]2
[40] [30] [30] [3O]5

meaning the first printed result is the number 2 after operations in lines 10, 20, 30 are
performed. Then lines 40 and 30 result in 5, etc. Notice three activities were performed
in line 30. The Trace function is turned off with the direct command TROFF.

WINDOWING
The standard screen display size is 40- or 80-columns by 25 lines. It is often convenient
to have a portion of the screen available for other work. The process of producing and
isolating small segments of your screen is called "windowing."

DEFINING A WINDOW
There are two ways to create a window—either directly or within a program using the
WINDOW command. Using the ESCape key followed by a T or B is all that is
necessary to describe and set a window.

Here's how to define a window in direct mode:

1. Move the cursor to the upper-left corner position of the proposed window.
Press the (ESC) escape key, then press the letter T key.

2. Move the cursor to the bottom right corner and press the escape key (ESC)
then press the letter B key.

Now that your window is in effect, all commands and listings remain in the
window until you exit by pressing the HOME key twice. This is useful if you have a
listing on the main screen and wish to keep it while you display something else in a
window. See Chapter 13, the Commodore 128 Operating System, under the screen
editor for special ESCape controls within a window.

Although it is possible to define several windows simultaneously on the screen, only
one window can be used at a time. The other windows remain on the display, but they are
inactive. To re-enter a window you have exited, define the top and bottom corners of the
window with the ESC T and ESC B commands, respectively, as you did originally.

The second way to define a window is with the BASIC window command. The
command:

WINDOW 20,12,39,24,1

establishes a window with the top-left corner at column 20, row 12, and the bottom-
right corner at column 39, row 24. The 1 signifies the area to be cleared. Once this
command is specified, all activities are restricted to this window.

Use the window command within a program whenever you want to perform an
activity in an isolated area on the screen.

ONE STEP BEYOND SIMPLE BASIC 103

ADVANCED BASIC
PROGRAMMING TECHNIQUES
FOR COMMODORE MODEMS

The following information tells you how to:

1. Generate Touch Tone™ frequencies
2. Detect telephone ringing
3. Program the telephone to be on or off the hook
4. Detect carrier

The programming procedures operate in C128 or C64 modes with the Modem/300.
In C128 mode, select a bank configuration which contains BASIC, I/O, and the Kernal.

GENERATING TOUCH TONE
(DTMF) FREQUENCIES
Each button on the face of a Touch Tone telephone generates a different pair of tones
(frequencies). You can simulate these tones with your Commodore 128 computer. Each
button has a row and column value in which you must store the appropriate memory
location in order to output the correct frequency. Here are the row and column
frequency values that apply to each button on the face of your Touch Tone telephone:

TOUCH TONE FREQUENCY TABLE

COLUMN 1 (1029 HZ) COLUMN 2 (1336 HZ) COLUMN 3 (1477 HZ)

Row 1 (697 Hz) 1 2 3
Row 2 (770 Hz) 4 5 6
Row 3 (852 Hz) 7 8 9
Row 4 (941 Hz) * 0 #

To generate these tones in BASIC with your Commodore 128, follow this procedure:

1. Initialize the sound (SID) chip with the following BASIC statements:

SID = 54272
POKE SID + 24,15:POKE SID + 4,16
POKE SID + 11,16:POKESID + 5,0:POKE SID + 12,0
POKE SID + 6,15*16:POKE SID + 13,15*16:POKE SID + 23,0

2. Next, select one row and one column value for each digit in the telephone
number. The POKE statement for each row and column are as follows:

Column 1: POKE SID, 117:POKE SID + 1,77
Column 2: POKE SID,152:POKE SID + 1,85
Column 3: POKE SID, 161, POKE SID + 1,94
Row 1: POKE SID + 7,168:POKE SID + 8,44
Row 2: POKE SID + 7,85,:POKE SID + 8,49
Row 3: POKE SID + 7,150:POKE SID + 8,54
Row 4: POKE SID + 7,74 :POKE SID + 8,60

For example, to generate a tone for the number 1, POKE the values for row
1, column 1 as follows

POKE SID + 7,168:POKE SID + 8,44:REM ROW 1
POKE SID,117:POKE SID + 1,77:REM COLUMN 1

3. Turn on the tones and add a time delay with these statements:

POKE SID + 4,17:POKESID + 11,17:REM ENABLE TONES
FOR I = 1 TO 50:NEXT:REM TIME DELAY

4. Turn off the tones and add a time delay with the following statements:

POKE SID + 4,16:POKE SID + 11,16:REM DISABLE TONES
FOR 1= 1 TO 50:NEXT:REM TIME DELAY

5. Now repeat steps 2 through 4 for each digit in the telephone number you are
dialing.

6. Finally, disable the sound chip with this statement:

POKE SID + 24,0

DETECTING TELEPHONE RINGING
To detect whether your telephone is ringing using a Commodore 128, use the following
statement:

IF (PEEK(56577) AND 8) = 0 THEN PRINT "RINGING"

If bit 3 of location 56577 contains a value other than 0, the phone is not ringing.

PROGRAMMING THE TELEPHONE
TO BE ON OR OFF THE HOOK
To program the phone to be off the hook using a Commodore 128, enter the following
statements in a program:

OH = 56577:HI = 32:LO = 255 - 32
POKE (OH + 2),(PEEK(OH + 2) OR HI)
POKE OH,(PEEK(OH) AND LO)

To hang up the phone with a Commodore 128, enter this statement in a program:

POKE OH.(PEEK(OH) OR HI)

ONE STEP BEYOND SIMPLE BASIC 105

Here is the procedure to dial and originate a communication link:

1. Set the modem's answer/originate switch to the " O " for originate.
2. Program the telephone to be OFF the hook.
3. Wait 2 seconds (FOR I = 1 to 500:NEXT:REM 2-SECOND DELAY)
4. Dial each digit and follow it with a delay (FOR I = 1 TO 50:NEXT)
5. When a carrier (high pitched tone) is detected, the Modem/300 automatically

goes on-line with the computer you are connecting with.
6. Program the phone to hang up when you are finished.

Here is the procedure to answer a call:

1. Set the modem's answer/originate switch to " A " for answer.
2. To manually answer, program the telephone to be OFF the hook.
3. To automatically answer, detect if the phone is ringing then program the

phone to be OFF the hook.
4. The Modem/300 automatically answers the call.
5. Program the phone to hang up when you are finished.

DETECTING CARRIER
Your Commodore Modem/1200 and Modem/300 are shipped from the factory with the
ability to detect a carrier on the Commodore 128.

That ability is useful in an unattended auto-answer mode. By monitoring the
carrier detect line, the computer can be programmed to hang up after loss of carrier.
Since a caller may forget to hang up, your program should monitor the transmit and
receive data lines. If there is no activity for five minutes or so, the modem itself should
hang up.

To detect carrier on the Commodore 128, the following statement can be used in a
BASIC program:

OH = 56577:
IF ((PEEK (OH) AND 16) = 0) THEN PRINT "CARRIER DETECTED"

If bit 4 of location 56577 contains a value other than 0, then no carrier is detected.

ROTARY (PULSE) DIALING

In order to dial a number with a modem, the software in the computer must generate
pulses at a prescribed rate. In the United States and Canada, the rate is between 8 and 10
pulses per second with a 58% to 64% break duty cycle. Most people, however, use 10
pulses per second with a 60% break duty cycle.

So to make a call, your software must first take the phone "off-hook" (the
equivalent of you picking up the receiver). Then to dial the first digit, a 3 for instance,

the software must put the phone on-hook for 60 milliseconds and off-hook for 40
milliseconds. Repeat this process three times to dial a 3.

The same method is used to dial other digits, except 0, which is pulsed ten times.
Pause at least 600 milliseconds between each digit.

USING ESCAPECODES

To perform any of the escape capabilities within a program, use a line such as:

10150 PRINT CHR$(27) + " U "

to create an underline cursor (in 80-column only). For example, to clear from the cursor
to the end of a window:

10160 PRINT CHR$(27) + " @ "

(See the Screen Editor section of Chapter 13 for all the escape and control codes
available on the Commodore 128.)

RELOCATING BASIC
To relocate the beginning or ending of BASIC (in C128 mode) for additional memory or
to protect machine-language programs from being overwritten by BASIC text, it is
necessary to redefine the starting and ending pointers in required memory addresses.

The Start of BASIC pointer is located at address 45($2D) and 46($2E). The Top
of BASIC pointer is at addresses 4626($1212) and 4627($1213). The following instruc-
tion displays the default locations of the beginning and end of BASIC text, respectively
(when a VIC bit-mapped screen is not allocated):

PRINT PEEK(45),PEEK(46),PEEK(4626),PEEK(4627)

1 28 0 255

Since the second number in each case is the high byte value, the default start of
basic is 28*256 plus 1 or 7169 while the top is 255*256 or 65280.

The following command reduces the size of BASIC text (program) area by 4K by
lowering the top of BASIC to address 61184 (239*256):

POKE4626,239:POKE4627,0:NEW

To move the beginning of BASIC up in memory by IK, from 7168 to 8192, use
this command line:

POKE 46,32:POKE45,1:NEW

This is the case only when a bit-mapped graphics screen is not allocated. Remem-
ber, the beginning of BASIC starts at 16384($4000) when a bit-mapped screen is
allocated, and other parts of memory are shifted around.

ONE STEP BEYOND SIMPLE BASIC 107

MERGING PROGRAM AND FILES
Files can be merged (combined) by opening an existing file and locating the pointer to
the end of the file so subsequent data can be written to the disk file. C128 BASIC has
included the APPEND command to accomplish this:

APPEND#5, "FILENAME"

opens channel 5 to a previously stored file named "FILE NAME." Subsequent write
(PRINT#5) statements will add further information to the file. APPEND is primarily
used for data files.

The command CONCAT allows the concatenation (combine in sequence) of two
files or programs while maintaining the name of the first.

CONCAT"PART2B" TO "PART2"

creates a new file called Part 2, consisting of the old Part 2, plus the new Part 2b in
sequence. Concatenated BASIC program files must be renumbered before they can
work. Other corrections may also be necessary.

The BASIC routines described in this chapter can greatly enhance the capabilities
of your programs. So far, BASIC has been discussed in detail. The machine language
programming introduced in Chapter 5 can extend program capabilities even further.
And, as shown in Chapter 7, for still greater flexibility and power, you can combine
BASIC and machine language in your programs.

4
COMMODORE 128
GRAPHICS
PROGRAMMING
HOW TO USE
THE GRAPHICS SYSTEM

COMMODORE 128 VIDEO FEATURES

In C128 Mode, Commodore BASIC 7.0 offers fourteen high-level graphics commands
that make difficult programming jobs easy. You can now draw circles, boxes, lines,
points and other geometric shapes, with ten high level commands such as DRAW, BOX
and CIRCLE, and with four sprite commands. (The sprite commands are described in
Chapter 9.) You no longer have to be a machine language programmer, or purchase
additional graphics software packages to display intricate and visually pleasing graphics
displays—the Commodore 128 BASIC graphics capabilities take care of this for you. Of
course, if you are a machine language programmer or a software developer, the
exceptional C128 video hardware features offer high price/performance value for any
microcomputer application.

The C128 graphics features include:
• Specialized graphics and sprite commands
• 16 colors
• 6 display modes, including:

Standard character mode
Multi-color character mode
Extended background color mode
Standard bit map mode
Multi-color bit map mode
Combined bit map and character modes (split-screen)

• 8 programmable, movable graphic objects called SPRITES which make anima-
tion possible

• Custom programmable characters
• Vertical and horizontal scrolling

The Commodore 128 is capable of producing two types of video signals: 40-
column composite video, and 80-column RGBI video. The composite video signal,
channeled through a VIC II (Video Interface Controller) chip (8564)—similar to that
used in the Commodore 64—mixes all of the colors of the spectrum in a single signal to
the video monitor. The 8563 separates the colors red, green and blue to drive separate
cathode ray guns within the video monitor for a cleaner, crisper and sharper image than
composite video.

The VIC II chip supports all of the Commodore BASIC 7.0 graphics commands,
SPRITES, sixteen colors, and the graphic display modes mentioned before. The 80-
column chip, primarily designed for business applications, also supports sixteen colors
(a few of which are different from those of the VIC chip), standard text mode, and bit
map mode. Sprites are not available in 80-column output. Bit map mode is not
supported by the Commodore BASIC 7.0 language in 80-column output. The 80-column
screen can be bit mapped through programming the 8563 video chip with machine
language programs. See Chapter 10, Programming the 80-Column (8563) Chip, for
information on bit mapping the 80-column screen.

COMMODORE 128 GRAPHICS PROGRAMMING 111

This chapter discusses how to use the Commodore 128 graphics features through
BASIC using the VIC (40-column) screen. Except for the sprite commands, each
graphic command is listed in alphabetical order. The sprite commands are covered in
Chapter 9. Following the format of each command are example programs that illustrate
the features of that command. Wherever possible, machine language routines are
included to show how the machine language equivalent of a BASIC graphics command
operates.

Chapter 8, The Power Behind Commodore 128 Graphics, is a description of the
inner workings of the Commodore 128 graphics capabilities. It explains how screen,
color and character memory are used and how these memory components store and
address data in each display mode. Chapter 9 then explains how to use sprites with the
new BASIC commands. Chapter 9 also discusses the inner workings of sprites, their
storage and addressing requirements, color assignments, and describes how to control
sprites through machine language.

TYPES OF SCREEN DISPLAY
Your C128 displays information several different ways on the screen; the parameter
"source" in the command pertains to three different modes of screen display.

TEXT DISPLAY
Text display shows only text or characters, such as letters, numbers, special symbols
and the graphics characters on the front faces of most C128 keys. The C128 can display
text in both 40-column and 80-column screen formats. Text display includes standard
character mode, multi-color character mode and extended background color mode.

The Commodore 128 normally operates in standard character mode. When you
first turn on the Commodore 128, you are automatically in standard character mode. In
addition, when you write programs, the C128 is in standard character mode. Standard
character mode displays characters in one of sixteen colors on a background of one of
sixteen colors.

Multi-color character mode gives you more control over color than the standard
graphics modes. Each screen dot, a pixel, within an 8-by-8 character grid can have one
of four colors, compared with the standard mode which has only one of two colors.
Multi-color mode uses two additional background color registers. The three background
color registers and the character color register together give you a choice of four colors
for each dot within an 8-by-8 dot character grid.

Each pixel in multi-color mode is twice as wide as a pixel in standard character
mode and standard bit map mode. As a result, multi-color mode has only half the
horizontal resolution (160 x 200) of the standard graphics modes. However, the
increased control of color more than compensates for the reduced horizontal resolution.

Extended background color mode allows you to control the background color and
foreground color of each character. Extended background color mode uses all four
background color registers. In extended color mode, however, you can only use the first
sixty-four characters of the screen code character set. The second set of sixty-four
characters is the same as the first, but they are displayed in the color assigned to

background color register two. The same holds true for the third set of sixty-four
characters and background color register three, and the fourth set of sixty-four characters
and background color register four. The character color is controlled by color memory.
For example, in extended color mode, you can display a purple character with a yellow
background on a black screen.

Each of the character display modes receives character information from one of
two places in the Commodore 128 memory. Normally, character information is taken
from character memory stored in a separate chip called ROM (Read Only Memory).
However, the Commodore 128 gives you the option of designing your own characters
and replacing the original characters with your own. Your own programmable characters
are stored in RAM.

BIT MAP DISPLAY
Bit map mode allows you to display highly detailed graphics, pictures and intricate
drawings. This type of display mode includes standard bit map mode and multi-color bit
map mode. Bit map modes allow you to control each individual screen dot or pixel
(picture element) which provides for considerable detail in drawing pictures and other
computer art. These graphic displays are only supported in BASIC by the VIC chip.

The 80-column chip is designed primarily for character display, but you can bit
map it through your own programs. See Chapter 10, Programming the 80-Column (8563)
Chip, for detailed information.

The difference between text and bit map modes lies in the way in which each
screen addresses and stores information. The text screen can only manipulate entire
characters, each of which covers an area of 8 by 8 pixels on the screen. The more
powerful bit map mode exercises control over each pixel on your screen.

Standard bit map mode allows you to assign each screen dot one of two colors. Bit
mapping is a technique that stores a bit in memory for each dot on the screen. In
standard bit map mode, if the bit in memory is turned off, the corresponding dot on the
screen becomes the color of the background. If the bit in memory is turned on, the
corresponding dot on the screen becomes the color of the foreground image. The series
of 64,000 dots on the screen and 64,000 corresponding bits in memory control the
image you see on the screen. Most of the finely detailed computer graphics you see in
demonstrations and video games are bit mapped high-resolution graphics.

Multi-color bit map mode is a combination of standard bit map mode and
multi-color character mode. You can display each screen dot in one of four colors within
an 8 x 8 character grid. Again, as in multi-color character mode, there is a tradeoff
between the horizontal resolution and color control.

SPLIT SCREEN DISPLAY
The third type of screen display, split screen, is a combination of the first two types.
The split-screen display outputs pail of the screen as text and part in bit map mode
(either standard or multi-color). The C128 is capable of this since it depends on two
parts of its memory to store the two screens: one part for text, and the other for
graphics.

COMMODORE 128 GRAPHICS PROGRAMMING 113

COMMAND SUMMARY

Following is a brief explanation of each graphics command available in BASIC 7.0:

BOX: Draws rectangles on the bit-map screen
CHAR: Displays characters on the bit-map screen
CIRCLE: Draws circles, ellipses and other geometric shapes
COLOR: Selects colors for screen border, foreground, background and characters
DRAW: Displays lines and points on the bit-map screen
GRAPHIC: Selects a screen display (text, bit map or split-screen bit map)
GSHAPE: Gets data from a string variable and places it at a specified position on the

bit-map screen
LOCATE: Positions the bit-map pixel cursor on the screen
PAINT: Fills area on the bit-map screen with color
SCALE: Sets the relative size of the images on the bit-map screen
SSHAPE: Stores the image of a portion of the bit-map screen into a text-string variable
WIDTH: Sets the width of lines drawn

The following paragraphs give the format and examples for each of the non-sprite
BASIC 7.0 graphic commands. For a full explanation of each of these commands, see
the BASIC 7.0 Encyclopedia in Chapter 2.

BOX
Draw a box at a specified position on the screen.

BOX [color source], XI, Yl[,X2,Y2][,angle][,paint]

where:

color source 0 = Background color
1 = Foreground color
2 = Multi-color 1
3 = Multi-color 2

XI, Yl Top left corner coordinate (scaled)
X2, Y2 Bottom right corner opposite XI, Yl, is the pixel cursor

location (scaled)
angle Rotation in clockwise degrees; default is 0 degrees
paint Paint shape with color

0 = Do not paint
1 = Paint

EXAMPLES:

10 COLOR 0,1:COLOR 1,6:COLOR 4,1
20 GRAPHIC 1,1:REM SELECT BMM
30 BOX 1,10,10,70,70,90,1:REM DRAW FILLED GREEN BOX
40 FOR 1=20 TO 140 STEP 3
50 BOX 1,1,1,1+60,1+60,I+80:REM DRAW AND ROTATE BOXES
6 0 NEXT
70 BOX 1,140,140,200,200,220,1:REM DRAW 2ND FILLED GREEN BOX
8 0 COLOR 1,3:REM SWITCH TO RED
90 BOX 1. ,150, 20,210,80,90,1 : REM DRAW FILLED RED BOX
100 FOR 1=20 TO 140 STEP 3
110 BOX 1,1+130,I,1+190,1+60,I+70:REM DRAW AND ROTATE RED BOXES
120 NEXT
130 BOX 1,270,140,330,200,210,1:REM DRAW 2ND FILLED RED BOX
140 SLEEP 5 :REM DELAY
150 GRAPHIC 0,l:REM SWITCH TO TEXT MODE

10 COLOR 0,1:COLOR 4,1:COLOR 1,6
20 GRAPHIC 1,1
3 0 BOX 1,0,0,319,199
4 0 FOR X=10 TO 160 STEP 10
50 C=X/10
6 0 COLOR 1,C
70 BOX 1,X,X,320-X,320-X
80 NEXT
90 SLEEP 5
100 GRAPHIC 0,1

10 COLOR 0,1:COLOR 4,1:COLOR 1,6
20 GRAPHIC 1,1
3 0 BOX 1,50,50,150,120
4 0 BOX 1,70,70,170,140
5 0 DRAW 1,50,50 TO 70,70
6 0 DRAW 1,150,120 TO 170,140
70 DRAW 1,50,120 TO 70,140
8 0 DRAW 1,150,50 TO 170,70
90 CHAR 1,20,20,"CUBE EXAMPLE"
100 SLEEP 5
110 GRAPHIC 0,1

10 COLOR 1,6:COLOR 4,1:COLOR 0,1
20 GRAPHIC 1,1:REM SELECT BIT MAP MODE
30 DO :REM CALCULATE RANDOM POINTS
40 X1=INT(RND(1)*319+1!
50 X2=INT(RND(1)*319+1)
60 X3=INT(RND(1)*319+1)
70 X4=INT(RND(1)*319+1)
80 Y1=INT{RND(1)*199+1)
90 Y2=INT(RND(1)*199+1)
100 Y3=INT(RND(11*199+1)
110 Y4=INT(RND(1)*199+1)
120 BOX 1,X1,Y1,X2,Y2:REM DRAW THE RANDOM BOXES
130 BOX 1,X3,Y3,X4,Y4
140 DRAW 1,X1,Y1 TO X3,Y3:REM CONNECT THE POINTS
150 DRAW 1,X2,Y2 TO X4,Y4
160 DRAW 1,X1,Y2 TO X3,Y4
170 DRAW 1,X2,Y1 TO X4,Y3
180 SLEEP2:REM DELAY
190 SCNCLR
200 LOOP:REM LOOP CONTINUOUSLY

COMMODORE 128 GRAPHICS PROGRAMMING I IS

CHAR
Display characters at the specified position on the screen,

CHAR [color source],X,Y[,string][,RVS]

This is primarily designed to display characters on a bit mapped screen, but it can also
be used on a text screen. Here's what the parameters mean:

color source

X

Y
string
RVS

EXAMPLE:

0 = Background
1 = Foreground
Character column (0-79) (wraps around to the next line
in 40-column mode)
Character row (0-24)
String to print
Reverse field flag (0 = off, 1 = on)

10 COLOR 2,3: REM multi-color 1 =Red
20 COLOR 3,7: REM multi-color 2 = Blue
30 GRAPHIC 3,1
40 CHAR 0,10,10, "TEXT",0

CIRCLE
Draw circles, ellipses, arcs, etc. at specified positions on the screen.

CIRCLE [color source],X,Y[,Xr][,Yr]
[,sa][,ea][,angle][,inc]

where:

color source 0 = background color
1 = foreground color
2 = multi-color 1
3 = multi-color 2

X,Y Center coordinate of the CIRCLE
Xr X radius (scaled)
Yr Y radius (default is xr)
sa Starting arc angle (default 0 degrees)
ea Ending arc angle (default 360 degrees)
angle Rotation in clockwise degrees (default is 0 degrees)
inc Degrees between segments (default is 2 degrees)

EXAMPLES:

CIRCLE 1, 160,100,65,10 Draws an ellipse.
CIRCLE1, 160.100,65,50 Draws a circle.
CIRCLE1, 60,40,20,18,,,,45 Draws an octagon.

CIRCLE1, 260,40,20,,,,,90 Draws a diamond.
CIRCLE1, 60,140,20,18,,,, 120 Draws a triangle.
CIRCLE1,+ 2,+ 2,50,50 Draws a circle (two pixels down and two to

the right) relative to the original coordinates of
the pixel cursor.

SAMPLE PROGRAMS:

10 REM SUBMARINE TRACKING SYSTEM
2 0 COLOR 0,1:COLOR 4,1:COLOR 1,2:REM SELECT BKGRND, BRDR,SCREEN COLORS
30 GRAPHIC 1,1:REM ENTER BIT MAP MODE
4 0 BOX 1,0,0,319,199
50 CHAR 1,7,2 4,"SUBMARINE TRACKING SYSTEM" :REM DISPLAY CHARS ON BIT MAP
60 COLOR 1,3:REM SELECT RED
70 XR=0:YR=0:REM INIT X AND Y RADIUS
8 0 DO
90 CIRCLE 1,160,100,XR,YR,0,360,0,2:REM DRAW CIRCLES
100 XR=XR+10:YR=YR+10:REM UPDATE RADIUS
110 LOOP UNTIL XR=90
120 DO
130 XR= 0:YR= 0
140 DO
150 CIRCLE 0,160,100,XR,YR,0,360,0,2 :REM ERASE CIRCLE
160 COLOR 1,2 :REM SWITCH TO WHITE
170 DRAW 1,160,100+XR:DRAW 0,160,100+XR:REM DRAW SUBMARINE BLIP
180 COLOR 1,3:REM SWITCH BACK TO RED
190 SOUND 1,16000,15:REM BEEP
200 CIRCLE 1,160,100,XR,YR,0,360,0,2 :REM DRAW CIRCLE
210 XR=XR+10:YR=YR+10 :REM UPDATE RADIUS
220 LOOP UNTIL XR=90 :REM LOOP
230 LOOP

10 COLOR 0,1:COLOR 4,1:COLOR 1,7
20 GRAPHIC 1,1:REM SELECT BMM
30 X=150:Y= 150:XR=150:YR=150
4 0 DO
50 CIRCLE 1,X,Y,XR,YR
60 X=X+7 :Y=Y-5:REM INCREMENT X AND Y COORDINATES
7 0 XR=XR-5 :YR=YR-5:REM DECREMENT X AND Y RADII
80 LOOP UNTIL XR=0
90 GRAPHIC 0,1:REM SELECT TEXT MODE

COLOR
Define colors for each screen area.

COLOR source number, color number

This statement assigns a color to one of the seven color areas:

AREA SOURCE

0 40-column (VIC) background
1 40-column (VIC) foreground
2 multi-color 1
3 multi-color 2
4 40-column (VIC) border
5 character color (40- or 80-column screen)
6 80-column background color

Colors codes are in the range 1-16.

COMMODORE 128 GRAPHICS PROGRAMMING 117

COLOR CODE

1
2
3
4
5
6
7
8

COLOR

Black
White
Red
Cyan
Purple
Green
Blue
Yellow

COLOR CODE

9
10
11
12
13
14
15
16

COLOR

Orange
Brown
Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Color Codes in 40-Column (VIC) Output

EXAMPLE:

COLOR 0, 1:

COLOR 5,8:

Changes background color of 40-column screen to black.

Changes character color to yellow.

SAMPLE PROGRAM:

10 REM CHANGE FOREGROUND BIT MAP COLOR
20 GRAPHIC 1,1
30 1 = 1
4 0 DO
50 COLOR 1,1
60 BOX 1,100,100,219,159
70 1=1+1:SLEEP 1
80 LOOP UNTIL 1=17
90 GRAPHIC 0,1
100 REM CHANGE BORDER COLOR
110 1=1
120 DO
130 COLOR 4,1
140 1=1+1:SLEEP 1
150 LOOP UNTIL 1=17
160 REM CHANGE CHARACTER COLOR
170 1=1
180 DO
190 COLOR 5,1
200 PRINT"COLOR CODE";I
210 1=1+1:SLEEP 1
220 LOOP UNTIL 1=17
23 0 REM CHANGE BACKGROUND COLOR
240 1=1
250 DO
26 0 COLOR 0,1
270 1=1+1:SLEEP 1
280 LOOP UNTIL 1=17
290 COLOR 0,1:COLOR 4,1:COLOR 5,2

DRAW
Draw dots, lines and shapes at specified positions on screen.

DRAW [color source], [XI, Y1][TO X2, Y2] . . .

Here are the parameter values:

where:

color source 0 Bit map background
1 Bit map foreground
2 Multi-color 1
3 Multi-color 2

X1,Y1 Starting coordinate (0,0 through 319,199) (scaled)
X2,Y2 Ending coordinate (0,0 through 319,199) (scaled)

EXAMPLES:

DRAW 1, 100, 50 Draw a dot.
DRAW , 10, 10 TO 100,60 Draw a line.
DRAW , 10, 10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle.

SAMPLE PROGRAMS:

10 REM DRAW EXAMPLES
2 0 COLOR 0,1:COLOR 4,1:COLOR 1,6
30 GRAPHIC 1,1
40 CHAR 1,10,1,"THE DRAW COMMAND"
50 X=10
60 DO
70 DRAW l,X,50:REM DRAW POINTS
80 X=X+10
90 LOOP UNTIL X=320
100 CHAR 1,12,7 ,"DRAWS POINTS"
110 Y=70
12 0 DO
130 Y=Y+5
140 DRAW 1,1, Y TO Y,Y :REM DRAW LINES
150 LOOP UNTIL Y=130
160 CHAR 1,18,11,"LINES"
170 DRAW 1,10,140 TO 10,199 TO 90,165 TO 40,160 TO 10,140:REM DRAW SHAPE 1
180 DRAW 1,120,145 TO 140,195 TO 195,195 TO 225,145 TO 120,145:REM DRAW SHAPE
190 DRAW 1,250,199 TO 319,199 TO 319,60 TO 250,199:REM DRAW SHAPE 3
200 CHAR 1,22,15,"AND SHAPES"
210 SLEEP 5:GRAPHIC 0,1

10 COLOR 0,1:COLOR 4,1:COLOR 1,7
20 GRAPHIC 1,1:REM SELECT BMM
30 Y = l
4 0 DO
50 DRAW 1,1,Y TO 320,Y:REM DRAW HORIZONTAL LINES
60 Y=Y+10
70 LOOP WHILE Y<200
7 5 X=l
80 DO
90 DRAW 1,X,1 TO X,200:REM DRAW VERTICAL LINES
95 X=X+10
97 LOOP WHILE X<320
100 COLOR 1,3:REM SWITCH TO RED
110 DRAW 1,160,0 TO 160,200:REM DRAW X AXIS IN RED
120 DRAW 1,0,100 TO 320,100:REM DRAW Y AXIS IN RED
130 COLOR 1,6:REM SWITCH TO GREEN
140 DRAW 1,0,199 TO 50,100 TO 90,50 TO 110,30 TO 150,20 TO 180,30
150 DRAW 1,180,30 TO 220,10 TO 260,80 TO 320,0:REM DRAW GROWTH CURVE
160 CHAR 1,7,2 3,"PROJECTED SALES THROUGH 1990"
170 CHAR 1,1,21,"1970 1975 1980 1985 1990"
180 SLEEP 10:GRAPHIC 0,l:REM DELAY AND SWITCH TO TEXT MODE

COMMODORE 128 GRAPHICS PROGRAMMING 119

GRAPHIC
Select a graphic mode.

1) GRAPHIC mode [,clear][,s]

2) GRAPHIC CLR

This statement puts the Commodore 128 in one of the six graphic modes:

MODE DESCRIPTION

0 40-column text
1 standard bit map graphics
2 standard bit map graphics (split screen)
3 multi-color bit map graphics
4 multi-color bit map graphics (split screen)
5 80-column text

EXAMPLES:

GRAPHIC 1,1

GRAPHIC 4,0,10

GRAPHIC 0

GRAPHIC 5

Select standard bit map mode and clear the bit map.

Select split screen multi-color bit map mode, do not clear

the bit map and start the split screen at line 10.

Select 40-column text.

Select 80-column text.

GRAPHIC CLR Clear and deallocate the bit map screen.

SAMPLE PROGRAM:

10 REM GRAPHIC MODES EXAMPLE
2 0 COLOR 0,1:COLOR 4,1:COLOR 1,7
30 GRAPHIC 1,1:REM ENTER STND BIT MAP
40 CIRCLE 1,160,100,60,60
50 CIRCLE 1,160,100,30,30
60 CHAR 1,9,24,"STANDARD BIT MAP MODE"
70 SLEEP 4
80 GRAPHIC 0,l:REM ENTER STND CHAR MODE
90 COLOR 1,6:REM SWITCH TO GREEN
100 FOR 1=1 TO 2 5
110 PRINT"STANDARD CHARACTER MODE"
120 NEXT
130 SLEEP 4
140 GRAPHIC 2,1:REM SELECT SPLIT SCREEN
150 CIRCLE 1,160,70,50,50
160 CHAR 1,14,1,"SPLIT SCREEN"
170 CHAR 1,8,16,"STANDARD BIT MAP MODE ON TOP"
180 FOR 1=1 TO 25
190 PRINT" STANDARD CHARACTER MODE ON THE BOTTOM"
200 NEXT
210 SLEEP 3:REM DELAY
220 SCNCLR:REM CLEAR SCREEN
230 GRAPHIC CLR:REM DE-ALLOCATE BIT MAP

GSHAPE
Retrieve (load) the data from a string variable and display it on a specified coordinate.

GSHAPE string variable [X,Y][,mode]

where:

string
X,Y

mode

Contains shape to be drawn
Top left coordinate (0,0 through 319,199) telling where to
draw the shape (scaled—the default is the pixel cursor)
Replacement mode:
0 = place shape as is (default)
1 = invert shape
2 = OR shape with area
3 = AND shape with area
4 = XOR shape with area

SAMPLE PROGRAM:
10 REM DRAW, SAVE AND GET THE COMMODORE SYMBOL
2 0 COLOR 0,1:COLOR 4,1:COLOR 1,7
30 GRAPHIC 1,1:REM SELECT BMM
40 CIRCLE 1,160,100,20,15:REM OUTER CIRCLE
50 CIRCLE 1,160,100,10,9:REM INNER CIRCLE
60 BOX 1,165,85,185,115:REM ISOLATE AREA TO BE ERASED
70 SSHAPE A?,166,85,185,115:REM SAVE THE AREA INTO A$
80 GSHAPE A$,166,85,4:REM EXCLUSIVE OR THE AREA-THIS (ERASES) TURNS OFF PIXELS
90 DRAW 0,165,94 TO 165,106:REM TURN OFF (DRAW IN BKGRND COLOR) PIXELS IN "C="
100 DRAW 1,166,94 TO 166,99 TO 180,99 TO 185,94 TO 166,94:REM UPPER FLAG
110 DRAW 1,166,106 TO 166,101 TO 180,101 TO 185,106 TO 166,106:REM LOWER FLAG
120 PAINT 1,160,110:REM PAINT "C"
130 PAINT 1,168,98 :REM UPPER FLAG
140 SLEEP 5:REM DELAY
150 SSHAPE B$,137,84,187,116:REM SAVE SHAPE INTO B$
160 DO
170 SCNCLR
180 Y=10
190 DO
200 X=10
210 DO
220 GSHAPE B$,X,Y:REM GET AND DISPLAY SHAPE
230 X=X+50:REM UPDATE X
240 LOOP WHILE X<280
250 Y=Y+40:REM UPDATE Y
260 LOOP WHILE Y<160
270 SLEEP 3
280 LOOP

LOCATE
Position the bit map pixel cursor (PC) on the screen.

LOCATE X, Y

EXAMPLE:

LOCATE 160,100

LOCATE +20,100

LOCATE+30,+ 20

PAINT
Fill area with color.

Position the PC in the center of the bit map screen.
Nothing will be seen until something is drawn.
Move the PC 20 pixels to the right of the last PC position
and place it at Y coordinate 100.
Move the PC 30 pixels to the right and 20 down from
the previous PC position.

PAINT [color source],X,Y[,mode]

COMMODORE 128 GRAPHICS PROGRAMMING 121

where:

color source

X,Y
mode

0 Bit map background
1 Bit map foreground (default)
2 Multi-color 1
3 Multi-color 2
starting coordinate, scaled (default at pixel cursor (PC))
0 = paint an area defined by the color source selected
1 = paint an area defined by any non-background source

EXAMPLE:

10 CIRCLE 1, 160,100,65,50
20 PAINT 1, 160,100

10 BOX 1, 10, 10, 20, 20
20 PAINT 1, 15, 15

30 PAINT 1, +10, +10

Draws an outline of a circle.
Fills in the circle with color from source 1 (VIC
foreground), assuming point 160,100 is colored
in the background color (source 0).
Draws an outline of a box.
Fills the box with color from source 1, assuming
point 15,15 is colored in the background source
(0).
PAINT the screen in the foreground color source
at the coordinate relative to the pixel cursor's
previous position plus 10 in both the vertical and
horizontal positions.

SCALE
Alter scaling in graphics mode.

SCALE n [,Xmax,Ymax]

where:
n = 1 (on) or 0 (off)
X max = 320-32767

(default = 1023)
Y max = 200-32767

(default = 1023)

The default scale values are:

Multi-color mode
Bit map mode

X = 0 to 159 Y = 0 to 199
X = 0 to 319 Y = 0 to 199

EXAMPLES:

10 GRAPHIC 1,1
20 SCALE 1:CIRCLE 1,180,100,100,100

Enter standard bit map, turn scaling
on to default size (1023, 1023) and
draw a circle.

10 GRAPHIC 1,3
20 SCALE 1,1000,5000
30 CIRCLE 1,180,100,100,100

Enter multi-color mode, turn scaling
on to size (1000,5000) and draw a
circle.

SSHAPE
Save shapes to string variables.

SSHAPE and GSHAPE are used to save and load rectangular areas of multi-color or bit
mapped screens to/from BASIC string variables. The command to save an area of the
screen into a string variable is:

SSHAPE string variable, XI, Yl [,X2,Y2]

where:

string variable
X1,Y1
X2,Y2

EXAMPLES:

SSHAPE A$, 10,10

SSHAPE B$, 20,30,47,51

SSHAPE D$,+ 10,+ 10

String name to save data in
Corner coordinate (0,0 through 319,199) (scaled)
Corner coordinate opposite (X1,Y1) (default is the PC)

Saves a rectangular area from the coordinate 10,10
to the location of the pixel cursor, into string vari-
able A$.
Saves a rectangular area from top left coordinate
(20,30) through bottom right coordinate (47,51) into
string variable B$.
Saves a rectangular area 10 pixels to the right and 10
pixels down from the current position of the pixel
cursor.

Also, see the example program under GSHAPE for another example.

WIDTH
Set the width of drawn lines.

WIDTH n

This command sets the width of lines drawn using BASIC'S graphic commands to either
single or double width. Giving n a value of 1 defines a single width line; a value of 2
defines a double width line.

EXAMPLES:

WIDTH 1 Set Single width for graphic commands
WIDTH 2 Set double width for drawn lines

5
MACHINE
LANGUAGE
ON THE
COMMODORE 128

This chapter introduces you to 6502-based machine language programming. Read this
section if you are a beginner or novice machine language programmer. This section
explains the elementary principles behind programming your Commodore 128 in machine
language. It also introduces you to the 8502 machine language instruction set and how
to use each instruction. If you are already an experienced machine language program-
mer, skip this section and continue to the 8502 Instruction and Addressing Table at the
end of the chapter for reference material on machine language instructions. The 8502
instruction set is exactly the same as the 6502 microprocessor instruction set.

WHAT IS MACHINE LANGUAGE?

Every computer has its own machine language. The type of machine language depends
on which processor is built into the computer. Your Commodore 128 understands 8502
machine language, which is based on 6502 machine language, to carry out its opera-
tions. Think of the microprocessor as the brain of the computer and the instructions as
the thoughts of the brain.

Machine language is the most elementary level of code that the computer actually
interprets. True machine language is composed of binary strings of zeroes and ones.
These zeroes and ones act as switches to the hardware, and tell the circuit where to apply
voltage levels.

The machine language discussed in this chapter is symbolic 6502 Assembly
language as it appears in the C128 Machine Language Monitor. This is not the
full-blown symbolic assembly language as it appears in an Assembler package, since
symbolic addresses or other higher level utilities that an Assembler software package
would provide are not implemented.

Machine language is the lowest level language in which you can instruct your
computer. BASIC is considered a high-level language. Although your Commodore 128
has BASIC built in, the computer must first interpret and translate it to a lower level that
it can understand, before the computer can act upon BASIC instructions.

With each microinstruction, you give the computer a specific detail to perform.
The computer takes nothing for granted in machine language, unlike BASIC, where
many unnoticed machine-level functions are performed by one statement. One BASIC
statement requires several machine language instructions to perform the same operation.
Actually, when you issue a BASIC command, you are really calling a machine language
subroutine that performs a computer operation.

WHY USE MACHINE LANGUAGE?

If machine language is more intricate and complicated than BASIC, why use it? Certain
applications, such as graphics and telecommunications, require machine language be-
cause of its speed. Since the computer does not have to translate from a higher-level
language, it runs many times faster than BASIC.

MACHINE LANGUAGE ON THE COMMODORE 128 125

Programs such as those used in arcade games cannot operate in the relatively slow
speed of BASIC, so they are written in machine language. Other instances dictate the
use of machine language simply because those programming operations are handled
better than in a high-level language like BASIC. But some programming functions such
as string operations are easier in BASIC than in machine language. In these cases,
BASIC and machine language can be used together. You can find information on how to
mix machine language with BASIC in Chapter 7.

Inside your computer is a perpetually running program called the operating
system. The operating system program controls every function of your computer. It
performs functions at lightning speeds you are not even aware of.

The operating system program is written entirely in machine language and is
stored in a portion of the computer called the Kernal ROM. (Chapter 13 describes how
to take advantage of the machine language programs within the Kernal, and how to use
parts of the operating system in your own machine-language programs.)

Though machine language programming may seem more complicated and difficult
than BASIC at first, think back to when you didn't know BASIC or your first
programming language. That seemed difficult at first, too. If you learned BASIC or
another programming language, you can learn machine language. Although it's a good
idea to learn a higher-level language such as BASIC before you start machine language,
it's not absolutely necessary.

WHAT DOES MACHINE LANGUAGE
LOOK LIKE?

Chapter 2 describes the C128 BASIC 7.0 language. Most statements in BASIC start
with a BASIC verb or keyword, followed by an operand. The BASIC keywords
resemble English verbs. The operands are variables, or constants, that are part of an
expression. For example, A + B = 2, is an expression where A, B, and 2 are operands
in the expression. Machine-language instructions are similar, though they have a uniform
format. Here's the format for an 8502 symbolic machine language instruction as it
appears in the C128 Machine Language Monitor:

OP-CODE FIELD OPERAND FIELD

OPERATION CODE (OP-CODE) FIELD
The first part of a machine-language instruction is called the operation code or op-code.
The op-code is comparable to a BASIC verb, in that it is the part of the instruction that
performs an action. A machine language op-code is also referred to in an assembly
language as a mnemonic. All 8502 (6502) machine language assembler mnemonics are
three-letter abbreviations for the functions they perform. For example, the first and most
common instruction you will learn is LDA, which stands for LoaD the Accumulator.
This chapter defines all of the mnemonics.

OPERAND FIELD
The second portion of a machine-language instruction is the OPERAND field. In the
C128 Machine Language Monitor, the operand is separated from the op-code with at
least one space and preceded by a ($) dollar sign, (+) plus sign (decimal), (&)
ampersand (octal), or a (%) percent (binary) sign to signify that the operand is a
hexadecimal, decimal, octal or binary number. An ADDRESS is the name of or
reference to a specific memory location within the computer.

The number of a memory location is its address, just like houses on your street are
numbered. Addresses in your computer are necessary so they can receive, store and send
(LOAD) data back and forth to the microprocessor.

When you use the Commodore 128's built-in machine-language monitor, all
numbers and addresses default to hexadecimal numbers, but they can be represented in
decimal, octal or binary. The address is the hexadecimal number of the specified
memory location. When you use an ASSEMBLER, the addresses are referred to as
symbolic addresses. Symbolic addresses allow you to use variable names, instead of
absolute addresses that specify the actual memory location. You declare the symbolic
address to be the numeric address in the beginning of your machine language program or
allow the assembler to assign the address.

When you refer to that address later in the program, you can refer to the symbolic
address rather than to the absolute address as does the Machine Language Monitor.
Using an assembler and symbolic addresses make programming in machine language
easier than using the machine-language monitor and absolute addresses. You will
learn about the eleven addressing modes later in this chapter.

As you know, the second part of a machine-language instruction is the OPER-
AND. A machine language operand can be a constant; it does not necessarily have to be
an address reference. When a constant in machine language appears in place of an
address as the second part of an instruction, an operation is performed on a data value
rather than a memory location.

A pound sign (#) in front of the operand signifies immediate addressing, which
you will learn more about later in the chapter. The pound sign is only used as an aid for
the symbolic language programmer. The pound sign tells the computer to perform
machine-language instruction on a constant, and not an address. In the case of the
Machine Language Monitor, variable names are not allowed. To represent variables in
the monitor, you must reference a memory location where your variable data value is
stored.

EXAMPLES OF
MACHINE-LANGUAGE INSTRUCTIONS

LDA $100 ; Absolute addressing
LDA $10 ; Zero page absolute addressing
LDA ($FA),Y ; Indirect indexed addressing
LDA $2000,X ; Indexed addressing (absolute)
LDA #$10 ; Immediate addressing (constants)

MACHINE LANGUAGE ON THE COMMODORE 128 127

THE SIMILARITIES AND DIFFERENCES BETWEEN AN
ASSEMBLER AND A MACHINE LANGUAGE MONITOR
An assembler and machine-language monitor both provide for symbolic op-codes.
Assemblers typically allow symbolic operands as well, whereas the C128 machine-
language monitor refers to addresses and operands literally (absolutely).

An assembler typically has two forms of a file: source code and object code.
Source code is the file you create when you are writing the program including symbolic
start addresses and comments.

The source code file is not executable. It must be assembled (in an intermediate
process) into object code, which is executable code.

The machine language monitor start address is determined by where you place the
actual instructions in memory. The monitor does not provide for comments. The resulting
program, once it is input, is executed immediately as a binary file. No intermediate
assembly step is needed.

THE 8502 MICROPROCESSOR REGISTERS

You have learned that an address is a reference to a specific memory location among the
2 banks of RAM within the Commodore 128. Separate and independent of those RAM
locations are special purpose work and storage areas within the microprocessor chip
itself, called registers. These registers are where the values are manipulated. The
manipulation of the microprocessor registers and their communication with the comput-
er's memory (RAM and ROM) accomplishes all the functions of machine language and
your computer's operating system.

Figure 5-1 shows a block diagram of the 8502 microprocessor. As shown in the
figure, the 8502 microprocessor registers are:

Accumulator
X index register
Y index register
Status register
Program counter
Stack pointer

Following are descriptions of these registers.

THE ACCUMULATOR
The accumulator is one of the most important registers within the 8502 microprocessor.
As the name implies, it accumulates the results of specific operations. Think of
the accumulator as the doorway to your microprocessor. All information that enters
your computer must first pass through the accumulator (or the X or Y register).

For example, if you want to store a value within one of the RAM locations, you must
first load the value into the accumulator (or the X or Y register) and then store it into the
specified RAM location. You cannot store a value directly into RAM, without placing it
into the accumulator or the index registers first. (The index registers are described in the
following section.)

Figure 5-1. 8502 Block Diagram

MACHINE LANGUAGE ON THE COMMODORE 128 129

All mathematical operations are performed within the arithmetic logic unit (ALU)
and stored in the accumulator. It is considered a temporary mathematical work area. For
example, you want to add two numbers, 2 + 3. First, load the accumulator with the 2.
Next add 3 with the ADC mnemonic. Now, you want to perform another operation. You
must store the answer from the accumulator into a RAM location before you perform the
next math operation. If you don't, your original answer is erased.

The accumulator is so important that it has an addressing mode of its own. All the
instructions using this mode pertain specifically to the accumulator. The following three
sample instructions pertain solely to the accumulator in its own addressing mode:

LDA - LOAD accumulator with memory
STA - STORE the accumulator in memory
ADC - ADD contents of memory to the accumulator

Details on all of the accumulator addressing commands are given later in this chapter.

THE X AND Y INDEX REGISTERS
The second most used registers are the X and Y index registers. These index registers are
used primarily to modify an address by adding an index within a machine-language
instruction. They also can be used as temporary storage locations or to load values and
store them in RAM like the accumulator.

When modifying an address, the contents of the index registers are added to an
original address, called the base address, to find an address relative to the base address.
The resulting address yields the effective address—i.e., the location where a data value
is stored or retrieved. The effective address is acted upon by machine-language instruc-
tions. For example, you want to place the value 0 in locations 1024 through 1034. In
BASIC, here's how you do it:

10 FOR I = 1024 to 1034
20 POKE 1,0
30 NEXT

Here's how you do it in symbolic machine language by using the X or Y index
register. NOTE: Don't worry if you don't understand all of the following instructions. They
are discussed fully in the TYPES OF INSTRUCTIONS section, later in this chapter.

LDA #$00 Load the Accumulator with 0
TAX Transfer the contents of Accumulator (0) to X

Register.
START STA $0400,X Store contents of Accumulator in address $0400 + X

INX Increment the X register
CPX #$0B Compare the X register with $0B (11 decimal)
BNE START If X register does not equal 11 branch to START.
BRK Stop

* = In the machine-language monitor the symbolic label START is not allowed, so it
would appear as an absolute address reference (eg; $183B).

The BASIC example above places a 0 in locations (addresses) 1024 through 1034.
Line 10 sets up a loop from memory locations 1024 to 1034. Line 20 POKEs the value 0
into the location specified by I. The first time through the loop, I equals 1024. The
second time through the loop, I equals 1025 and so on. Line 30 increments the index
variable I by 1 each time it is encountered.

The previous machine-language example accomplishes the same task as the BA-
SIC example. LDA #$00 loads a 0 into the accumulator. TAX transfers the contents of
the accumulator into the X-index register. The following machine-language instructions
form a loop:

START STA $0400,X
INX
CPX #$0B
BNE START

Here's what happens within the loop. STA $0400,X stores a 0 in location $0400
(hex) the first time through the loop. Location $0400 is location 1024 decimal. INX
increments the X register by 1, each cycle through the loop. CPX #$0B compares the
contents of the X register with the constant 11 (SOB). If the contents of the X register do
not equal 11, the program branches back to START STA $0400,X and the loop is
repeated.

The second time through the loop, 0 is stored in address $0401 (1025 decimal) and
the X register is incremented again. The program continues to branch until the contents
of the X register equal 11.

The effective address for the first cycle through the loop is $0400 which is 1024
decimal. For the second cycle through the loop the effective address is $0400 + 1, and
so on. Now you can see how the index registers modify the address within machine-
language instruction.

THE STATUS REGISTER
The microprocessor's status register indicates the status of certain conditions within the
8502. The status register is controlled by seven programming states of the microproces-
sor, and indicates the conditions with flags. The status register is one byte, so each flag
is represented by a single bit. Bit 5 is not implemented.

Branching instructions check (4 of the 7 bits in) the status register to determine
whether a condition has occurred. The conditions for branching pertain to the value of
the bits in the status register. If a condition is true, meaning the FLAG bit corresponding
to one of the four conditions is high (equal to a 1), the computer branches. If the
condition you are testing is not true, the computer does not branch and the program
resumes with the instruction immediately following the branch.

Figure 5-2 shows the layout of the 8502 status register and lists the conditions
the status register flags.

MACHIN E LANGUAGE ON T H E C O M M O D O R E 128 131

N V BO I 2 C PROCESSOR STATUS REG "P"

_ » . CARRY 1 = TRUE

- * -ZERO 1 = RESULT ZERO

-*»• IRQ DISABLE 1 = DISABLE

- * - DECIMAL MODE 1 = TRUE

- * " BRK COMMAND

-••OVERFLOW 1 = TRUE

•• NEGATIVE 1 x NEG

Figure 5-2. 8502 Status Register

The Carry bit (0) is set if an addition operation carries a bit into the next position
to the left of the leftmost bit. The Carry bit is set by other conditions, of which this is
one. The SEC instruction sets the Carry bit. CLear the Carry bit with the CLC
instruction.

The Zero bit (1) is set if the result of an operation equals zero. The command BEQ
stands for Branch on result EQual to Zero. The command BNE stands for Branch on
Result Not Equal to zero. If the zero bit in the status register is set, the program
branches to the address relative to the current program counter value (for a BEQ
instruction). Otherwise, the BEQ command is skipped and the program resumes with the
instruction immediately following the BEQ statement.

The IRQ Disabled bit (2) is set if your program requests interrupts to be dis-
abled with the SEI command (Set Interrupt Disable Status). The Disable Interrupt
Status bit is cleared with the CLI command (CLear Interrupt Disable bit) to permit
interrupts to occur. You will learn more about programming interrupts in the section
entitled TYPES OF INSTRUCTIONS and in the Raster Interrupt program explanation in
Chapter 8.

The microprocessor sets the Decimal Mode bit (3) if you instruct the microproces-
sor to SEt Decimal Mode with the SED instruction. CLear the Decimal Mode bit with
the CLD instruction, CLear Decimal Mode.

The BRK flag (bit 4) operates similar to the IRQ disable flag. If a BRK instruction
occurs, it is set to 1. Like an IRQ interrupt, the BRK causes the contents of the
program counter to be pushed onto the stack. The contents of the status register is
pushed on top of the stack and evaluated. If the BRK flag is set, the operating system
or your application program must evaluate whether or not a BRK or interrupt has
occurred.

If the BRK flag is cleared once the status register is pushed onto the stack, the
processor handles this as an interrupt and services it. Unlike an interrupt, the BRK flag
causes the address of the program counter plus two to be saved. The microprocessor
expects this to be the address of the next instruction to be executed. You may have to

adjust this address since it may not be the actual address of the next instruction within
your program.

The Overflow flag (bit 6) is set by a signed operation overflowing into the sign
bit (bit 7) of the status register. You can clear the Overflow bit in the status register with
the CLV instruction (CLear Overflow flag). You can conditionally branch if the
Overflow bit is set with the BVS (Branch Overflow Set) instruction. Similarly, you can
conditionally branch if the overflow bit is clear with the BVC (Branch Overflow Clear)
instruction. The BIT instruction can be used to intentionally set the overflow flag.

The microprocessor sets the negative flag (bit 7) if the result of an arithmetic
operation is less than 0. You can conditionally branch if the result of an arithmetic
operation is negative, using the BMI instruction, (Branch on result Minus) or positive
using the BPL instruction, (Branch on Result Positive).

The status register indicates seven important conditions within the microprocessor
while your machine language program is executing. Your program can test for certain
conditions, and act upon the results. It gives you a way to conditionally control certain
machine level functions depending on the value of the status flags.

THE PROGRAM COUNTER
So far all of the registers within the 8502 are 8 bits, or one byte. The program counter
is twice as wide (16 bits) as the accumulator, X or Y registers or the status register. The
program counter is a 16-bit register because it holds the current address of the next
instruction to be executed. The addresses used in an 8502-based microprocessor are all 16
bits wide. They have to be in order to address all locations within each 64K RAM
bank.

The program counter holds the address of the next instruction to be executed. It
fetches the addresses of the instructions sequentially (usually) and places them on the
16-bit address bus. The processor obtains the data or instructions at the specified 16-bit
address from the data bus. Then they are decoded and executed.

THE STACK POINTER
Within the RAM of the Commodore 128 is a temporary work area called the stack. It
starts at location decimal 256 and ends at location 511 (hex $100 to $1FF). This area of
computer RAM is referred to as page 1. Paging is explained in the next section.

The stack is used for three purposes in your computer: temporary storage, control
of subroutines, and interrupts. The stack is a LIFO (Last In, First Out) structure which
means the last value placed on the stack is the first one taken off. When you place a
value on the stack, it is referred to as pushing. When you take a value off the stack, it is
considered pulling or popping.

Think of the structure as a stack of lunch trays in a cafeteria. The first tray used is
the one that is pulled off the top. The last one used is the one on the bottom, and it is
used only if all the others are pulled off before it.

The stack pointer is the address of the top stack value (plus 1). When a value
is pulled from the stack, the stack pointer then indicates the new address of the
next item on the stack. When a subroutine is called or an interrupt occurs, the

MACHINE LANGUAGE ON THE COMMODORE 128 133

address where the interrupt or subroutine occurs is pushed on top of the stack. Once
the interrupt or subroutine is serviced, the address where it occurred is popped off
the stack and the computer continues where it left off when the interrupt or subroutine
occurred.

16-BIT ADDRESSING:
THE CONCEPT OF PAGING

The Commodore 128 contains 128K of Random Access Memory (RAM). This means
you have two banks of 65536 (64K) RAM memory locations (minus two for locations 0
and 1, which are always present in a RAM bank). Since the 8502 is an 8-bit micropro-
cessor, it needs two 8-bit bytes to represent any number between 0 and 65535. One
eight-bit byte can only represent numbers between 0 and 255. Your computer needs a
way to represent numbers as large as 65535 in order to address all the memory
locations.

Here's how your computer represents the largest number in one 8-bit byte. The
computer stores it as a binary number. You usually represent it as a hexadecimal number
in your machine-language programs. Figure 5-3 shows the relationship between binary,
hexadecimal and decimal numbers.

BINARY HEXADECIMAL DECIMAL

1 eight-bit Byte = 1 1 1 1 1 1 1 1 $FF 255

Figure 5-3 . Comparison of Number Systems

A byte contains eight binary digits (bits). Each bit can have a value of 0 or 1. The
largest number your computer can represent in eight binary digits is 1 1 1 1 1 1 1 1,
which equals 255 in decimal. This means all eight bits are set, or equal to 1. A
bit is considered off if it is equal to 0. In converting binary to decimal, all the binary
digits that are set are equal to 2 raised to the power of the bit position. The bit
positions are labeled 0 through 7 from right to left. Figure 5-4 provides a visual
representation of converting binary to decimal.

27

One binary byte = 1 1 1 1 1 1 1 1
The byte in decimal = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 2 5 5

Figure 5 - 4 . B inary /Dec imal Convers ion

The top of each column represents the value of 2 raised to the power of the bit
position. Since each bit is turned on when you represent the largest number in one byte,
add all the values at the bottom of each to obtain the decimal equivalent. Figure 5-5
shows another example that converts the binary number 1 1 0 0 1 0 1 0 to decimal.

2 7 2 6 2 s 2 4 2 3 2 2 2 1 2 °

O n e b i n a r y b y t e = 1 1 0 0 1 0 1 0
T h e b y t e i n d e c i m a l = 1 2 8 + 6 4 + 0 + 0 + 8 + 0 + 2 + 0 = 2 0 2

Figure 5—5. Binary/Decimal Conversion

Remember, only add the values of two raised to the bit position if the bit is set.
If a bit is off, it equals zero.

Now that you can convert one byte from binary to decimal, you are probably
wondering what this has to do with 16-bit addressing. We mentioned before that the
program counter—the register responsible for storing the address of the next instruction
to be executed—is 16 bits wide. This means it uses two bytes side-by-side to calculate
the address.

You just learned about the low byte, the lower half of the 16 bits used to represent
an address. The upper half of the 16-bit address is called the high byte. The high byte
calculates the upper half of the address the same way as the low byte, except the bit
position numbers are labeled from 8 on the right to 15 on the left. When you raise 2 to
the power of these bit positions, and add the resulting values to the low byte of the
address, you arrive at addresses that go up to 65535. This allows your computer
to represent any number between 0 and 65535, and address any memory location
within each 64K RAM bank. Figure 5-6 is an illustration of a 16-bit address in
decimal:

High Byte

One binary byte =

21S

1

214

1

2 1 3

1

2 1 2

1

2 n

1

2^10

1

29

1

28

1

The byte in
decimal =32768 + 16384+ 8192 + 4096 + 2048 + 1024 + 512 + 2 5 6 = 65280

Low Byte 27 26 25

One binary byte= 1 1 1

The byte in
decimal = 128 + 6 4 + 32

Figure 5-6. Example of 16-Bit Address in Decimal

24

1

16 +

23

1

8 +

22

1

4 +

21

1

2 +

2°
1

1 = 255-255
65535

MACHINE LANGUAGE ON THE COMMODORE 128 135

You can see that the highest number of the high byte of the 16-bit address is
65280. And you know that the highest number of the low byte of the 16-bit address
equals 255. Add the highest high-byte and the highest low-byte number (65280 + 255),
to arrive at 65535, the highest address within each of the two 64K RAM banks.

When the microprocessor calculates the address of the next instruction, it looks at
the high byte of the 16-bit program counter. Try to think of the high byte of the address
as just another 8-bit byte. If this was the case, the bit positions would be labeled from 0
on the right through 7 on the left, just like the low byte of the address. Therefore, the
largest number this 8-bit byte can represent again is 255 decimal.

The value in the high byte determines which 256-byte block is accessed. These
256-byte blocks are referred to as pages. The high byte determines the page boundary of
the address, so the high byte is calculated in increments of 256 bytes. The high byte of
the program counter determines which of the possible 256 pages is being addressed. If
you multiply the number of possible pages, 255 by 256 bytes, you realize the highest
page starts at location 65280, decimal, the same number as in the high byte in Figure
5-6. Location 65280 is the highest page boundary addressable.

What if you want to address a memory location that does not lie on a page
boundary? That's where the low byte of the 16-bit address comes in.

The high byte of the program counter represents the 256-byte page boundary.
All addresses between boundaries are represented by the low byte. For example, to
address location 65380 decimal represent the high byte as 255, since 255 times
256 equals 65280. You still have to move 100 addresses higher in memory to location
65380.

The low byte contains the value 100 decimal. The low byte value is added to the
high byte to find the actual, or effective address.

When you look at the memory map of your Commodore 128, you will see
references to the low byte and high byte pointers or vectors to certain machine-language
routines within the operating system or to important system memory locations, like the
start of BASIC.

You can find out the contents of these addresses and where the routines reside in
your Commodore 128's memory by using the PEEK command in BASIC, or the
Memory command in the Machine Language Monitor. To find the effective address
using BASIC, look in the memory map for the reference to a specific routine or system
function, sometimes called a vector. PEEK the high byte, the page number of the
routine. Multiply by 256 to find the page boundary. Then PEEK the low byte and add it
to the page boundary to arrive at the effective decimal address.

Keep in mind that all the address calculations are performed in binary. They are
explained in decimal so they're easier to understand. In your machine language pro-
grams, you will usually reference memory in hexadecimal notation, explained in the
next section.

HEXADECIMAL NOTATION

Your 8502 microprocessor only understands the binary digits 0 and 1. Although machine
language usually requires hexadecimal notation and BASIC processes decimal numbers,
those numbers are translated and processed as binary numbers. Your computer uses
three different number systems, binary (base 2), hexadecimal (base 16) and decimal
(base 10). The machine-language monitor also uses the octal number base. A number
base is also referred to as a radix; therefore, the C128 uses four radices, but the
microprocessor only understands binary at machine level.

BASIC understands decimal numbers because they are easiest for people to use.
Although BASIC doesn't process as fast as machine language, the ease of use makes up
for the loss of speed.

Machine language uses hexadecimal notation because it is closer to the binary
number system and easier to translate than decimal. Hexadecimal representation is also
used usually by machine-level programmers because it is easier for people to think of a
group of eight binary digits (a whole byte) than it is to think of them as separate digits
by themselves. How do you find it easier to represent this value:

3A (hexadecimal), or as 00111010 (binary)?

Once values are translated from the higher level language into a form that the
microprocessor can understand (binary digits or bits), they are interpreted as electronic
switches by the internal circuitry. The switches determine if an electronic impulse will
be transmitted by the integrated circuit (I.C.) to perform a specific function, such as
addressing a memory location. If the bit equals 1, the switch is interpreted as on, which
sends a voltage level (approximately 3 to 5 volts) through the I.C. If the binary digit is
equal to 0, no voltage is transmitted. Though this is a simplified illustration, you get an
idea of how the microcomputer system can translate, process and perform the instruc-
tions you give to your computer. The hardware and software merge here, at machine
level.

UNDERSTANDING HEXADECIMAL
(HEX) NOTATION
The key behind understanding hexadecimal (base 16) numbers is to forget about decimal
(base 10). Hexadecimal digits are labeled from 0 through 9 and continuing with A
through F, where F equals 15 in decimal. By convention, hexadecimal numbers are
written with a dollar sign preceding the value so that they can be distinguished from
decimal values. Figure 5-7 provides a table of the hexadecimal digits and their decimal
and binary equivalents:

MACHINE LANGUAGE ON THE COMMODORE 128 137

HEXADECIMAL

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

DECIMAL

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BINARY

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
mi

Figure 5—7. Hexadecimal Decimal Binary Conversion

Each hex digit represents four bits. The highest number you can represent with
four bits is 15 decimal. In machine language, you usually represent operands and
addresses as two or four hex digits. Since each hex digit of a four-digit hexadecimal
address takes up four bits, four of them represent 16 bits for addressing.

At first you'll find yourself converting decimal addresses and operands into
hexadecimal. Then you'll want to convert the other way. See the HEX$ and DEC
functions for quick and easy decimal to HEX conversions. In the machine language
monitor, use the (+) plus sign to represent decimal numbers. Use the conversions for
now, but eventually you should find yourself thinking hexadecimal notation instead of
always converting from decimal to hexadecimal.

ADDRESSING MODES IN
THE COMMODORE 128

Addressing is the process by which the microprocessor references memory. The 8502
microprocessor has many ways to address the internal locations in memory. The
different addressing modes require either one, two or three bytes of storage depending
on the instruction. Each instruction has a different version and op-code. For example,
LDA (LoaD the Accumulator) has eight versions, each with a different op-code to
specify the various addressing modes. See the 8502 Instruction and Addressing Table
section for the different versions of all the 8502 machine-language instructions.

ACCUMULATOR ADDRESSING
Accumulator addressing implies that the specified operation code operates on the
accumulator. The operand field is omitted since the instruction can only perform the
operation on the accumulator. Accumulator instructions require only one byte of stor-
age. Here are some examples of accumulator addressing instructions:

INSTRUCTION HEX OPCODE MEANING

ASL
LSR
ROR

$0A Shift one bit left
$4A Shift one bit right
$6A Rotate one bit right

IMMEDIATE ADDRESSING

Immediate addressing specifies that the operand be a constant value rather than the
contents of a particular address. The operand is the data, not a pointer to the data. At
machine level, the microprocessor actually interprets an operand field constant
and an address in the operand field as two different op-codes, so the pound sign gives
the programmer a way to distinguish between the data and a pointer to the data.
Immediate addressing instructions require two bytes of storage. Here are some immedi-
ate addressing instruction examples:

INSTRUCTION HEX OPCODE MEANING

LDA #$0F

CMP #$FF

SBC #$E0

$A9

$C9

$E9

Load the accumulator with 15 ($0F)

Compare the accumulator with 255 ($FF)

Subtract 224 ($E0) from accumulator

ABSOLUTE ADDRESSING

Absolute addressing allows you to access any of the memory locations within either 64K
RAM bank. Absolute addressing requires three bytes of storage; the first byte for the
op-code, the second for the low byte of the address and the third for the high byte. Here
are some examples of absolute addressing instructions:

MACHINE LANGUAGE ON THE COMMODORE 128 139

INSTRUCTION HEX OPCODE MEANING

INC $4FFC

LDX $200C

JSR $FFC3

$EE

$AE

$20

Increment the contents of address $4FFC by 1

Load the X register with the contents of address
$200C

Jump to location $FFC3 and save the return address

ZERO-PAGE ADDRESSING
Zero-page addressing requires two bytes of storage; the first byte is used for the opcode
and the second for the zero-page address. Since zero page ranges from addresses 0
through 255, the computer only needs the low byte to represent the actual address. The
high byte is assumed to be 0; therefore, it is not specified. When addressing a zero-page
location, you can still use absolute addressing; however, the execution time is not as fast
as zero-page addressing. Here are some examples:

INSTRUCTION

LDA $FF

ORA $E4

ROR $0F

HEX OPCODE

$A5

$05

$66

MEANING

Load the accumulator with the contents of zero-page
location $FF (255)

OR the accumulator with the contents of location
$E4

Rotate the contents of location $0F one bit to the
right

IMPLIED ADDRESSING

In implied addressing mode, no operand is specified because the op-code suggests the
action to be taken. Since no address or operand is specified, an implied instruction
requires only one byte for the op-code. Some examples are:

INSTRUCTION HEX OPCODE MEANING

Decrement the contents of the X register

Increment the contents of the Y register

Return from Subroutine

DEX

INY

RTS

$CA

$C8

$60

RELATIVE ADDRESSING
Relative addressing is used exclusively with branch instructions. The branch instructions
(BEQ, BNE, BCC, etc.) allow you to alter the execution path depending on a particular
condition. Branch instructions are similar to IF . . . THEN statements in BASIC since
they both conditionally perform a specified set of instructions.

The operand in the branch instruction determines the destination of the conditional
branch. For example, the op-code BEQ stands for Branch on result EQual to zero. If the
zero flag in the status register is equal to 1 add the operand to the program counter and
continue execution at this new address. Figure 5-8 provides an example in symbolic
assembly language.

LDA
STA
DEC
BEQ
LDX
STA

#$01
TEMP
TEMP
START
#$01
COUNT
(A)

.01800

.01802

.01804

.01806

.01808

.0180A

A9
85
C6
F0
A2
85

(B)

01
FA
FA
FC
01
FB

LDA
STA
DEC
BEQ
LDX
STA

#$01
$FA
$FA
$1804
#$01
$FB

(C)

START

*NOTE: The machine language monitor does not provide for
symbolic addresses and labels like TEMP and START.

Figure 5-8. Relative Addressing

Figure 5-8 lists the (A) code on the left as it appears in symbolic assembly
language. The code (B) in the middle is the actual machine-level machine code
as it appears in the machine language monitor. The (C) code to the right is the symbolic
machine language as it appears in the monitor as executable code.

In this program segment, the first instruction LoaDs the Accumulator with 1.
STA is the op-code for STore the contents of the Accumulator in the variable
TEMP. The third instruction, DEC, decrements the contents of the variable TEMP. In
the third instruction, START is a label which marks the beginning of the conditional
loop. The branch instruction (BEQ) checks to see if the value stored in TEMP equals
0 as a result of the DECrement instruction. The instruction marks the end of the
loop.

The first time through this loop, the result in TEMP equals 0 so program control
branches back to the instruction specified by the label START.

The second time through the loop, TEMP is less than zero; therefore, the zero
flag in the status register is cleared, the program does not branch to START and
continues with the statement directly following the branch instruction (LDX #$01).

MACHINE LANGUAGE ON THE COMMODORE 128 141

Because of the way this program segment is written, a branch can occur only once, the
first time through the loop.

Under relative addressing, the first byte of the instruction is the op-code and the
second is the operand, representing an offset of a number of memory locations. The
location to branch back to is not interpreted as an absolute address but an offset relative to
the location of the branch instruction in memory.

The offset ranges from -128 through 127. If the condition of the branch is met,
the offset is added to the program counter and the program branches to the address in
memory.

In the example in Figure 5-8, notice that the operand in the branch instruction is
only one instruction past the label START. The operand START is interpreted by the
computer as an offset of three bytes backward in memory since the DEC instruction use
2 bytes and the BEQ op-code uses one byte. The 8502 can only branch forward 127
bytes and branch backward by 128 bytes.

If you enter the machine-language monitor and disassemble the machine-language
code, you'll see how the computer represents a branch instruction operand as in part (B)
of Figure 5-8. The symbolic code in part (C) operand field represents the operands as
absolute addresses but the assembled hexadecimal code to the left in part (B) of the op
code stores the operand using one byte, a number plus or minus the address of the
branch instruction. The largest number for a forward branch is $7F. A backward branch
is represented by hex numbers greater than $80. When you are within the machine-
language monitor, subtract the operand offset from 255 ($FF) to find the actual value of
the negative offset. In this case $FF minus 3 equals $FC, which is the operand in the
branch instruction in part (B) of Figure 5-8.

Here are some examples of relative addressing branch instructions:

INSTRUCTION

BEQ

BNE

BCC

HEX OP-CODE

$F0

$D0

$90

MEANING

Branch on result Equal to 0

Branch on result Not Equal to 0

Branch on Carry Clear

INDEXED ADDRESSING MODES
The Commodore 128 has two special-purpose registers: the X and Y index registers.
In indexing addressing modes, index registers modify an address by adding their
contents to a base address to arrive at the actual or effective address. For example,
here's a program segment that illustrates the importance of address modification, using
the X and Y index registers:

LDA #$0F
LDX #$00

LOOP STA $2000,X
INX
BNE LOOP

The first instruction in this program loads the accumulator with $0F(15 decimal).
The second instruction loads the X register with 0. The third instruction stores the
contents of the accumulator into the address $2000 added to the contents of the X index
register. The first time the loop cycles, $0F is stored in address $2000 ($2000 + 0 =
$2000). The next instruction (INX) increments the contents of the X register. The last
instruction in the loop branches to the statement specified by the label LOOP, which is
the STA $2000, X instruction. The second time through the loop, $0F is stored in
location $2001 ($2000 + 1). The third cycle of the loop stores $0F in location $2002, etc.

The loop continues to cycle and stores $0F in consecutive locations until the X
register equals 0. In other words, the loop circulates 256 times until the X register
equals 0, since 255 plus 1 is represented as 0. This is because the extra bit is carried
over to the ninth bit position, which doesn't exist in an eight-bit number, so the register
is reset to zero. This is similar to when your car odometer is set at 99,999 miles. When
you travel another mile the dial resets to 00,000.

This example shows just one way to modify addresses with the index registers.
The Commodore 128 has four indexed addressing modes: (1) indexed absolute address-
ing (illustrated in the example just shown), (2) indexed zero-page addressing, (3)
indexed indirect addressing, and (4) indirect indexed addressing.

INDEXED ZERO-PAGE ADDRESSING
This type of addressing is similar to zero-page addressing except that the index registers
(X or Y) are used to modify addresses within page zero ($00 to $FF) of memory. Since
zero-page addressing requires no high byte to represent the page number, this type of
instruction requires only two bytes of memory. The effective (actual) address is calcu-
lated by adding the contents of the index register to the low byte of the address in the
program counter. This addressing mode is faster and more efficient than using indexed
absolute addressing in zero page.

Here are some examples of indexed zero-page addressing instructions:

INSTRUCTION HEX OP-CODE MEANING

INC operand, X $F6 Increment the contents of memory by 1.
The base address (the operand) is added to the
contents of the index register (X)).

CMP operand,X $D5 Compare the contents of the accumulator with
memory. The memory base address (the oper-
and) is added to the contents of the index register
(X)).

MACHINE LANGUAGE ON THE COMMODORE 128 143

INDEXED ABSOLUTE ADDRESSING
Indexed absolute addressing allows you to access and modify any of the memory
locations in each of the two 64K banks. The effective address is calculated by adding
the contents of the index register (X or Y) to the high and low byte base address
determined by the operand. Since absolute addressing can access any of the available
memory locations, high and low bytes are required to form the 16-bit address. There-
fore, this type of addressing requires three bytes.

Here are some examples of indexed absolute addressing instructions:

INSTRUCTION HEX OP-CODE MEANING

AND operand,Y $39 Perform the logical AND operation on the
accumulator and the contents of memory base
address plus the contents of the register (Y).

ASL operand,X $1E Shift the contents of the memory (the memory
is the base address (the operand) added to the
contents of the index register (X)) one bit to the
left.

THE INDIRECT ADDRESSING CONCEPT

So far you've learned that the computer calculates the effective address as the
base address (in the program counter) plus the offset from the contents of the index
registers if indexed addressing is used. Indirect addressing calculates the effective
address differently.

Think of indirect addressing as the address of an address. Here's an illustration
using absolute indirect addressing:

JMP ($0326)

The above JuMP instruction is an example of absolute indirect addressing. This
type of instruction requires three bytes: one for the op-code, one for the low byte and
one byte for the high byte of the 16-bit address. The parentheses indicate that indirect
addressing is used. The second and third bytes of the JMP instruction specify the low and
high byte of the address. The address in the operand field is only the low byte of the effective
address. The contents of the byte immediately following the address specified in the JMP
instruction is automatically placed into the program counter as the high byte of the effective
address. In this example, the contents of location $0326 and $0327 represent the address of
the actual instructions to be executed. For example, location $0326, the low byte of
the effective address, contains the value $65 and location $0327, the high byte of the
effective address, contains the value $F2. The high- and low-byte values are placed in

the program counter as the address SF265, the actual address of the next instruction
the computer executes then is SF265.

If the parentheses were not present, the assembler interprets the instruction
as an absolute addressing instruction. The computer would understand the low
byte to be $26 and the high byte to be $03 and would JuMP to the instruction
located at $0326 instead of the intended address of $F265. Since this is not the
case, the high byte is automatically presumed to be the low byte address plus 1
(the contents of $0327).

The last two addressing modes, indirect indexed and indexed indirect, use the
same principle as absolute indirect addressing. Here's an explanation of each.

INDEXED INDIRECT ADDRESSING
Indexed indirect addressing is similar to absolute indirect, although it uses index
registers to modify an address. This type of addressing, sometimes called indirect X
addressing, requires two bytes of storage: the first byte is for the op-code and the second
is for the operand which is used in the effective address calculation. The address
specified in the second byte is added to the contents of the X register and the carry, if
any, is ignored. The results point to an address in page zero in which its contents
contain the low byte of the effective address. The zero page address plus 1 indicates the
high byte of the effective address. Both locations in which the low and high bytes of the
effective address are contained must be located in page zero, locations $00 through $FF.
Here's an example:

LDX #$04
LDA #$00
STA ($DF,X)

The first line loads the X register with $04. Next, the accumulator is loaded with
0. The third instruction stores zero in the effective address. Calculate the effective
address by taking the base address $DF (not the contents of it) and add the contents of
the X register ($04) to it, which equals $E3. The contents of location $E3 is the low
byte of the effective address and the contents of $E4 is the high byte of the effective
address. For example, the contents of address $E3 contain $56 and the contents of
address $E4 contain $F3. Since the contents of $E3 is the low byte and the contents of
$E4 is the high byte, the effective address is $F356. Indexed indirect addressing is
referred to as pre-indexing because the indexing occurs before the effective address is
actually obtained. Indirect X addressing is useful in addressing a series of pointers such
as the zero-page memory of the Commodore 128.

INDIRECT INDEXED ADDRESSING
This mode, also called indirect Y addressing, is post-indexed, which means the adding
of the index itself obtains the effective address. This mode operates on the principle of a
base address and a displacement. Here's how it works.

The first of two bytes is the op-code, the second is the operand, a pointer to a

MACHINE LANGUAGE ON THE COMMODORE 128 145

zero-page memory address. The contents of the pointer and the contents of the Y
register are added to arrive at the low byte of the effective address. The contents of the
pointer act as the base address and the contents of the Y register act as the displacement.
The carry, if any, is added to the memory location directly following the low-byte
address which becomes the high byte of the effective address. This is true indexing,
designed specifically for manipulating tables of data. In order to access different table
values, just change the contents of the Y register since the base address is already
established. Here's an example:

LDY #$08
LDA #$00
STA ($EA),Y

The first instruction loads the Y register with $08. The second instruction loads
the accumulator with 0. The third instruction stores the contents of the accumulator in
the effective address.

To find the effective address, add the contents of the zero page memory location
(base address) specified in the instruction to the contents of the Y register (displace-
ment). In this example, the contents of the address SEA equals $F0. Add $F0 to the
contents of the Y register ($08) to arrive at $F8, the low byte of the effective address of
the next instruction. The high byte of the effective address is obtained by adding the
carry (none in this case) to the zero-page memory location immediately following the
low-byte address. For example, location $F9 contains the value $3F. Since the low byte
is $F8 and the high byte equals $3F, the effective address is S3FF8.

Notice the difference between indirect indexed and indexed indirect addressing
modes as they can be confusing. Remember, the most important difference between the
two addressing modes is the way the effective address is calculated. Indexed indirect is
X indexing, which is indexed prior to the arrival of the effective address. Indirect
indexed is post-indexed with the Y register.

You have just covered all the addressing modes in the Commodore 128. Each calls
for different circumstances and you should use the correct mode whenever circum-
stances dictate it to obtain optimal performance from the microprocessor. For example,
use indexed zero-page addressing when you are manipulating zero-page locations in-
stead of using indexed absolute.

TYPES OF INSTRUCTIONS

This section explains all the types of machine-language instructions available in the
Commodore 128. They are first covered by type of instruction, such as REGISTER TO
MEMORY and COMPARE instructions; then they are listed alphabetically by op-code
mnemonic with all the different addressing options. This section provides important
information on programming in machine language on the Commodore 128 (or any
6502-based microcomputer).

Use this information as a reference for background on each instruction. Figure 5-9
provides an alphabetized list of the 8502 microprocessor op-code mnemonics. For
detailed, quick-reference information, see the following section for an alphabetic list of
instructions, their hexadecimal op-codes, the different versions of the instructions for
each addressing mode and the way they affect the flags in the status register.

8502 MICROPROCESSOR INSTRUCTION S E T -
ALPHABETIC SEQUENCE

ADC
AND
ASL

BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS

CLC
CLD
CLI
CLV
CMP
CPX
CPY

DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

LDA
LDX
LDY
LSR

NOP

Add Memory to Accumulator with Carry
"AND" Memory with Accumulator
Shift Left One Bit (Memory or Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with Accumulator
Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break
Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

"Exclusive-Or" Memory with Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location
Jump to New Location Saving Return Address

Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory
Shift Right One Bit (Memory or Accumulator)

No Operation

MACHINE LANGUAGE ON THE COMMODORE 128 147

8502 MICROPROCESSOR INSTRUCTION S E T -
ALPHABETIC SEQUENCE (cont'd)

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEC
SED
SEI
STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

"OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt
Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Status
Store Accumulator in Memory-
Store Index X in Memory
Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

Figure 5-9. 8502 Op-Code Mnemonics

REGISTER TO MEMORY
INSTRUCTIONS
The REGISTER TO MEMORY instructions are:

LDA
LDX
LDY

STA
STX
STY

The register to memory instructions either place a value into the accumulator, X
register or Y register from memory, or store a value from a register (A, X, or Y) into a
memory address.

LOADING THE ACCUMULATOR
The first and most common instruction is LDA, LoaD the Accumulator. This places a value
into the accumulator, the most powerful and active register in the microprocessor. The
value is derived from the contents of a memory location or a constant. Here's an example:

LDA $2000

This instruction loads the contents of the memory location $2000 (8192 decimal)
into the accumulator. The value in the memory location $2000 remains the same. The
value also remains in the accumulator until another value is placed there or another
operation acts upon it.

The previous example is just one of the addressing modes for loading the accumu-
lator. Another form the LDA instruction can take is to load a constant. To load a
constant into the accumulator, you must precede the dollar sign ($) with a pound sign
(#). For readability, it's a good idea to place at least one space between the op-code and
the operand but it is not necessary. Here's an example of loading a constant into the
accumulator:

LDA #$0A

This loads the constant $0A (10 decimal) into the accumulator. Remember,
precede a constant with a pound sign, or else the assembler interprets the instruction as
the contents of a memory address.

The LDX and LDY instructions work the same way as the LDA instruction.
Again, you can load a constant or the contents of a memory address into the X and Y
registers. Examples:

LDX #$0A
LDX $2000
LDX #$FB

STORE: THE OPPOSITE OF LOAD
You know how to place a value into a register, but how do you do the opposite? The
STORE instruction performs the opposite of a load. It places a value from the A
(accumulator), X, or Y registers into a specified memory address. As you learned in the
addressing section, the load, store and most other machine-language instructions have
several versions, depending on the type of addressing used. Here's an example:

STA $FC3E

This stores the contents of the accumulator into memory location SFC3E. The
contents of the accumulator remain the same until another instruction modifies it. The
STX and STY instructions work the same way; they store the contents of the register
into a specified memory address. There is no immediate version or pound sign version
of the store command.

COUNTER INSTRUCTIONS
The COUNTER instructions are

INC DEC
INX DEX
INY DEY

Counter instructions can be used to keep track of or count the number of times an
event occurs. These instructions are used for mathematical manipulations or indexing a

MACHINE LANGUAGE ON THE COMMODORE 128 149

series of addresses. The counter instruction, INC, increments the contents of a memory
address by a value of 1 each time it is encountered. These instructions are used primarily
within a program loop and in conjunction with a branch instruction. Here's an example
of a loop and how INC keeps track of a number of occurrences of an event:

LDX #$00
TXA

START STA $2000,X
INX
BNE START

The first instruction loads a 0 into the X register. The second instruction transfers
the contents of the X register into the accumulator (without erasing the X register).
Instruction three stores the contents of the accumulator (0) into location $2000 the first
time through the loop. The fourth instruction increments the contents of the X register.
The last instruction branches to the instruction specified by the label START, until the
value of the X register equals 0.

This program segment stores 0's in an entire page (256 locations) starting at $2000
and ending at $20FF. When the contents of the X register equals 255 and it is
incremented again, it is reset to 0, since it can only hold an eight-bit number. When this
occurs, the branch is skipped and the program continues with the instruction directly
following the branch instruction.

The INY instruction operates in the same way as INX, since it also only uses
implied addressing. The INC instruction, on the other hand, uses several different
addressing modes including absolute, which uses 16-bit addresses. With the INC
instruction, you can count past the capacity of an 8-bit number, though you must
separate the counter into a high byte and a low byte. For example, the low byte counts
the increments of less than a page and the high byte keeps track of the number of pages.
When low-byte counter is at 255 and is incremented, it is set back to 0. When this
occurs, increment the high-byte counter. To count up to 260 (decimal), the high-
byte value equals 1 and the low byte equals 4. Here's an equation to illustrate the point:

(1 * 256) + 4 = 260

Here's the machine-language code that does this:

LDA #$00
STA HIGH
STA LOW

LOOP INC LOW
BNE LOOP
INC HIGH

LOOP 2 INC LOW
LDA LOW
CMP #$04
BNE LOOP2

The DECrement instructions operate the same way as the increment instructions.
They are the negative number counterparts of the increment counters.

COMPARE INSTRUCTIONS
The Commodore 128 has three compare instructions that check the contents of a register
with the contents of memory. A compare operation can be used to determine which
instructions to execute as a result of a conditioned value. The compare instructions are:

CMP
CPX
CPY

The CMP instruction compares the contents of the accumulator with the contents
of the specified address in the instruction. Compare instructions essentially subtract
memory from a register value but change neither—they just set status flags. CPX
compares the contents of the X register with the specified address. CPY compares the
contents of the Y register with the specified memory location.

All three instructions have versions that will operate in immediate, zero-page and
absolute addressing modes. This means you can compare the contents of a register
(A,X, or Y) with the contents of a zero-page location, any other address above zero page,
or against a constant. Here's an example:

LDX #$00
LDA #$00

ONE STA $DF,X
INX
CPX #$0A
BNE ONE

The preceding program segment stores 0's in 10 consecutive memory addresses
starting at $DF. The first instruction loads the X register with 0, the second loads 0 into
the accumulator. The third instruction stores 0 in location $DF plus the contents of the X
register. The fourth instruction increments the X register. The fifth instruction compares
the contents of the X index register with the constant $0A (10 decimal). If the contents
of the X register does not equal $0A, the program segment branches back to the store
instruction specified by the label ONE. After the loop cycles ten times, the X register
and the constant $0A are equal. Therefore the processor does not take the branch
and the program continues with the instruction immediately following BNE.

You can compare the value of a register with the contents of an absolute memory
address. Here's the same example as above using the contents of a memory address
instead of a constant:

LDA #$0A
STA $FB
LDX #$00
LDA #$00

ONE STA $DF,X
INX
CPX $FB
BNE ONE

MACHINE LANGUAGE ON THE COMMODORE 128 151

Remember, if you want to compare numbers larger than eight bits can represent
(greater than 255 decimal), you must separate the number into a low byte and a
high byte.

The BIT instruction can also be used for comparisons. See the logical instructions
next.

ARITHMETIC AND
LOGICAL INSTRUCTIONS
The accumulator is responsible for all mathematical and logical operations performed in
your computer. The mathematical and logical instructions available in machine language are:

ADC EOR
AND ORA
BIT SBC

Here's what each instruction means:

ADC—Add the contents of the specified memory address to the contents of the
accumulator with a carry. It is considered a good programming practice to clear
the carry bit with the CLC instruction before performing any addition. This avoids
adding the carry into the result.

AND—Perform the logical AND operation with the contents of the accumulator and the
contents of the specified memory address.

BIT—Compare the bits in the specified memory address with those in the accu-
mulator. Bits 6 and 7 are transferred to the status register flags. Bit 7 is trans-
ferred to the negative status flag bit and bit 6 is sent to the overflow status flag bit.

EOR—Perform the exclusive OR operation with the contents of the specified memory
address and the contents of the accumulator.

ORA—Perform the logical OR operation with the contents of the specified memory
address and the contents of the accumulator.

SBC—Subtract the contents of the specified memory address from the contents of the
accumulator with a borrow. (It is a good practice to set the carry flag before
performing subtraction. This avoids subtracting the borrowed bit from the result.)

ARITHMETIC INSTRUCTIONS
(ADC, SBC)
The addition and subtraction instructions are easy to understand. Here's an example:

CLC
LDA #$0A
STA $FB
ADC #$04
SEC
SBC #$06
ADC $FB
STA $FD

This program segment essentially performs the following mathematical operation:
(10 + 4)-6+ 10= 18.

The first instruction clears the carry bit. The second instruction loads the accumu-
lator with $0A (10 decimal). The third instruction stores the value in address $FB for
later use. The fourth instruction adds the constant $04 to the value already in the
accumulator. The SBC instruction subtracts the constant $06 from the contents of the
accumulator. The next instruction, ADC $FB, adds the contents of memory location
$FB to the contents of the accumulator. The resulting value (18($12)) of all the
mathematical operations is stored in address $FD.

LOGICAL INSTRUCTIONS
(AND, EOR, AND ORA)
These instructions operate on the contents of a memory address and a register. The AND
operation is a binary (Boolean) algebra operation having two operands that can result in
one of two values, 0 or 1. The only way an AND operation can result in a 1 is if both
the operands equal 1; otherwise the result is 0. For example, the two operands are the
contents of a specified memory address and the contents of the accumulator. Here's an
illustration of this concept:

Memory address = 10001010
Accumulator = 11110010

Result of AND = 10000010

As noted, the result of an AND operation is (true) 1, only if the two operands are
equal to 1; otherwise the result is 0. Notice bit 7 (high-order bit) equals 1 because both
bit 7's in the operands are 1. The only other resulting bit equal to 1 is bit 1, since both bit
l's are equal to 1. The rest of the bits are equal to zero since no other bit positions in
both operands are equal to 1. A 1 and a 0 equals 0, as does a 0 and a 0.

The Boolean OR works differently. The general rule is:

If one of the operands equals 1, the resulting Boolean value equals 1.

For example, the two operands are the contents of a specified memory address and
the contents of the accumulator. Each individual bit can be treated as an operand. Here's
an illustration.

Contents of Memory Address = 10101001
Contents of Accumulator =10000011

Result of the OR operation = 10101011

For all the bit positions that equal one in either operand, the resulting value of that
bit position equals 1. The result is 1 if either operand or both operands are equal to 1.

The exclusive OR works similarly to the OR operation, except if both operands
equal 1, the result is zero. This suggests the following general rule:

MACHINE LANGUAGE ON THE COMMODORE 128 153

If either of the operands equals 1, the resulting Boolean value is 1. except if both
operands are 1, then the result equals 0.

Here's an example using this rule:

Contents of Memory Address = 10101001
Contents of Accumulator = 10000011

Result of the exclusive OR = 00101010

In this example, the operands are the same as in the previous OR example. Notice
bits 0 and 7 are now equal to 0 since both operands are equal to 1. All other bit values
remain the same.

BIT
The BIT instruction performs a logical AND operation on the contents of the specified
memory address and the contents of the accumulator, but the resulting value is not
stored in the accumulator. Instead, the zero flag in the status register is set by the result
of the operation. The BIT instruction compares the contents of the accumulator and the
contents of the memory address, bit-for-bit. If the result of the operation of the
accumulator being ANDed by a memory location is 0, then the zero flag (in the status
register) is set to a 1. Otherwise the zero flag is 0.

Your machine language program can then act conditionally depending on the
result of the zero flag in the status register. In addition, bits 7 and 6 from the specified
memory address are moved into the negative-flag and overflow-flag bit positions in the
status register, respectively. These flags can also be used to perform conditional
instructions depending on the value of the flag. For example, the BIT instruction
performs the following:

Contents of Memory Address =
Contents of Accumulator =

10101001
11001101 -

10001001

7
N V

-» 1 0

Status

B D

Reg

0
17,r

0

sisterResult of BIT instruction
(Not stored in accumulator)

Since the resulting bit pattern is not 0, the zero flag in the status register is 0.
In addition, bits 7 and 6 are placed in the bit positions of the negative and overflow
flags, respectively, in the status register. Notice the result of the BIT instruction's AND
operation is not stored in the accumulator. The original contents of the accumulator
remain intact. See the following example of 2-bit pattern operands that result in 0 when
ANDed:

7 0
N V B D I Z C

Contents of Memory Address = 01111010
Contents of Accumulator = 10000100 -» 01 1

Result of BIT instruction = 00001000 Status Register

This time the bit patterns result in 0. Therefore, the zero flag in the status register
is set to 1. Bits 7 and 6 are also placed into their respective negative and overflow status
register bit positions from their positions in the memory location.

Now you know how each of the arithmetic and logical instructions operate. The
next section discusses branching instructions. Branching instructions are designed so
you can conditionally execute a certain set of instructions, depending on the result of a
condition. Many times the conditions are contingent on the results of an arithmetic or
logical operation, which affects the flags in the status register. The branching instruc-
tions then act according to the flags in the status register.

BRANCHING INSTRUCTIONS
The 8502 microprocessor has many conditional branching instructions. By definition, a
branch temporarily redirects the otherwise sequential execution of program instructions.
It transfers control to a location of a machine-language instruction other than the one
immediately following the branch instruction in memory.

The conditional branch instructions cause the microprocessor to examine a particu-
lar flag in the status register. The processor, depending on the value of the tested flag,
either takes the branch and transfers control of the program to another location or skips
the branch and resumes with the instruction immediately following the branch.

Think of a conditional branch as a test. For example, if the condition passes the
test, the program branches or shifts control to an instruction that is not the next
sequential instruction in the computer's memory. If it fails the test, the branch is skipped
and program control resumes with the instruction immediately following the branch
instruction in memory. Remember that program control can also be shifted to an
instruction that is out of sequential order if it fails a test. This means you can transfer
control of the execution of your program depending on the conditions you create. You
may set a condition that branches if the value of a certain flag (operand) is zero.
In another instance, you may set a condition to branch if a specific flag is set
to 1.

The conditional branch instructions available in the 8502 microprocessor are:

BCC
BCS
BEQ
BMI

BNE
BPL
BVC
BVS

Here's what the conditional branch instructions mean. The phrases in parentheses
are the literal translations of the op-code mnemonics. The remainder explains the
meaning behind the op-codes.

MACHINE LANGUAGE ON THE COMMODORE 128 155

BCC—(Branch on Carry Clear) Branch if the Carry flag in the status register equals 0.
BCS—(Branch on Carry Set) Branch if the Carry flag in the status register equals 1.
BEQ—(Branch on result EQual zero) Branch if the zero flag in the status register equals 1.
BMI—(Branch on result Minus) Branch if the negative flag in the status register equals 1,
BNE—(Branch on result Not Equal to zero) Branch if the zero flag in the status register

equals 0.
BPL—(Branch on result PLus) Branch if the negative flag in the status register equals 0.
BVC—(Branch on oVerflow Clear) Branch if the overflow flag in the status register

equals 0.
BVS—(Branch on oVerflow Set) Branch if the overflow flag in the status register

equals 1.

As you can see, all branching instructions depend on the value of a flag in the
status register.

Here are some branching examples.

READY.

MONITOR
PC SR AC XR YR SP

; FB000 00 00 00 00 F8

01828 E6 FA INC $FA
0182A A5 FA LDA $FA
0182C DO 02 BNE $1830
0182E E6 FB INC 5FB
01830 C8 INY

This program segment keeps track of the low and high pointers in $FA and $FB
respectively. The first instruction (INC $FA) increments the low byte address pointer.
Next, the contents of $FA is loaded into the accumulator. The branch instruction (BNE
$1830) evaluates the value of the accumulator. If the value is not equal to zero, the
branch is taken to the instruction located at address $1830 (INY). In this case the high
byte pointer is not yet ready to be incremented, so the INC $FB instruction is skipped. If
the value in the accumulator is equal to zero, the branch is skipped and the high byte
address pointer is incremented.

This is an example of the BPL (Branch on Result Plus) instruction.

READY.

MONITOR
PC SR AC XR YR SP *

; FB000 00 00 00 00 F8

. 01858 8E 00 D6 STX $D600

. 0185B 2C 00 D6 BIT $D600

. 0185E 10 FB BPL S185B

. 01860 8D 01 D6 STA $D601

This example is a routine that checks the update ready status bit for the 8563
address register, and ensures that data is valid before writing a value to an 8563 register.
The first instruction stores the contents of the X register, which was previously loaded

with an 8563 register number, into the 8563 address register. The BIT instruction places
bit 7 of location SD600 into the negative flag in the 8502 status register. The BPL
instruction branches to the BIT instruction in location S185B as long as the value of the
negative flag is equal to 0. To the 8563 chip, this means the data is not yet valid and
cannot be written to or read from until bit 7 is set. This loop continues until the value of
bit 7 is 1, then it is transferred to the negative flag. The result now becomes negative
so the branch is skipped and control is passed to the next instruction in memory, which
stores the data into the 8563 data register. Refer to Chapter 10, Writing to an 8563
Register for an expanded version of this program.

REGISTER TRANSFER INSTRUCTIONS
Register transfer instructions move a value from one register (A, X, or Y) to another.
This instruction is useful since it only requires one byte of memory and saves the
programmer the trouble of loading the value from one register and storing it in another.
The 8502 microprocessor has the following six register transfer instructions:

TAX—Transfer contents of accumulator to X index register
TAY—Transfer contents of accumulator to Y index register
TSX—Transfer the contents of the stack pointer to X index register
TXA—Transfer the contents of X index register to the accumulator
TYA—Transfer the contents of the Y index register to the accumulator
TXS—Transfer the contents of the X register to the stack pointer

The TXS and TSX instructions transfer values from the X index register to the
stack pointer and vice versa. This is useful if you need to take a value off the stack
temporarily, in a mathematical operation (for example, to operate on it and then replace
it on the stack). Another use is to take a value off the stack, place it in the X register for
temporary storage, add a new value on the stack, and then place the old value back on
top. This could be the case when you need to sort values in ascending order.

SHIFT AND ROTATE INSTRUCTIONS
The shift and rotate instructions manipulate the bits of the accumulator or memory.
Following are the shift and rotate instructions used by the 8502 family of microprocessors:

ASL—Shift the whole byte one bit to the left
LSR—Shift the whole byte one bit to the right
ROL—Rotate the whole byte one bit to the left
ROR—Rotate the whole byte one bit to the right

SHIFT INSTRUCTIONS
The shift instructions are useful when evaluating the value of a single bit at a time in a
series of bits that control your program. For example, a joystick read routine is an
example that calls for the shift instruction. Locations SDC00 and $DC01 control the
joystick direction (bits 0-3), and the joystick fire button (bit 4). One way to evaluate
these values is to shift them to the right. This causes the value to be passed to the carry

MACHINE LANGUAGE ON THE COMMODORE 128 157

flag. If the carry flag is enabled (1), then the joystick is being pushed in the direction
corresponding to that bit. Here is a joystick read routine that uses the LSR instruction to
evaluate the direction of the joystick:

READY.

MONITOR
PC

; FB000

. 01800

. 01803

. 01805

. 01807

. 01808

. 0180A

. 0180B

. 0180C

. 0180E

. 0180F

. 01810

. 01812

. 01813

. 01814

. 01816

. 01817

. 01818

. 0181A

. 0181C

SR
00

AD
A0
A2
4A
B0
88
4A
B0
C8
4A
B0
CA
4A
B0
E8
4A
86
84
60

AC XR
00 00

00 DC
00
00

01

01

01

01

FA
FB

YR SP
00 F8

LDA
LDY
LDX
LSR
BCS
DEY
LSR
BCS
INY
LSR
BCS
DEX
LSR
BCS
I NX
LSR
STX
STY
RTS

$DC00
#$00
#$00

$180B

$180F

$1813

$1817

$FA
$FB

ROTATE INSTRUCTIONS
The rotate instructions operate a little differently. Instead of the shifted bit falling into
the carry flag, the bit "falling off the edge" is placed in the carry bit, then the carry bit
is placed at the opposite end of the byte. For example, if the ROR (rotate right)
instruction is specified, each bit is moved one position to the right. Now bit 7 is placed in
the carry bit and the carry bit is rotated around to the left and placed in the bit 7 bit
position. The ROL instruction operates in the same manner, except the rotation is
leftward rather than to the right. See Figure 5-10 to visualize the rotation concept of the
ROR (rotate right) instruction:

Bit Position

Figure 5-10. Concept of ROR (Rotate Right) Instruction

SET AND CLEAR INSTRUCTIONS
The set and clear instructions are designed to manipulate the bits (flags) within the status
register and control certain conditions within the microprocessor. These are the set and
clear instructions available in 8502 machine language:

SEC Set the Carry Flag
SED Set Decimal Mode
SEI Set the Interrupt Disable Bit

CLC Clear the Carry Flag
CLD Clear Decimal Mode
CLI Clear the Interrupt Disable Bit
CLV Clear the Overflow Flag

Each of these instructions applies to a flag in the status register that controls a
particular microprocessor condition. Notice that each clear instruction has a counterpart
which sets the condition, except for CLV (Clear Overflow Flag). The overflow flag can
be set by the BIT instruction or from the result of a signed mathematical operation
overflowing into the sign bit.

Figure 5-11 shows the 8502 status register:

Figure 5—11. 8S02 Status Register

The flags of the status register are set for various reasons. For example, set
decimal mode when you want to perform calculations in binary coded decimal (BCD)
notation rather than hexadecimal. Set the carry flag when you are performing subtrac-
tion. Set the interrupt disable bit when you want to prevent interrupts from occurring.
An example of a split screen, smooth scrolling raster interrupt routine is given at the end
of Chapter 8.

The clear instructions operate in the reverse of the set instructions. To make sure
that a carry does not occur during an addition operation, clear the carry flag before

MACHINE LANGUAGE ON THE COMMODORE 128 159

adding two numbers in the accumulator. To perform mathematical operations in hexa-
decimal or binary numbers, clear the decimal mode flag so that your calculations are not
mistakenly performed in binary coded decimal. Whenever the result of a signed mathe-
matical operation overflows into the sign bit an overflow error occurs. To correct this,
clear the overflow flag with the CLV op-code.

When a program requires interrupts, first set the interrupt disable bit (SEI) to
prevent interrupts from occurring. At the end of the interrupt initialization routine, issue
the CLI (Clear Interrupt Disable bit) instruction to enable (allow) interrupts to occur.

JUMP AND RETURN INSTRUCTIONS

JUMP INSTRUCTIONS
The 8502 processor makes use of two jump instructions:

JMP—Jump to new location
JSR—Jump to new location Saving the Return address

These instructions both redirect control of the microprocessor to a location other than
the one immediately following it in memory. The first instruction, JMP, is a one-way trip
to the location specified in the operand field, or the contents of it (indirect). For example:

JMP $1800

jumps to location $1800 and executes the instruction contained in that location. This is a
direct jump.

You can also jump indirectly. For example:

JMP ($1800)

jumps to the address specified in the contents of location $1800. For instance, location
$1800 contains the value $FE and location $1801 contains the value $C0. Therefore, the
above instruction jumps to location $C0FE, and not location $1800. Jumping indirectly
is always denoted by parentheses around the address in the operand field, and it means
to jump to the location specified by the CONTENTS OF the address in the operand field.

The JSR instruction calls subroutines and saves the return address to the stack, so
when an RTS instruction is encountered at the end of the subroutine, the microprocessor
knows where to resume processing in the main (calling) program. Program control
resumes with the instruction in memory immediately following the JSR instruction. In
short, JSR is a round trip, while JMP is one way. For example:

01804 20 58 18 JSR $1858
01807 A2 OC LDX #$0C

jumps to the subroutine starting at location $1858. The return address is saved on the
stack, so when the RTS instruction is encountered in this subroutine:

01858 8E 00 D6 STX $D600
0185B 2C 00 D6 BIT $D600
0185E 10 FB BPL $185B
01860 8D 01 D6 STA $D601
01863 60 RTS

the processor resumes with the main program instruction (LDX #$0C) in location $1807.

RETURN INSTRUCTIONS
The 8502 instruction set has two return instructions:

RTI—Return from Interrupt
RTS—Return from Subroutine

The first instruction returns from your interrupt service routine after the interrupt
disable bit is cleared (CLI) and the interrupt occurs. The RTI is the last instruction in the
interrupt service routine. The interrupt service routine is the series of instructions which
are performed on the occurrence of an interrupt. Refer to Chapter 8, Raster Interrupt
Split Screen Program with Horizontal Scrolling for a working example of an interrupt
service routine.

The RTS instruction is the last instruction in a machine language subroutine called
from BASIC or by the machine language JSR instruction. See the Jump instructions
above for an example.

STACK INSTRUCTIONS
Four stack instructions are included in the 8502 instruction set to manipulate the values
on the stack. These instructions are as follows:

PHA—Push accumulator on the stack
PHP—Push processor status on the stack
PLA—Pull accumulator from the stack
PLP—Pull processor status from the stack

The term push means to place a value on the stack, while pull means to remove
a value from the stack. The only values pushed or pulled on to or off the stack are the
contents of the status register or the accumulator. The manipulation of the stack values
is important to the programmer when processing interrupts. The Raster Interrupt Split
Screen Program with Horizontal Scrolling section in Chapter 8 illustrates the manipula-
tion of the stack values prior to returning from the interrupt.

THE NOP INSTRUCTION
The NOP instruction stands for no operation. It is often used to add space between
program segments for readability. This instruction is not executable.

MACHINE LANGUAGE ON THE COMMODORE 128 161

8502 INSTRUCTION AND
ADDRESSING TABLE

The next 16 pages contain the 8502 Instruction and Addressing Table. These are the
conventions used in the table:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

OP-CODE
Brief definition
Operation notation
Status flags
Flags affected
Addressing Modes
Assembly language form
OP-CODE (in hex)
Number of bytes
Number of instruction cycles

The following notation applies to this summary:

A
X,Y
M
P
S
/

V

-

+
A
-
-V-

t
1

V
PC
PCH
PCL
OPER
#

Accumulator
Index Registers
Memory
Processor Status Register
Stack Pointer
Change
No Change
Add
Logical AND
Subtract
Logical Exclusive Or
Transfer from Stack
Transfer to Stack
Transfer to
Transfer from
Logical OR
Program Counter
Program Counter High
Program Counter Low
OPERAND
IMMEDIATE ADDRESSING MODE

ADC Add memory to accumulator with carry

Operation: A + M + C->A, C N E C I

ADDRESSING

MODE

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

ASSEMBLY

LANGUAGE FORM

ADC #
ADC
ADC
ADC
ADC
ADC
ADC
ADC

Oper
Oper
Oper, X
Oper
Oper, X
Oper, Y
(Oper, X)
(Oper), Y

OP

CODE

69
65
75
6D
7D
79
61
71

NO.

BYTES

2
2
2
3
3
3
2
2

NO.

CYCLES

2
3
4
4
4*
4*
6
5*

Add I if page boundary is crossed.

AND "AND" memory with accumulator

Logical AND to the accumulator
Operation: A AM —* A

AND

N E C I D V

ADDRESSING

MODE

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

ASSEMBLY

LANGUAGE FORM

AND #
AND
AND
AND
AND
AND
AND
AND

Oper
Oper
Oper, X
Oper
Oper, X
Oper, Y
(Oper, X)
(Oper), Y

OP

CODE

29
25
35
2D
3D
39
21
31

NO.

BYTES

2
2
2
3
3
3
2
2

NO.

CYCLES

2
3
4
4
4*
4*
6
5

* Add 1 if page boundary is crossed.

MACHINE LANGUAGE ON THE COMMODORE 128 163

ASL

Operation: C

ASL Shift Left One Bit (Memory or Accumulator)

N Z C I D V|7|6 |5 |4l3 |2 | l |0 |<-0

ASL

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Accumulator
Zero Page
Zero Page, X
Absolute
Absolute, X

ASL
ASL
ASL
ASL
ASL

A
Oper
Oper,
Oper
Oper,

X

X

OA
06
16
0E
IE

1
2
2
3
3

2
5
6
6
7

BCC BCC Branch on Carry Clear BCC

Operation: Branch o n C = 0 N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Relative BCC Oper 90 2*

Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

BCS

Operation: Branch

ADDRESSING

MODE

Relative

BCS Branch

on C = 1

ASSEMBLY

LANGUAGE FORM

BCS Oper

on carry

OP

CODE

BO

set

N

NO.

BYTES

2

Z C

NO.

CYCLES

2*

Add 1 if branch occurs to same page.
Add 2 if branch occurs to next page.

BCS

I D V

B E Q BEQ Branch on result zero B E Q

Operat ion: Branch o n Z = l N Z C I D V

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Relative BEQ Oper FO 2 2*

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.

BIT BIT Test bits in memory with accumulator BIT

Operation: A A M , M 7 - > N, M6 -* V
Bit 6 and 7 are transferred to the status register. N Z C I D V
If the result of AAM is zero then Z = 1, otherwise M7 v - - - M6

Z = 0

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4

BMI BMI Branch on result minus BMI

Operation: Branch o n N = 1 N Z C I D V

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Relative BMI Oper 30 2 2*

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

BNE BNE Branch on result not zero BNE

Operation: Branch o n Z = 0 N Z C I D V

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Relative BNE Oper DO 2 2*

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

MACHINE LANGUAGE ON THE COMMODORE 128 165

BPL BPL Branch on result plus BPL

Operation: Branch o n N = 0 N Z C I D V

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Relative BPL Oper 10 2 2*

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

BRK BRK Force Break BRK

Operation: Forced Interrupt PC + 2 | P i N Z C I D V

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Implied BRK 00 1 7

1. A BRK command cannot be masked by setting I.

BVC BVC Branch on overflow clear BVC

Operation: Branch o n V = 0 N Z C I D V

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Relative BVC Oper 50 2 2*

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

BVS BVS Branch on overflow set BVS

Operation: Branch o n V = 1 N Z C I D V

ADDRESSING ASSEMBLY OP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Relative BVS Oper 70 2 2*

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

CLC

Operation: 0

CLD

Operation: 0 D

ADDRESSING

MODE

Implied

CLI

Operation: 0 —» I

CLC Clear carry flag

ADDRESSING

MODE

Implied

ASSEMBLY

LANGUAGE FORM

CLC

OP

CODE

18

NO.

BYTES

1

NO.

CYCLES

2

CLD Clear decimal mode

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

CLD D8

CLI Clear interrupt disable bit

ADDRESSING

MODE

Implied

ASSEMBLY

LANGUAGE FORM

CLI

OP

CODE

58

NO.

BYTES

1

NO.

CYCLES

2

CLC

N Z C I D V
— — 0 — — —

CLD

N Z C I D V
- - - - 0 -

N Z C I D V
- - - 0 - -

CLI

CLV

Operation: 0 —* V

CLV Clear overflow flag

N Z C I D V
- - - - - 0

ADDRESSING

MODE

Implied

ASSEMBLY

LANGUAGE FORM

CLV

OP

CODE

B8

NO.

BYTES

1

NO.

CYCLES

2

CLV

MACHINE LANGUAGE ON THE COMMODORE 128 167

CMP

Operation: A - M

CMP Compare memory and accumulator

N Z C I

ADDRESSING

MODE

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

ASSEMBLY

LANGUAGE FORM

CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP

#Oper
Oper
Oper, X
Oper
Oper, X
Oper, Y
(Oper, X)
(Oper), Y

OP

CODE

C9
C5
D5
CD
DD
D9
Cl
Dl

NO.

BYTES

2
2
2
3
3
3
2
2

NO.

CYCLES

2
3
4
4
4*
4*
6
5*

Add 1 if page boundary is crossed.

CPX

Operation: X - M

CPX Compare Memory and Index X

N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Immediate
Zero Page
Absolute

CPX #Oper
CPX Oper
CPX Oper

EO 2 2
E4 2 3
EC 3 4

CPY

Operation: Y - M

CPY Compare memory and index Y

N Z C I D V

CPY

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Immediate
Zero Page
Absolute

CPY #Oper
CPY Oper
CPY Oper

CO 2
C4 2
CC 3

DEC

Operation: M - 1 M

DEC Decrement memory by one

N Z C I

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Zero Page
Zero Page, X
Absolute
Absolute, X

DEX

Operation: X - 1 —»

DEC
DEC
DEC
DEC

X

Oper
Oper, X
Oper
Oper, X

DEX Decrement

C6
D6
CE
DE

index

2
2
3
3

X by one

N

5
6
6
7

Z C

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied DEX CA

DEY

Operation: Y - 1

DEY Decrement index Y by one

N Z

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied DEY 88

EOR EOR "Exclusive—Or" memory with accumulator

Operation : A-> M^ A N Z C I

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

EOR
EOR
EOR
EOR
EOR
EOR
EOR
EOR

#Oper
Oper
Oper, X
Oper
Oper, X
Oper, Y
(Oper, X)
(Oper), Y

49
45
55
4D
5D
59
41
51

2
2
2
3
3
3
2
2

2
3
4
4
4*
4*
6
5*

* Add 1 if page boundary is crossed.

MACHINE LANGUAGE ON THE COMMODORE 128 169

INC

Operation: M + 1 —

ADDRESSING

MODE

Zero Page
Zero Page, X
Absolute
Absolute, X

> M

INC Increment

ASSEMBLY

LANGUAGE FORM

INC
INC
INC
INC

Oper
Oper, X
Oper
Oper, X

memory

OP

CODE

E6
F6
EE
FE

by one

N

NO.

BYTES

2
2
3
3

Z C I

NO.

CYCLES

5
6
6
7

INC

D V

INX

Operation: X

INX Increment Index X by one I N X

N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied INX E8

INY

Operation: Y + 1 -» Y

INY Increment Index Y by one INY

N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied INY C8

JMP JMP Jump to new location

Operation: (PC +
(PC +

ADDRESSING

MODE

Absolute
Indirect

1)
2)

~~> PCL
^ P C H

ASSEMBLY

LANGUAGE FORM

JMP Oper
JMP (Oper)

OP

CODE

4C
6C

N

NO.

BYTES

3

Z C

NO.

CYCLES

3
5

JMP

I D V

JSR JSR jump to new location saving return address

Operation: PC + 2 | , (PC + 1) -> PCL N
(PC + 2) -~> PCH

JSR

Z C I D V

ADDRESSING

MODE

Absolute

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

JSR Oper 20

LDA

Operation: M

LDA Load accumulator with memory

N Z C I D V

LDA

ADDRESSING

MODE

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

ASSEMBLY

LANGUAGE FORM

LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA

#Oper
Oper
Oper, X
Oper
Oper, X
Oper, Y
(Oper, X)
(Oper), Y

OP

CODE

A9
A5
B5
AD
BD
B9
Al
Bl

NO.

BYTES

2
2
2
3
3
3
2
2

NO.

CYCLES

2
3
4
4
4*
4*
6
5*

Add 1 if page boundary is crossed.

LDX

Operation: M

LDX Load index X with memory

N Z C I D V

LDX

ADDRESSING

MODE

Immediate
Zero Page
Zero Page, Y
Absolute
Absolute, Y

ASSEMBLY

LANGUAGE FORM

LDX
LDX
LDX
LDX
LDX

#Oper
Oper
Oper, Y
Oper
Oper, Y

OP

CODE

A2
A6
B6
AE
BE

NO.

BYTES

2
2
2
3
3

NO.

CYCLES

2
3
4
4
4*

Add 1 when page boundary is crossed.

MACHINE LANGUAGE ON THE COMMODORE 128 !7I

LDY

Operation: M

LDY Load index Y with memory

N Z

LDY

C I D V

ADDRESSING

MODE

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X

ASSEMBLY

LANGUAGE FORM

LDY
LDY
LDY
LDY
LDY

#Oper
Oper
Oper, X
Oper
Oper, X

OP

CODE

AO
A4
B4
AC
BC

NO.

BYTES

2
2
2
3
3

NO.

CYCLES

2
3
4
4
4*

Add 1 when page boundary is crossed.

LSR

Operation: 0

LSR Shift right one bit (memory or accumulator)

7|6l5l4|3|2|lTol -> C

LSR

N
0

Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Accumulator
Zero Page
Zero Page, X
Absolute
Absolute, X

LSR
LSR
LSR
LSR
LSR

A
Oper
Oper,
Oper
Oper,

X

X

4A
46
56
4E
5E

1
2
2
3
3

2
5
6
6
7

NOP

Operation: No Operation (2 cycles)

NOP No operation NOP

N Z C I D V

ADDRESSING

MODE

Implied

ASSEMBLY

LANGUAGE FORM

NOP

OP NO. NO.

CODE BYTES CYCLES

EA 1 2

ORA

Operation: A V M

ORA "OR" memory with accumulator

A N Z C

ORA

I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

* Add 1 on page

PHA

Operation : A 1

ORA
ORA
ORA
ORA
ORA
ORA
ORA
ORA

crossing

#Oper
Oper
Oper,
Oper
Oper,
Oper,
(Oper,
(Oper)

PHA Push

X

X
Y
X)

, Y

09
05
15
0D
ID
19
01
11

accumulator

2
2
2
3
3
3
2
2

on stack

N

2
3
4
4
4*
4*
6
5

Z C

PHA

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied PHA 48

PHP

Operation: P J,

PHP Push processor status on stack PHP

N Z C I D V

ADDRESSING

MODE

Implied

ASSEMBLY

LANGUAGE FORM

PHP

OP

CODE

08

NO.

BYTES

1

NO.

CYCLES

3

PLA

Operation: A "f

PLA Pull accumulator from stack

N Z C I D V

PLA

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied PLA 68

MACHINE LANGUAGE ON THE COMMODORE 128 173

PLP

Operation: P f

ADDRESSING

MODE

Implied

PLP Pull processor

ASSEMBLY

LANGUAGE FORM

PLP

status

OP

CODE

28

from

NO.

stack

N Z C
From

NO.

BYTES CYCLES

1 4

I D V
Stack

PLP

ROL

Operation:

ROL Rotate one bit left (memory or accumulator)

M or A

ROL

^7|6|5|4|3|2|1|Q| N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Accumulator
Zero Page
Zero Page, X
Absolute
Absolute, X

ROL
ROL
ROL
ROL
ROL

A
Oper
Oper,
Oper
Oper,

X

X

2A
26
36
2E
3E

1
2
2
3
3

2
5
6
6
7

ROR

Operation: [C_

ROR Rotate one bit right (memory or accumulator)

0

ROR

7 6 5 4 3 2 1 0

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

N Z C I D V

OP NO. NO.

CODE BYTES CYCLES

Accumulator
Zero Page
Zero Page, X
Absolute
Absolute, X

ROR
ROR
ROR
ROR
ROR

A
Oper
Oper
Oper
Oper

,x

,x

6A
66
76
6E
7E

1
2
2
3
3

2
5
6
6
7

RTI

Operation: P f PC t

RTI Return from interrupt RTI

Z C I D
From Stack

ADDRESSING

MODE

Implied

ASSEMBLY

LANGUAGE FORM

RTI

OP

CODE

40

NO.

BYTES

1

NO,

CYCLES

6

RTS RTS Return from subroutine

Operation: PC f , PC + 1 -» PC N Z C I D V

RTS

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied RTS 60

SBC

Operation: A - M - C
Note: C = Borrow

SBC Subtract memory from accumulator with borrow

A N Z C I

SBC

D V

ADDRESSING

MODE

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

ASSEMBLY

LANGUAGE FORM

SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC

#Oper
Oper
Oper, X
Oper
Oper, X
Oper, Y
(Oper, X)
(Oper), Y

OP

CODE

E9
E5
F5
ED
FD
F9
El
Fl

NO.

BYTES

2
2
2
3
3
3
2
2

NO.

CYCLES

2
3
4
4
4*
4*
6
5*

Add 1 when page boundary is crossed.

MACHINE LANGUAGE ON THE COMMODORE 128 175

SEC

Operation: 1 —> C

ADDRESSING

MODE

Implied

SED

Operation: 1 —» D

ADDRESSING

MODE

Implied

SEI

Operation: 1 ^ 1

ADDRESSING

MODE

Implied

SEC Set carry flag

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

SEC 38

SED Set decimal mode

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

SED F8 1

SEI Set interrupt disable status

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

SEI 78

SEC

N Z C I D V

SED

N X C I D V

SEI

N Z C I D V
_ _ _ 1 _ _

STA

Operation: A M

STA Store accumulator in memory

N Z C I

STA

D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

STA
STA
STA
STA
STA
STA
STA

Oper
Oper,
Oper
Oper,
Oper,
(Oper,
(Oper)

X

X
Y
X)

, Y

85
95
8D
9D
99
81
91

2
2
3
3
3
2
2

3
4
4
5
5
6
6

STX

Operation: X M

STX Store index X in memory STX

N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Zero Page STX Oper
Zero Page, Y STX Oper, Y
Absolute STX Oper

86 2 3
96 2 4
8E 3 4

STY

Operation: Y —* M

STY Store index Y in memory STY

N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Zero Page STY Oper
Zero Page, X STY Oper, X
Absolute STY Oper

84 2 3
94 2 4
8C 3 4

TAX

Operation: A —* X

TAX Transfer accumulator to index X TAX

N Z C I D V

ADDRESSING ASSEMBLY

MODE LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied TAX AA 1

TAY

Operation: A —* Y

TAY Transfer accumulator to index Y TAY

N Z C I D V

V' v'

ADDRESSING ASSEMBLY

MODE LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied TAY A8 1

MACHINE LANGUAGE ON THE COMMODORE 128 177

TSX

Operation: S —» X

TSX Transfer stack pointer to index X TSX

N Z C I D V

ADDRESSING ASSEMBLY

MODE LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied TSX BA 1

TXA TXA Transfer index X to accumulator TXA

Operation: X ^ A N Z C I D V

ADDRESSING ASSEMBLY

MODE LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied TXA 8A 1

TXS TXS Transfer index X to stack pointer TXS

Operation: X ^ S N Z C I D V

ADDRESSING

MODE

ASSEMBLY

LANGUAGE FORM

OP NO. NO.

CODE BYTES CYCLES

Implied TXS 9A 1

TYA

Operation: Y —» A

TYA Transfer index Y to accumulator TYA

N Z C I D V

ADDRESSING ASSEMBLY

MODE LANGUAGE FORM

Implied TYA

OP NO. NO.

CODE BYTES CYCLES

98 1 2

INSTRUCTION ADDRESSING MODES AND
RELATED EXECUTION TIMES (in clock cycles)

ADC . 2 3 4 . 4 4* 4* . . 6 5 * .
AND . 2 3 4 . 4 4* 4* . . 6 5 * .
ASL 2 . 5 6 . 6 7
BCC 2** . .
BCS 2** . .
B E Q 2** . .
BIT . . 3 . . 4
BMI 2** . .
BNE 2** . .
BPL 2** . .
BRK
BVC 2** . .
BVS 2** . .
C L C 2 .
CLD 2
CLI 2
CLV 2
C M P . 2 3 4 . 4 4* 4* . . 6 5 * .
CPX . 2 3 . . 4
CPY . 2 3 . . 4
DEC . . 5 6 . 6 7
DEX 2
DEY 2
EOR . 2 3 4 . 4 4* 4* . . 6 5 * .
INC . . 5 6 . 6 7
INX 2
INY 2
J M P 3 5
J S R 6
LDA . 2 3 4 . 4 4* 4* . . 6 5 * .
LDX . 2 3 . 4 4 . 4 *
LDY . 2 3 4 . 4 4 *
LSR 2 . 5 6 . 6 7
N O P 2 .
ORA . 2 3 4 . 4 4* 4* . . 6 5 * .
PHA 3
P H P 3

MACHINE LANGUAGE ON THE COMMODORE 128 179

PLA 4
P L P 4
R O L 2 . 5 6 . 6 7
R O R 2 . 5 6 . 6 7
RTI 6
RTS 6
SBC . 2 3 4 . 4 4* 4* . . 6 5 * .
SEC 2
SED 2
SEI 2
STA . . 3 4 . 4 5 5 . . 6 6 .
STX . . 3 . 4 4
STY . . 3 4 . 4
TAX 2
TAY 2
TSX 2
TXA 2
TXS 2
TYA 2

* Add one cycle if indexing across page boundary
** Add one cycle if branch is taken. Add one additional if branching
operation crosses page boundary

A clock cycle is the speed at which the processor operates as determined by the
number of bytes transferred from one internal logic component to another. The 8502
operates at a default speed of 1 MHz, which is equivalent to 1,000,000 cycles per
second.

6
HOW TO ENTER
MACHINE LANGUAGE
PROGRAMS INTO THE
COMMODORE 128

Now that you know about addressing modes, types of instructions and opcodes, you
need to know how to actually enter machine language instructions into the Commodore
128 memory. The C128 offers three methods of inputting instructions so that they may
be operated on by the microprocessor. You can enter machine language instructions by:

1. Using the built-in machine language monitor (available in C128 mode only).
2. POKEing the translated decimal opcode values into memory with a BASIC

program (C128 and C64 modes).
3. Using an additional software program called an assembler.

All three methods have advantages and disadvantages. For instance, the built-in
machine language monitor is easy to use and allows you to program in machine
language without any additional aids such as an assembler. It makes merging BASIC
and machine language easy. In addition, you can save machine language programs as
binary files with the monitor SAVE command. Since you are already working in an
object code, there is no need to compile from source code into an object code, as is
necessary with an assembler.

Though these are powerful features, the monitor does not allow the use of symbolic
operand names or commented code. The monitor produces executable (object) code;
hence, no source files are produced. The resulting coded program contains actual
(absolute) address references, whereas an assembler source code file allows the use of
symbolic addresses and arguments as well as comments. When you display a machine
language program in the monitor, you do not have the luxury of comments or symbolic
address variables, so you really have to know what you are looking for when reading
other people's code. On the other hand, an assembler source file must be compiled into
executable object code, then used often with an additional program called a loader. This
requires three steps, whereas the monitor's machine language is ready to run as soon as
you finish writing the program.

The second method, POKEing translated decimal opcode data into memory with a
BASIC program, is an alternative usually implemented only when the first two options
are not available. This is the case if you have no assembler and are writing a machine
language routine in Commodore 64 mode, which does not make the built-in monitor
available to you. However, it is sometimes handy to POKE small routines from
BASIC if the application program you are writing is more suited for BASIC and you
need the speed of machine language for only a small portion of the program (though for
the most part, this method is tedious, bulky and time-consuming). Use it only if you
have no alternative, since once it is POKED into memory, you cannot display a listing
of the machine language routine as in the monitor or the assembler.

This chapter explains how to enter machine language programs in the first two
methods described above. The third method, using an assembler, requires an additional
software package similar to the Commodore 64 Assembler Development System. For
specific details on how to enter machine language programs with the assembler, refer to
the manual that is packed with the assembler software package you buy.

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 183

ENTERING MACHINE LANGUAGE
INSTRUCTIONS IN THE MONITOR

Begin entering machine language instructions by entering the monitor from BASIC with
the following command:

MONITOR RETURN

The Commodore 128 responds with the following display:

MONITOR
PC SR AC XR YR SP
; FB000 00 00 00 00 F8

These values indicate the contents of the microprocessor registers upon entering
the monitor. The abbreviations and definitions of the register names are as follows:

PC—Program Counter Marks the address of the current machine language
instruction

SR—Status Register Flags that alert the microprocessor of certain conditions
AC—Accumulator Register for all mathematical operations
XR—X Index Register Used for effective address modification
YR—Y Index Register Same as X register
SP—Stack Pointer Indicates the address of the first available memory

location on the stack

Now you can begin to enter machine language instructions. The ASSEMBLE
command within the monitor enters the instructions into the specified memory location.
To enter instructions, follow the format of this example:

A 01800 LDA #$00

Make sure to leave at least one space between each of the fields. Here's what each
part of the instruction means:

<Assemble> <Address in memory where opcode is stored> <Opcode> <Operand>

The A stands for ASSEMBLE an opcode. The second part (field) is the address
where the opcode in the instruction is placed in the Commodore 128 memory. Notice
the 5-digit hexadecimal number specifying the address. The leftmost digit (0-F) speci-
fies the configuration of the Commodore 128 memory layout. This is the same as the
BANK command in BASIC.

Once the entire machine language program is entered, reference the address that is
contained in the first instruction you entered to start execution of the program. Execute
the program with the GO command in the monitor, or exit the monitor with the X
(EXIT) command and issue the SYS command from BASIC. If you SYS to the start of
the program, you must use the decimal equivalent of the hexadecimal address, which

appears in the first instruction you entered. You must have an RTS instruction at the end
of the routine if you want to return to BASIC. Often, the Kernal must be resident in the
current configuration in context in order to obtain results.

The opcode is the 8502 instruction that is carried out by the microprocessor when
your program is running. See the 8502 Instruction Set Table in Chapter 5 for allowable
instructions.

The operand is the address or value that is acted upon by the opcode in the
instruction. If the operand field is preceded by a pound sign (#), the opcode will act
upon a constant value. If no pound sign is specified, the microprocessor assumes the
opcode will act upon an address.

Remember to separate each field in the instruction with at least one space. If you
don't, the computer indicates that an error has occurred by displaying a question mark at
the end of the instruction.

Once a routine is displayed on the screen, the monitor allows shortcuts in entering
instructions. To display a listing of a machine language program, issue the DISASSEM-
BLE command as follows:

D 04000 04010 RETURN

The " D " stands for disassemble. The first number (04000) specifies the starting
memory location in which you want the contents displayed. The second number
specifies the end address in which to display.

Now for the shortcut. Since the address where the opcodes are stored is already on
the screen, you can simply move the cursor to the opcode field, type over the exist-
ing opcode and operand on the screen, erase any unwanted characters and press
R E T U R N . The computer registers the instruction in memory by displaying the
hexadecimal values for the opcode and operand directly to the left of the opcode
mnemonic you just entered. This is a faster and easier way of entering machine-
language routines, rather than typing the ASSEMBLE command and the address each
time you enter an instruction.

EXECUTING (RUNNING)
YOUR MACHINE-LANGUAGE PROGRAM

Once you have finished entering your machine language routine, you may execute it in
three different ways. Within the monitor, issue the GO or JUMP to Subroutine com-
mand as follows:

G F1800 (JMP)
J F1800 (JSR)

The G stands for GO, or go to the start address of the machine language program
in memory, and begin executing it at the specified address. The value following the
letter G refers to the start address of your routine. The J stands for Jump to Subrou-
tine, similar to the JSR mnemonic in machine language.

The third way to invoke a machine language routine is to exit the monitor by

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 185

pressing the X key and R E T U R N . This places you back within the control of the
BASIC language. Next, issue the SYS command and reference the starting address in
decimal as follows:

BANK 15
SYS 6144

This SYS command is the same as the GO command (G F1800) example above.
The BANK 15 command and the leading F in the 5-digit hexadecimal number F1800
specify memory configuration 15. The Kernal, BASIC and other ROM code are
resident in this configuration. The only difference is that it executes the machine
language routine from BASIC, instead of within the monitor.

The machine language routine given below clears the text screen. Starting at
location 1024 ($0400), the value 32 ($20) is stored in each screen location. The
character string value 32 is the space character, which blanks out each character position
on the screen. When finished, an RTS instruction returns control to BASIC. Here's the
main BASIC program and the machine language screen-clear subroutine as it appears in
the machine language monitor.

10 FOR 1= 1 TO 2 5
20 PRINT"FILL THE SCREEN WITH CHARACTERS"
30 NEXT
40 PRINT:PRINT
50 PRINT"NOW CALL THE MACHINE LANGUAGE"
60 PRINT" ROUTINE TO CLEAR THE SCREEN"
70 SLEEP 5
80 SYS DEC("1800")
90 PRINT"THE SCREEN IS NOW CLEARED"

READY.

MONITOR
PC SR AC XR YR SP

; FB000 00 00 00 00 F8

01800
01802
01804
01807
0180A
0180D
01810
01811
01813

A2
A9
9D
9D
9D
9D
E8
DO
60

00
20
00
00
00
E7

Fl

04
05
06
06

LDX
LDA
STA
STA
STA
STA
I NX
BNE
RTS

#$00
#$20
$0400,X
$0500,X
$0600,X
$06E7,X

$1804

In this sample program, the SYS command executes the subroutine to clear the
text screen. Once the text screen is cleared, control of the microprocessor is returned to
BASIC by the RTS instruction, and the READY prompt is displayed.

MACHINE LANGUAGE
MONITOR COMMANDS

The C128's built-in machine language monitor has several additional commands that
manipulate your machine language routines once they are entered into memory. Figure
6-1 is a summary of all the commands available to you in the machine language
MONITOR.

KEYWORD

ASSEMBLE

COMPARE

DISASSEMBLE

FILL

GO

HUNT

FUNCTION

Assembles a line of 8502 code

Compares two sections of mem-
ory and reports differences
Disassembles a line or lines of 8502
code
Fills a range of memory with spec-
ified byte
Starts execution at the specified
address
Hunts through memory within a
specified range for all occurrences
of a set of bytes

GOSUB
LOAD

MEMORY

REGISTERS
SAVE

TRANSFER

VERIFY

EXIT
(period)
(greater than)
(semicolon)

Jumps to the subroutine
Loads a file from tape or disk

Displays the hexadecimal values
of memory locations
Displays the 8502 registers
Saves to tape or disk

Transfers code from one section
of memory to another
Compares memory with tape or
disk
Exits Commodore 128 MONITOR
Assembles a line of 8502 code
Modifies memory
Modifies 8502 register displays

D

H

H

J
L

M

R
S

V

>

FORMAT

<start address> <opcode>
[operand]
<start address> <end address>
<new start address>
[<start address> <end address>]

<start address>
<byte>
[address]

<end address >

<start address> <end address>
<bytel> [<byte n> . . .]
<start address> <end address>
<ascii string>
[address]
"<fllename>"[,<device #>
[,<Ioad address>]]
[<start address>
[<end address>]]

"<filename>",<device # > ,
<start address> <last address
+ 1>
<start address> <end address>
<new start address>
"<filename>"[,<device #>[,
<load address>]]

[address]

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 187

KEYWORD

(at sign)

FUNCTION

Displays disk status, sends disk @
command, displays directory
disk status
disk command

disk catalog

FORMAT

©[device #]
@[device #],<command
string>]
©[device #],$[[<drive>:<file
spec>]]

NOTES <> enclose required parameters
[] enclose optional parameters

Figure 6-1. Summary of Commodore 128 Monitor Commands

NOTE: 5-Digit Addresses
The Commodore 128 displays 5-digit hexadecimal addresses within the
machine language monitor. Normally, a hexadecimal number is only four
digits, representing the allowable address range. The extra left-most (high
order) digit specifies the BANK configuration (at the time the given
command is executed) according to the following memory configuration
table:

0—RAM 0 only
1—RAM 1 only
2—RAM 2 only
3—RAM 3 only
4—INT ROM, RAM 0, I/O
5—INT ROM, RAM 1, I/O
6—INT ROM, RAM 2, I/O
7—INT ROM, RAM 3, I/O

8—EXT ROM, RAM 0, I/O
9—EXT ROM, RAM 1, I/O
A—EXT ROM, RAM 2, I/O
B—EXT ROM, RAM 3, I/O
C—KERNAL + INT (lo). RAM 0, I/O
D—KERNAL + EXT (lo), RAM 1, I/O
E—KERNAL + BASIC, RAM 0, CHARROM
F—KERNAL + BASIC, RAM 0, I/O

SUMMARY OF MONITOR
FIELD DESCRIPTORS
The following designators precede monitor data fields (e.g., memory dumps). When
encountered as a command, these designators instruct the monitor to alter memory or
register contents using the given data.

<period> precedes lines of disassembled code.
> <right angle> precedes lines of a memory dump.
; <semicolon> precedes line of a register dump.

The following designators precede number fields (e.g., address) and specify the radix
(number base) of the value. Entered as commands, these designators instruct the monitor
simply to display the given value in each of the four radices.

<null> (default) precedes hexadecimal values.
$ <dollar> precedes hexadecimal (base-16) values.

+ <plus> precedes decimal (base-10) values.
& <ampersand> precedes octal (base-8) values.
% <percent> precedes binary (base-2) values.

The following characters are used by the monitor as field delimiters or line terminators
(unless encountered within an ASCII string).

<space> delimiter—separates two fields.
<comma> delimiter—separates two fields.

: <colon> terminator—logical end of line.
? <question> terminator—logical end of line.

MONITOR COMMAND DESCRIPTIONS
The following are descriptions of each of the C128 Machine Language Monitor commands.

COMMAND: A
PURPOSE: Enter a line of assembly code.
SYNTAX: A <address> <opcode mnemonic> <operand>

<address> A number indicating the location in memory to
place the opcode. (See 5-digit address note on
previous page.)

<opcode> A standard MOS technology assembly language
mnemonic, e.g., LDA, STX, ROR.

<operand> The operand, when required, can be any of the
legal addresses or constants.

A R E T U R N is used to indicate the end of the assembly line. If there are
any errors on the line, a question mark is displayed to indicate an error, and the
cursor moves to the next line. The screen editor can be used to correct the error(s) on
that line.

EXAMPLE:

.A 01200 LDX #$00

.A 01202

NOTE: A period (.) is equal to the ASSEMBLE command.

EXAMPLE:

.02000 LDA #$23

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 189

COMMAND:
PURPOSE:
SYNTAX:

Compare two areas of memory.
C <address 1> <address 2> <address 3>

<address 1 > A number indicating the start address of the area
of memory to compare against.

<address 2> A number indicating the end address of the area
of memory to compare against.

< address 3> A number indicating the start address of the other
area of memory to compare with. Addresses that
do not agree are printed on the screen.

COMMAND: D
PURPOSE: Disassemble machine code into assembly language mnemonics and

operands.
SYNTAX: D [<address>] [<address 2>]

<address> A number setting the address to start the dis-
assembly.

<address 2> An optional ending address of code to be dis-
assembled.

The format of the disassembly differs slightly from the input format of an assembly. The
difference is that the first character of a disassembly is a period rather than an A (for
readability), and the hexadecimal value of the op-code is listed as well.

A disassembly listing can be modified using the screen editor. Make any changes
to the mnemonic or operand on the screen, then hit the carriage return. This enters the
line and calls the assembler for further modifications.

A disassembly can be paged. Typing aD R E T U R N causes the next page
of disassembly to be displayed.

EXAMPLE:

D3000 3003
.03000 A9 00
.03002 FF
.03003 DO 2B

LDA #$00
???
BNE $3030

COMMAND: F
PURPOSE: Fill a range of locations with a specified byte.
SYNTAX: F <address 1> <address 2> <byte>

<address 1> The first location to fill with the <byte>.
<address 2> The last location to fill with the <byte>.
<byte value> A 1- or 2-digit hexadecimal number to be written.

This command is useful for initializing data structures or any other RAM area.

EXAMPLE:

F0400 0518 EA
Fill memory locations from $0400 to $0518 with $EA (a NOP instruction).

COMMAND: G
PURPOSE: Begin execution of a program at a specified address.
SYNTAX: G [<address>]

<address> An address where execution is to start. When
address is left out, execution begins at the current
PC. (The current PC can be viewed using the R
command.)

The GO command restores all registers (displayable by using the R command) and
begins execution at the specified starting address. Caution is recommended in using the
GO command. To return to the Commodore 128 MONITOR after executing a machine
language program, use the BRK instruction at the end of the program.

EXAMPLE:

G 140C
Execution begins at location $140C in configuration (BANK)O. Certain applica-
tions may require that Kernal and/or I/O be present when execution begins.
Precede the four-digit hexadecimal number with the hex configuration number
which contains those appropriate portions of memory.)

COMMAND: H
PURPOSE: Hunt through memory within a specified range for all occurrences of a

set of bytes.
SYNTAX: H <address 1> <address 2> <data>

<address 1> Beginning address of hunt procedure.
<address 2> Ending address of hunt procedure.
<data> Data set to search for data may be hexadecimal

for an ASCII string.

EXAMPLE:

H A000 A101 A9
Search for data $A9 from A000 to A101.
H2000 9800 'CASH'
Search for the alpha string "CASH".

COMMAND: J
PURPOSE: Jump to a machine language subroutine.
SYNTAX: J <address>

The JUMP to SUBROUTINE command directs program control to the machine language

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 191

subroutine located at the specified address. This command saves the return address as
does the 8502 instruction JSR (Jump to Subroutine). In other words, the JUMP
command is a two-way instruction, where the application gains control of the computer.
Only after the subroutine encounters an RTS instruction does the machine language
monitor regain control.

EXAMPLE:

J2000
Jump to the subroutine starting at $2000 in configuration 0.

COMMAND: L
PURPOSE: Load a file from cassette or disk.
SYNTAX: L <"file name">[,<device>[,alt load address]]

<"file name"> Any legal Commodore 128 file name.
<device> A number indicating the device to load from. 1 is

cassette. 8 is disk (or 9, A, etc.).
[alt load address] Option to load a file to a specified address.

The LOAD command causes a file to be loaded into memory. The starting address is
contained in the first two bytes of the disk file (a program file). In other words, the
LOAD command always loads a file into the same place it was saved from. This is very
important in machine language work, since few programs are completely relocatable.
The file is loaded into memory until the end of file (EOF) is found.

EXAMPLE:

L "PROGRAM",8 Loads the file name PROGRAM from the disk.

COMMAND: M
PURPOSE: To display memory as a hexadecimal and ASCII dump within the

specified address range.
SYNTAX: M [<address 1>] [<address 2>]

<address 1> First address of memory dump. Optional. If omit-
ted, one page is displayed. The first digit is the
bank number to be displayed, the next four digits
are the first address to be displayed.

<address 2> Last address of memory dump. Optional. If omit-
ted, one page is displayed. The first digit is the
bank number to be displayed; the next four digits
are the ending address to be displayed.

Memory is displayed in the following format:

>1AO48 41 42 43 44 45 46 47 48:ABCDEFGH

Memory contents may be edited using the screen editor. Move the cursor to the data to be
modified, type the desired correction and hit R E T U R N . If a syntax error
or an attempt to modify ROM has occurred, an error flag (?) is displayed. An
ASCII dump of the data is displayed in reverse (to contrast with other data displayed on
the screen) to the right of the hex data. When a character is not printable, it is displayed
as a reverse period. As with the disassembly command, paging down is accom-
plished by typing M and R E T U R N

EXAMPLE:

M 21C00
>21C00 41 4A 4B 4C 4D 4E 4F 50 :AJKLMNOP

NOTE: The above display is produced by the 40-column editor.

COMMAND: R
PURPOSE: Show important 8502 registers. The status register, the program counter,

the accumulator, the X and Y index registers and the stack pointer are
displayed. The data in these registers is copied into the microprocessor
registers when a " G " or " J " command is issued.

SYNTAX: R

EXAMPLE:

R
PC SR AC XR YR SP

: 01002 01 02 03 04 F6

NOTE: ; (semicolon) can be used to modify register displays in the same
fashion as > can be used to modify memory registers.

COMMAND: S
PURPOSE: Save the contents of memory onto tape or disk.
SYNTAX: S <"filename">,<device>,<address 1>, <address 2>

<"filename"> Any legal Commodore 128 filename. To save
the data, the file name must be enclosed in dou-
ble quotes. Single quotes cannot be used.

<device> A number indicating on which device the file is
to be placed. Cassette is 01; disk is 08, 09, etc.

<address 1> Starting address of memory to be saved.
<address 2> Ending address of memory to be saved + 1. All

data up to, but not including, the byte of data at
this address is saved.

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 193

The file created by this command is a program file. The first two bytes contain the
starting address <address 1> of the data. The file may be recalled, using the L
command.

EXAMPLE:

S "GAME",8,0400,00)0
Saves memory from $0400 to $OBFF onto disk.

COMMAND: T
PURPOSE: Transfer segments of memory from one memory area to another.
SYNTAX: T <address 1> <address 2> <address 3>

<address 1> Starting address of data to be moved.
<address 2> Ending address of data to be moved.
<address 3> Starting address of new location where data will

be moved.

Data can be moved from low memory to high memory and vice versa. Additional
memory segments of any length can be moved forward or backward. An automatic
"compare" is performed as each byte is transferred, and any differences are listed by
address.

EXAMPLE:

T1400 1600 1401
Shifts data from $1400 up to and including $1600 one byte higher in memory.

COMMAND: V
PURPOSE:
SYNTAX:

Verify a file on cassette or disk with the memory contents.
<"filename">[,<device>][,alt start address]
<"filename"> Any legal Commodore 128 file name.
<device> A number indicating which device the file is on.

Cassette is 01; disk is 08, 09, etc.
[alt start address] Option to start vertification at this address.

The VERIFY command compares a file to memory contents. If an error is found, the
words VERIFY ERROR are displayed; if the file is successfully verified, the cursor
reappears without any message.

EXAMPLE:

V" WORKLOAD" ,08

COMMAND: X
PURPOSE: Exit to BASIC.
SYNTAX: X

COMMAND: > (greater than)
PURPOSE: Can be used to assign values for one to eight memory locations at a time

(in 40-column mode; up to 16 in 80-column mode).
SYNTAX: > <address> <data byte 1> <data byte 2 . . . 8>

<address> First memory address to set.
<data byte 1> Data to be put at address.
<data byte 2 . . . 8>Data to be placed in the successive memory

locations following the first address (optional)
with a space preceding each data byte.

COMMAND: @ (at sign)
PURPOSE: Can be used to send commands to the disk drive.
SYNTAX: @ [<device number>], <disk cmd string>

<device number> Device unit number (optional).
<diskcmd string>String command to disk.

NOTE: (ci alone gives the status of the disk drive.

EXAMPLES:

(2,1

@,$
(a,$0:F*

checks disk status
00, OK, 00, 00
initializes drive 8

displays disk directory on unit 8.
display all files on Drive 0, unit 8 starting with the letter F.

As a further aid to programmers, the Kernal error message facility has been automati-
cally enabled, while in the Monitor. This means the Kernal will display 'I/O ERROR#'
and the error code, should there be any failed I/O attempt from the MONITOR. The
message facility is turned off when exiting the MONITOR.

MANIPULATING TEXT WITHIN
THE MACHINE LANGUAGE MONITOR

Certain machine language application programs require the manipulation of strings of
characters. If you are using an assembler package, it contains provisions for handling
strings of characters. However, within the monitor, strings of characters must be placed
in memory, either (1) through modifying a memory dump using the screen editor, or (2)

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 195

by placing the ASCII values of the characters in memory locations within a program.
To modify a memory dump using the screen editor, issue the MEMORY com-

mand with the address range in which you want to place the character string informa-
tion. For example, suppose you want to place the word "TEXT" in memory starting at
location $2000. First, enter the machine language monitor with the MONITOR com-
mand. Next, issue the memory command containing the address $2000 as follows:

M 2000

The 128 responds with this display:

02000 FF 00 FF 00 FF 00 FF 00: pi.PI.PI..PI.

The entire screen is filled with the contents of the memory (dump) locations $2000
through $205F. For illustrative purposes, only one line of the memory dump is shown.
This line pertains to the address range $2000 through $2007. At the right of the screen is
an area that displays the corresponding ASCII character for each value within a memory
location in that line of the memory dump. The left character in the display area
corresponds to location $2000, the second character position to the right pertains to
address $2001, and so on. To place the word "TEXT" in memory starting at location
$2000, move the cursor up to the first line of the memory dump, move the cursor right
to the memory address that pertains to address $2000, and place the ASCII character
string code for the letter T in this position. To do this, type over the characters that are
there and replace them with the hexadecimal equivalent of decimal 84 ($54) and press
R E T U R N . Notice that the letter T is now displayed at the right of the screen.
Refer to Appendix E, ASCII and CHR$ Codes, for a list of the Commodore ASCII
codes for each character available in the Commodore 128.

Now do the same procedure for the letters E, X and T. When you are through, the
word "TEXT" is displayed in the display area. The first line of the memory dump now
looks like this:

02000 54 45 58 54 FF 00 FF 00: TEXT IT. IT.

Now the character string you wish to manipulate is in memory, starting at address
$2000. Your machine language routine can now act upon the characters of the word
"TEXT" in order to display them on the screen. An efficient way of manipulating
entire words is to use the start address in memory where the text begins, in this case
$2000. Determine the length of the string, and use an index register as an offset to the
end of the word. See the section Raster Interrupt Split Screen Program with Horizontal
Scrolling in Chapter 8, for a working example of manipulating text. This chapter has
described the use of machine language. For additional information on machine language
topics, see Chapter 5, 7, 8, 9, 10, 11, and 13.

7
MIXING
MACHINE
LANGUAGE
AND BASIC

WHY MIX B A S I C AND
MACHINE LANGUAGE?

Certain application programs are better suited for a high-level language such as BASIC
rather than low-level machine language. In other cases, however, certain portions of a
program, such as displaying graphics, may require the speed of machine language while
the rest of the program lends itself to the use of BASIC. This is the main reason for
mixing BASIC programs with machine language subroutines. Another reason may be
the lack of an alternative in programming machine language. For example, in C64
mode, a machine language monitor is not ordinarily available to the user. In addition,
you may not have an assembler package, so the only alternative is to enter machine
language programs through the BASIC language. This method has disadvantages; it can
be tedious and time-consuming, and once the routine is entered into memory, you have
no way of listing it to the screen for editing. This method is recommended only if no
alternative is available.

ENTERING MACHINE LANGUAGE
SUBROUTINES THROUGH B A S I C

In Chapter 6, you saw an example of how to use the SYS command to go from BASIC
to a machine language routine that cleared the text screen. The SYS command invoked
the subroutine, cleared the screen, and returned to BASIC with the RTS instruction.
This example illustrated the SYS command within a program. You can also SYS to a
machine language subroutine outside a BASIC program, as follows:

SYS 8192

This example assumes you entered the machine language subroutine through the
monitor (and it is still in memory). What if you don't have the monitor available to you,
as in C64 mode, and you want to mix a machine language subroutine with a BASIC
program?

The answer to this is to POKE decimal data that represents the hexadecimal
opcodes and operands into memory. To activate the subroutine, you SYS to it as you did
before. This method of entering machine language programs requires these steps:

1. Write your machine language program on a piece of paper.
2. Translate the hexadecimal op-code values into decimal. Some instructions

require 3 bytes of memory, while others only use 1 or 2 bytes of memory. For
a list of hexadecimal opcodes for the 8502 machine language instruction set,
see the 8502 Instruction and Addressing Table, in Chapter 5.

3. Enter the decimal equivalents of the opcodes into DATA statements in such a
way that a 2-byte instruction, for example, is entered as follows:

MIXING MACHINE LANGUAGE AND BASIC 199

1000 DATA 162,0: REM = LDX #$00 = $A2, $00

The hexadecimal number $A2 represents the 8502 instruction for LDX, which
equals 162 in decimal. The 0 (zero) represents the operand 0, which is
loaded into the X register in the instruction. In hex, 0 is the same as in
decimal, so the second byte of the instruction is the operand value 0. The
hexadecimal opcodes are translated into strings of binary digits (bits), so the
microprocessor can interpret and operate them. This is the true machine
language of the computer at its lowest level.

4. Once you have translated all the opcodes and operands into decimal, you
must place them in memory. Accomplish this by READing a DATA value in
BASIC and POKEing it into memory in an appropriate address range. For
example, to enter the LDX #$00 instruction into memory, in C128 mode,
perform the following routine:

10 ALPHA = 8192
201 = 0
30 DO
40 READ A
45 IF A = -999 THEN EXIT
50 POKE ALPHA +1,A
60 I =1+1
70 LOOP
80 PRINT "ALL DATA IS NOW IN MEMORY"

1000 DATA 162,0,-999

For C64 mode use this routine:

10 ALPHA = 8192
20 FOR 1 = 0 TO 1
40 READ A
50 POKE ALPHA +1,A
60 NEXT
80 PRINT "ALL DATA IS NOW IN MEMORY"

1000 DATA 162,0

The first example, in C128 mode, READs all DATA and POKEs it into
memory, starting at location 8192 ($2000), until a data item is equal to -999.
When the data item equals -999, EXIT the loop and print a message saying
all the data is read into memory at the specified locations. This DO . . .
LOOP allows you to enter as many data items as you please without the need
to know how many data items are in the data list, since it checks for the
terminator value -999. This programming approach makes it easy to modify
the number of data entries without having to change any of the code. This
program assumes that the bit map screen is not being used ($2OOO-$3FFF).

The second example, in C64 mode, uses a FOR. . . NEXT loop to
enter the data. This requires you to know how many data items are in the data
list. You can add an IF . . . THEN statement to check for a terminator value
like -999, as in the first example. However, this method illustrates a different
way of accomplishing the same thing.

5. The final step in entering machine language subroutines through BASIC is
executing the subroutine with the SYS command. Add line 90 to your BASIC
routines above as follows:

90 SYS 8192

This command executes the machine language routine that you POKEd into
memory starting at location 8192.

Although the DATA statement in the example in Step 4 does not show it, all
machine language subroutines must end with an RTS instruction so you can return to
BASIC. The decimal code for an RTS machine language instruction is 96. Your last
decimal data item in the final data statement in your program must be 96, unless you use
a terminator like -999; then -999 will be your last decimal data item.

Figure 7-1 shows a step-by-step translation from the machine language screen-
clear routine as it appears in the monitor and a complete program that mixes the clear
screen routine with the BASIC program that POKEs in the data and executes the
machine language subroutine. It only operates in the 40-column (VIC) screen.

MIXING MACHINE LANGUAGE AND BASIC 201

Address

. 02000

. 02002

. 02004

. 02007

. 0200A

. 0200D

. 02010

. 02011

. 02013

Hex

A2
A9
9D
9D
9D
9D
E 8
DO
60

Opcode

0 0
2 0
00 04
00 05
00 06
E7 06

F l

LDX
LDA
STA
STA
STA
STA
I NX
BNE
R T S

Symbolic
Instruction

#$00
#$20
$ 0 4 0 0 ,
$ 0 5 0 0 ,
$ 0 6 0 0 ,
$06E7 ,

$2004

=
X
X
X
X

=

=

—

1 st Byte
(Opcode)

162
169
157
157
157
157
232
208
96

Decimal Equivalent

2nd Byte
(Operand)

0
32
0
0
0

231

241

3rd Byte

4
5
6
6

Figure 7-1. Step-by-step Translation into Decimal

To find the hexadecimal opcodes, refer to the 8502 Instruction and Address-
ing Table in Chapter 5. Notice in Figure 7-1 that the hexadecimal opcodes are displayed
within the monitor, directly to the left of the symbolic instruction. These hexadecimal
numbers are the codes that you translate into decimal data items in a BASIC program.

Notice that the second byte in the BNE instruction is the value 241. In a branch
instruction, the operand is not an absolute address, but is instead an offset to the
instruction to which it will branch. In this case, the BNE instruction branches backward
to location $2004; therefore, it branches backward 15 locations in memory to the first
store (STA) instruction.

You're probably wondering how the code 241 tells the computer to branch
backward by 15. The number 241 (decimal) is the 2's complement of the value 15.
When bit 7 is enabled, the microprocessor branches backward. The number 241
signifies to branch backward by 15 memory locations and execute the instruction in that
location. To find the root value of a 2's complement number, do this:

1. Translate the value into binary: 241 = 11110001
2. Subtract 1: =1111 0000 = 240
3. Convert each bit to its complement; in other words,

change each bit to the opposite value: = 0000 1111 = 15

To find the two's complement of a number, perform steps 1 and 3 above;
then add 1 to the value instead of subtracting.

Here's the complete C128 mode program, including all the decimal DATA
equivalents of the instructions in the machine language, clear-screen subroutine above:

10 ALPHA=8192
20 1 = 0
30 DO
4 0 : READ A
45 ; IF A=-999 THEN EXIT
50 : POKE ALPHA+I,A
60 : 1=1+1
7 0 LOOP
80 PRINT"ALL DATA IS NOW IN MEMORY"
85 SLEEP 1
90 SYS 8192
1000 DATA 162,0,169,32,157,0,4,157,0,5,157,0,6,157,231,6
2000 DATA 232,208,241,96,-999

Here is the corresponding program in C64:

10 ALPHA=8192
20 FOR 1=0 TO 19
4 0 : READ A
50 : POKE ALPHA+I,A
60 NEXT
80 PRINT"ALL DATA IS NOW IN MEMORY"
85 FOR 1=1 TO 2500:NEXT
90 SYS 8192
1000 DATA 162,0,169,32,157,0,4,157,0,5,157,0,6,157,231,6
2000 DATA 232,208,241,96

When you run this program, the computer READs the DATA, POKEs it into
memory, and executes the machine language, clear-screen subroutine with the SYS
command. After you RUN the program, enter the machine language monitor (assuming
you are currently in C128 mode) and disassemble the code in the range $2000 through
$2015 with this command:

D 2000 2015

Notice that the subroutine you POKEd in through BASIC is the same as the
subroutine that appears in Figure 7-1. The two different methods accomplish the same
goal—programming in 8502 machine language.

WHERE TO PLACE MACHINE
LANGUAGE PROGRAMS IN MEMORY

The Commodore 128 has 128K of RAM memory, divided into two 64K RAM banks.
Much of the 128K of RAM is overlaid by ROM, but not at the same time. The
Commodore 128 memory is layered, so RAM is beneath the overlaid ROM. The
designers of the Commodore 128 have managed to squeeze 28K of ROM and 128K of
RAM into 128K of address space. Only one bank is available or mapped in at a time,
since the highest address an 8-bit microprocessor can address is 65535 ($FFFF).
However, because the C128 is capable of banking RAM and ROM in and out so fast, it
may seem as though 128K is always available.

In the portions of memory shared by RAM and ROM, a read operation returns a
ROM data value and a write operation "bleeds through" to the RAM beneath the
layered ROM. The data is stored in the RAM memory location. If the data in RAM
beneath the ROM is a program, the ROM on top must be switched out before the
program in RAM can be executed. The RAM and ROM layout in memory is all
regulated and controlled through the Configuration Register (CR) of the Memory-

MIXING MACHINE LANGUAGE AND BASIC 203

Management Unit (MMU). For detailed information, refer to the sections on the
Registers of the Memory Management Unit (specifically, the discussion of the Configu-
ration Register) in Chapter 13.

WHERE TO PLACE MACHINE LANGUAGE ROUTINES
I N CONJUNCTION WITH B A S I C

Within BASIC, the operating system takes care of the mapping in and out of ROM and
RAM. The C128 operating system provides sixteen (default) memory configurations.
They each contain different values in the Configuration Register; therefore, each has a
different configuration. This gives you sixteen different configurations of memory to
choose from. Figure 7-2 lists the sixteen default memory configurations available under
the control of the BASIC language.

BANK

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CONFIGURATION

RAM(O) only
RAM(l) only
RAM(2) only
RAM(3) only
Internal ROM, RAM(O), I/O
Internal ROM, RAM(l), I/O
Internal ROM, RAM(2), I/O
Internal ROM, RAM(3), I/O
External ROM, RAM(O), I/O
External ROM, RAM(l), I/O
External ROM, RAM(2), I/O
External ROM, RAM(3), I/O
Kernal and Internal ROM (LOW), RAM(O), I/O
Kernal and External ROM (LOW), RAM(O), I/O
Kernal and BASIC ROM, RAM(O), Character ROM
Kernal and BASIC ROM, RAM(O), I/O

Figure 7-2. Bank Configuration Table

If you want to place a machine language subroutine in memory while the BASIC
language is running, put the subroutine in a bank that contains RAM, preferably bank 0
since this bank is composed entirely of RAM. If you place the machine language
subroutine in a bank other than 0, not all of the RAM is available for pro-
grams, since ROM overlays some of the RAM. You must check the value of the
Configuration Register within that bank to see which addresses within these banks
contain ROM. Check the value of the Configuration Register within each of the sixteen
configurations and compare the value with the table in Figure 13-5 to see exactly where
ROM maps in.

Follow this procedure when calling machine language subroutines from BASIC:

1. Place the subroutine, preferably in bank 0, either through the monitor or by
POKEing in the code through BASIC. Jf the Kernal, BASIC, and I/O are
required, execute your program from configuration (BASIC Bank) 15. If you
enter the subroutine through the monitor, place the routine in bank 0 by
placing the digit 0 before the 4-digit hexadecimal address where the instruc-
tions are stored. If you are POKEing the codes in through BASIC (not the
preferred method), issue the BANK 0 command within your program, assum-
ing you are placing the routine into BANK 0; then POKE in the decimal data
for the opcodes and operands. The recommended memory range to place
machine language routines in conjunction with BASIC is between $1300 and
S1BFF. The upper part of BASIC text is also available, provided your BASIC
program is small and does not overwrite your routine.

2. Now, to process the rest of your BASIC program, return to bank 15 (the
default bank) with this command:

BANK 15

3. Now call the subroutine with the SYS command. SYS to the start address
where the first machine language instruction of your program is stored in
memory. In this case, assume the subroutine starts at hex location $2000
(assuming the VIC bit map screen is not used) and enter:

SYS 8192

The RAM in configuration 0 in Figure 7-2 is the same RAM that appears in configura-
tions (BANKS) 4, 8, 12, 13, 14, and 15. For example, you can enter programs into
BANK 15, but you must make sure that no ROM overlays your program area.

NOTE: If you plan to return to BASIC, make sure your subroutine ends
with an RTS instruction.

WHERE TO PLACE MACHINE LANGUAGE
ROUTINES WHEN B A S I C IS DISABLED
When you are programming in machine language and you don't require the services of
the BASIC ROM, you can disable BASIC by mapping out the BASIC ROMs. Do this
by placing certain values into the Configuration Register in your own machine language
routines as follows:

LDA #$0E ;Set up the Configuration Register value
STA $D501 ;Write to Preconfiguration Register A
STA $FF01 ;Write to LCR A to change value of CR

You can use this sequence:

LDA #$0E
STA $FF00

When you switch out BASIC, the sixteen default configurations no longer exist

MIXING MACHINE LANGUAGE AND BASIC 205

via the BASIC command, so it becomes your responsibility to manage the memory
configurations by manipulating the Configuration Register in your application program.
Figure 13-5, on page 462, defines the values to place in the configuration register to
arrive at the different memory configurations.

When you switch out the BASIC ROMs, the address range where BASIC usually
resides ($4000 through $7FFF for BASIC low and $8000 through $BFFF for BASIC
high), is available for your machine language programs. Be careful when switching out
the Kernal, since the Kernal controls the entire operation of the C128, including routines
that seem transparent to the user (i.e., routines that you may take for granted).

At certain points within your machine language programs, you may need to
disable the I/O operation of the C128 temporarily. For instance, if you want to copy
portions of the character ROM into RAM when programming your own characters, you
must switch out the I/O registers $D000 through $DFFF of the C128, transfer the
character data into RAM, and then switch the I/O back in.

See the section discussing the Configuration Register, in Chapter 13, for a full
explanation of how the C128 RAM and ROM memory is configured.

This chapter has described the use of BASIC and machine language together. For
material on using BASIC alone, see Chapters 2, 3 and 4. For material on using machine
language see Chapters 5, 6, 8, 9, 10, 11 and 13.

8
THE POWER
BEHIND
COMMODORE 128
GRAPHICS

THE RELATIONSHIP BETWEEN
VIDEO BANKS, RAM BANKS
AND MEMORY CONFIGURATIONS

Many of you are familiar with how the Commodore 64 manages memory. This section
explains how the Commodore 128 manages video memory, and how the video banks
relate to the currently selected memory configuration.

MANAGING BANKED MEMORY
Banking is a process in which a section of memory is addressed by the microprocessor.
The memory is said to be banked in when it is available to the microprocessor in the
current memory configuration.

The Commodore 128 is programmable in its memory configuration. BASIC and
the Machine Language Monitor give you 16 pre-programmed default configurations of
memory (referred to in BASIC as banks). For the purposes of this discussion, BASIC
banks are referred to simply as default memory configurations which are combinations
of ROM and RAM in various ranges of memory. The current configuration, whether in
BASIC or machine language, is determined by the value in the configuration register of
the C128 Memory Management Unit (MMU) chip.

The sixteen different configurations in BASIC and the Machine Language Monitor
require different values to be placed in the configuration register so that particular
combinations of ROM and RAM can be banked into memory simultaneously. For
example, the character ROM is only available in memory configuration 14 (Bank 14 in
BASIC; the fifth digit hexadecimal prefix " E " in the Machine Language Monitor),
since this configuration tells the C128 MMU to swap out the I/O registers between
$D000 and $DFFF, and replace them with the character ROM. To swap the I/O
capabilities back in, change to any configuration number that contains I/O. Figure 8-1
lists the sixteen default memory configurations available in BASIC and the Machine
Language Monitor. Information on programming the MMU is contained in Chapter 13,
The Commodore 128 Operating System.

THE TWO 64K RAM BANKS
The Commodore 128 memory is composed of two RAM banks (labeled 0 and 1), each
having 64K of RAM, giving a total of 128K. The 8502 microprocessor address bus is 16
bits wide, allowing it to address 65536 (64K) memory locations at a time. Figure 8-2
illustrates the two separate 64K RAM banks.

Although only 64K can be accessed at one time, the MMU has provisions for
sharing up to 16K of common RAM between the two RAM banks. Common RAM is
discussed in Chapter 13.

The 8502 microprocessor and the VIC chip can each access a different 64K RAM
bank. The 8502 RAM bank is selected by the configuration register (bits 6 and 7) and

THE POWER BEHIND COMMODORE 128 GRAPHICS 209

BANK CONFIGURATION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 8-1. CI28 Default Memory Configurations

Figure 8-2. CI28 64K RAM Banks

the VIC RAM bank is selected by the RAM configuration register (bits 6 and 7). This
also is covered in detail in Chapter 13.

The configuration determined by the configuration register can be composed of
RAM and ROM, where the ROM portion overlays the RAM layer underneath, as
illustrated in Figure 8-3.

Figure 8-3. ROM Overlay

A read (PEEK) operation returns a ROM value, and a write (POKE) operation
bypasses the ROM and stores the value in the RAM underneath.

Many different combinations of memory can be constructed to comprise a 64K
configuration of accessible memory. Bits six and seven of the configuration register
specify which RAM bank lies beneath the ROM layers specified by bits zero through
five. The underlying RAM bank can be switched independently of any ROM layers on
top. For instance, you may switch from RAM Bank 0 to RAM Bank 1, while
maintaining the Kernal, BASIC and I/O.

16K VIDEO BANKS
In C128 graphics programming, a video bank is a 16K block of memory that contains
the essential portions of memory controlling the C128 graphics system: screen and
character memory. These two types of memory, which are discussed in the following
section, must lie within the 16K range of memory referred to as a (VIC) video bank.
The VIC chip is capable of addressing 16K of memory at any one time, so all graphics
memory must be present in that 16K. Since the Commodore 128 microprocessor
addresses 64K at a time, there are four video banks in each 64K RAM bank, or a total
of eight video banks. (See Figure 8-4.)

Where you place the VIC video bank depends on your application program. The
Commodore 128 ROM operating system expects this bank in default video Bank 0, in
the bottom of RAM Bank 0. Screen and character memory may be located at different
positions within each 16K video bank, though in order to successfully program the VIC
chip, the current 16K bank must contain screen and character memory in their entirety.
You'll understand this after reading the next few pages.

THE POWER BEHIND COMMODORE 128 GRAPHICS 211

3

2

1

0

3

2

1

0

video bank 3

video bank 2

video bank 1

video bank 0

video bank 3

video bank 2

video bank 1

video bank 0

64K

64K

Figure 8-4. Video Banks within RAM Banks

The four video banks in each 64K RAM bank are set up in the memory ranges
specified in Figure 8-5:

BANK

0
1
2
3

ADDRESS RANGE

$0-$3FFF
$4000-$7FFF
$8000-$BFFF
$C000-$FFFF

VALUE OF BITS 1 & 0 IN $DD00

BINARY DECIMAL

11= 3 (DEFAULT)
10= 2
01= 1
00= 0

Figure 8-5. Video Banks Memory Ranges

Each RAM bank (0 and 1) has this memory layout.
Bits 0 and 1 of location $DD00 select the video bank. To select a video bank in

BASIC, type this command:

POKE 56576, (PEEK(56576) AND 252) OR X

Where X is the decimal value of bits 1 and 0 in Figure 8-5.
In machine language, run the following program segment to select video banks:

LDA $DD00; load the accumulator with contents of $DD00
AND #$FC; preserve the upper 6 bits of $DD00
OR A #$X; where X is the hex value of bits 1 and 0 from Figure 8-5 above
STA $DD00; Place the value in $DD00

In the third instruction, replace X with the hexadecimal value of bits 1 and 0 in
Figure 8-5. The default value is $03, which selects video bank zero.

Whenever you change video banks, you must add $4000 to the address of your
starting screen memory (video matrix) and character memory (bit map in bit map mode)
for each bank above 0. To change to video Bank 1, add $4000 to your starting screen
and character address; for Bank 2 add $8000; for Bank 3 add $C000. You must always
add an offset of $4000 to the start of your screen and character memory for each video
bank that is greater than zero.

SUMMARY OF BANKING CONCEPT
The major features of the banking concept can be summarized as follows:

1. BASIC and the Machine Language Monitor have sixteen 64K memory con-
figurations that give you sixteen different combinations of memory layouts.
The MMU chip, particularly the value in the configuration register, controls
most of the memory management in the Commodore 128. In order to PEEK
(read) from or POKE (write) to a particular portion of memory, you must
choose a BASIC or monitor configuration that contains the desired section of
memory. Figure 8-1 lists the sixteen default memory configurations available
in BASIC and the Machine Language Monitor.

2. The 128K of memory is divided into two 64K RAM banks. Only one bank is
addressable at a time by the microprocessor. RAM bank selection is con-
trolled by the MMU configuration register (bits 6 and 7), which is part of the
C128 I/O memory. The VIC chip and 8502 microprocessor can each access a
different 64K RAM bank. Figure 8-2 illustrates the two separate and indepen-
dent 64K RAM banks.

3. Each 64K RAM bank is divided into four 16K video segments. The screen
and character memory must both lie within the selected 16K video segment in
order to successfully display graphics and characters on the screen. For each
16K video bank higher than zero, remember to add $4000 (16384 decimal) to
the start address of screen and character memory. Figure 8^ shows how four
16K video banks fit into each of the two 64K RAM banks.

Here's how the banks fit together and operate within the Commodore 128. One
64K RAM bank is always mapped into memory. Within BASIC or the Machine
Language Monitor, sixteen different memory configurations are available in a 64K bank.
To change the configuration, issue the BASIC BANK command, or precede the four
digit hexadecimal address in the Machine Language Monitor with an additional hexadec-
imal digit 0 through F. Outside of BASIC or the monitor, you can select other
configurations, by changing the value in the configuration register at location $FF00
(or $D500). See Chapter 13 for details.

Within the selected configuration, and part of the current 64K RAM bank, is a
16K range reserved for a video bank. The 16K video bank must encompass IK of screen
memory, and either 4K of character ROM or an 8K block of memory for the bit map
data. All these components must be present in order for graphics to operate.

THE POWER BEHIND COMMODORE 128 GRAPHICS 213

In essence, the bank concept can be thought of in this way: The C128 has a 16K
(VIC) video bank within a selected memory configuration within a 64K RAM bank.

Figures 8-28 through 8-32 at the end of this chapter provides a graphics program-
ming summary.

SHADOW REGISTERS: INTERMEDIATE STORAGE
LOCATIONS USED BY THE CI28 SCREEN EDITOR

Users who are experienced in programming the Commodore 64 VIC chip will find that
most of the graphics operations of the Commodore 128 are performed in the same way
as the C64. The main difference between the Commodore 64 and the Commodore 128
graphics systems is the hardware implementation of split-screen modes.

C128 mode provides two types of split-screen displays:

1. Standard character mode and bit map mode
2. Standard character mode and multi-color bit map mode

Because the split-screens switch from one display mode to another at a given
time, the screen editor must be interrupt-driven. The interrupt indicates at what point
the mode is to be switched. At that point, the VIC chip is loaded with preset values
already contained in RAM. These preset values are known as shadow registers. Each
time an interrupt occurs, certain video-chip registers are cleared and refreshed with the
values in the shadow registers. These shadow registers add a variation in programming
the VIC chip compared to the way the Commodore 64 handles it.

The primary intermediate storage locations for VIC chip programming are:

NAME

GRAPHM

GRAPHM

GRAPHM

VM1*

VM1

VM2**

VM2

INDIRFXT LOCATION-

BIT 7 - 216 (S00D8)

Bit 6 - 216 ($00D8)

BIT 5 - 216 ($00D8)

BITS 7-4 - 2604 ($0A2C)

BITS 3-0 - 2604 ($0A2C)

BITS 7-4 - 2605 ($0A2D)

BITS 3-0 - 2605 ($0A2D)

ACTUAL LOCATION

BIT 4 - 53270 (SD016)

BITS -S3265 ($D011)

BITS 7-4 - 53272 (SD018)

BITS 3-0 - 53272 ($D018)

BITS 7-4 - 53272 ($D018)

BITS 3-0 - 53272 ($D018)

DESCRIPTION

Multicolor Mode Bit

Split Screen Bit

Bit Map Mode Bit

Video Matrix (screen memory) Pointer

Character Base Pointer

Video Matrix (screen memory) Pointer

Bit Map Pointer

*VM1 applies only to standard and multi-color character (text) mode?

**VM2 applies only lo standard and multi-color bit map modes.

You must store to and load from the indirect locations when accessing the above
features of the VIC (8564) chip. For example, in C64 mode, this is how you set up the
video matrix and bit map mode:

10 POKE 53272, 120: REM Select bit map @ 8192, video matrix @ 7168
20 POKE 53265, PEEK(53265) OR 32: REM Enter bit map mode

Line 10 sets the video matrix at 7168 (S1C00) and the bit map at 8192 ($2000).
Line 20 enables bit map mode.

Normally, you would perform this operation with the high-level, 7.0 BASIC
command:

GRAPHIC 1

The comparable way to accomplish this with POKE commands in C128 mode is
as follows:

10 POKE 2605,120

20 POKE 216,PEEK(216) OR 32

In C128 machine language, use these instructions:

LDA #$78; set bit map @ $2000
STA $0A2D; set video matrix @ 7168
LDA $00D8
ORA #$20
STA $00D8; select bit map mode
Although these examples do more than just select bit map mode and set up the

video matrix and bit map pointer (such as wait on a video retrace when the raster is off
the visible coordinate plane), these examples give you an idea of how to perform these
programming steps.

As you can see, C128 mode requires a slight variation in programming the VIC
chip. You must keep this in mind when programming graphics in C128 mode. Usually,
the high-level BASIC 7.0 commands take care of these variations. However, if you are
programming in machine language, remember to address these indirect storage locations
and not the actual ones. If you store values directly to the actual registers, the value will
be cleared in a jiffy and no apparent action occurs.

DISABLING THE INTERRUPT DRIVEN
SCREEN EDITOR
You can disable the interrupt-driven C128 screen editor by storing the value 255
($FF) in location 216 ($00D8). The actual VIC registers are not affected, and you
can program the VIC chip the same way as the C64. This makes it unnecessary to
address the indirect shadow registers. In BASIC, enter:

POKE 216,255

In machine language, you enter:

THE POWER BEHIND COMMODORE 128 GRAPHICS 215

LDA #$FF
STA $00D8

Since disabling the interrupt allows you to program the VIC chip in the same way
as the Commodore 64, you can store values directly to the actual registers. You do not
have to address the indirect storage locations for VIC chip programming. However, if
you don't disable the interrupt, it is still active and your values will be cleared upon the
first occurrence of the raster interrupt.

Remember, you must either disable the interrupt or address the indirect storage
locations. Failure to do one or the other can cause serious problems in your program.

The 80-column chip indirect memory locations are discussed in Chapter 10,
Programming the 80-Column 8563 Chip. Certain other I/O functions require the use of
indirect locations also. These are covered in Chapter 12, Input/Output Guide.

THE COMMODORE 128
GRAPHICS SYSTEM

This section describes where the SCREEN, COLOR and CHARACTER memory com-
ponents in the graphics system are located in character modes and bit map modes.

Screen and character memory are addressed and stored differently in the character
modes than in the bit-map modes. The split-screen modes use a section of both the
character screen storage and the bit map screen storage.

In graphics operations, the C128 can operate in either BASIC or machine language
in both C128 and C64 modes.

This section tells you where the graphics locations and screen color character
memory are stored under each graphic mode. The next section details the inner workings
of each graphic display mode including how color and data are assigned and how
screen, color and character memory are interpreted.

SCREEN MEMORY (RAM)
The location in which screen RAM is stored in memory and the way the data are stored
within it depends on the current graphics mode and operational mode of the C128.

C128 BASIC
In Commodore 128 BASIC, the character screen memory is located in the default address
range 1024 ($0400) through 2023 ($07E7). The text screen memory can be moved.
Remember, certain addresses use indirect memory locations to change the value of the
actual address. The shadow register for the pointer to the text screen memory is location
2604 ($0A2C). The actual location is 53272, but the screen editor uses a shadow since
the VIC screen is interrupt-driven. A direct poke to 53272 ($D018) is changed back to
its original value every sixtieth of a second. Here's how to change the location of screen
memory in C128 BASIC:

POKE, 2604 (PEEK(2604) AND 15) OR X

where X is a value in Figure 8-6.
If you move the screen memory, make sure that the screen and character memory

do not overlap. In addition, make sure to add an offset of $4000 to the start address of
screen and character memory for each bank above 0. Additional commands are required
to make the program work. Details follow in the discussion of each graphic mode, as
well as program examples.

X

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

BITS

ooooxxxx
0001XXXX
0010XXXX
0011XXXX
0100XXXX
0101XXXX
0110XXXX
0111XXXX
1000XXXX
1001XXXX
1010XXXX
1011XXXX
1100XXXX
1101XXXX
1110XXXX
1111XXXX

L O C A T

DECIMAL

0
1024
2048
3072
4096
5120
6144
7168
8192
9216

10240
11264
12288
13312
14336
15360

I O N *

HEX

$0000
$0400 (DEFAULT)

$0800
$0C00
$1000
$1400
$1800
$1COO
$2000
$2400
$2800
$2C00
$3000
$3400
$3800
$3C00

•Remember that the BANK ADDRESS offset of $4000 per
video bank must be added if changing to a higher video
bank above 0.

Figure 8-6. Screen Memory Locations

This register also controls where character memory is placed in memory. The
upper four bits control the screen, the lower four control character memory. The "AND
15" in the POKE 2604 statement ensures that the lower nybble is not upset. (If it had
been, you would not see the correct character data.)

In Commodore 128 bit map mode (standard or multi-color), the default bit map
screen memory (video matrix) is located between 7168 ($lC00) and 8167 ($1FFF).
Screen memory is interpreted differently in bit map mode than in text mode. The video
matrix in bit map mode actually supplies color information to the bit map. This is
explained in detail in the Standard Bit Map Mode section elsewhere in this chapter. To
change the location of the bit map screen memory (video matrix), use this command:

POKE 2605, (PEEK(2605) AND 15) OR X

THE POWER BEHIND COMMODORE 128 GRAPHICS 2!7

where X is a value in Figure 8-6. Location 2605 is also a shadow register for 53272, but
only for bit map mode. When you move the video matrix you must ensure that it does
not overlap the bit map (data). In addition, be sure to add an offset of $4000 to the start
address of the video matrix and the bit map for each video bank above zero.

C64 BASIC
In C64 mode, the text screen defaults to locations 1024 ($0400) through 2023

($07E7). In bit map mode, the video matrix (screen memory) also defaults to this range
though the screen memory is interpreted differently in either mode. Commodore 64
BASIC allows you to move the location of the video matrix to any one of the sixteen
locations specified in Figure 8-6. The upper four bits of location 53272 (SD018) control
the location of the screen memory. To change the location of screen memory, use the
following command:

POKE 53272, (PEEK(53272) AND 15) OR X

where X is equal to one of the values in Figure 8-6

NOTE: The following paragraph pertains to both C128 and C64 modes.

Bits zero and one of location 56576 (SDD00) control which of the four video
banks is selected. The default bank is 0. If you change to another video bank (from 0 to
1, for example), then for each bank higher than bank zero, you must add an offset of
$4000 to the starting video matrix (screen memory) address in Figure 8-6. This yields
the actual address of the video matrix. For example, if you're changing from bank 0 to
bank 1, add $4000. If you are going to bank 2, add $8000; if you are changing to bank
3, add $C000. Remember, this is true for both C128 and C64 modes.

MACHINE LANGUAGE
In machine language, use the commands listed under A in Figure 8-7 to move the C128
(VIC) text screen. Use the commands under B to move the C128 bit map screen memory
(video matrix). Use the commands under C to move the C64 text or bit map screen
memory (video matrix).

(A) (B) (C)

MOVE C64

MOVEC128 MOVEC128 TEXT OR BIT MAP

TEXT SCREEN BIT MAP SCREEN SCREEN MEMORY

LDA $0A2C LDA $0A2D LDA $D018
AND #$0F AND #$0F AND #$0F
ORA#$X ORA #$X ORA #$X
STA $0A2C STA $0A2D STA $D018

Figure 8-7. Moving Screen Memory in Machine Language

In Figure 8-7, X is the hexadecimal equivalent of the decimal value X in the left
column in Figure 8-6. The second and third instructions in each example in Figure
8-7 make sure not to upset the lower four bits of location 53272 or its shadow registers,
2604 ($0A2C) and 2605 ($0A2D), since they control the character data for text and bit
map modes.

COLOR RAM

C128 BASIC
Color RAM within the Commodore 128 is always stationary in memory. It occupies the
address range 55296 ($D800) through 56295 ($DBE7). In standard character mode,
screen RAM and color RAM correspond to one another on a one-to-one basis. Location
1024 gets color data from 55296, 1025 gets color from 55297 and so on. Multi-color
character mode utilizes color RAM also, but in a different manner. Additional explana-
tions and examples are provided in the Standard Character Mode section of this chapter.

COLOR RAM BANKING
In C128 mode, the LORAM and HIRAM signal lines allow the graphics system to
make use of an additional Color RAM bank, which is not available in C64 mode. This
allows fast and clean switching of colors for the character or multi-color bit map screen.
The LORAM signal line allows the 8502 microprocessor to access one color RAM
bank, while the HIRAM control line allows the VIC chip to access either Color RAM
bank independently of the microprocessor. Bit 0 of location 1 controls the LORAM
signal line. LORAM selects color RAM bank 0 or 1 as seen by the 8502 microprocessor
depending on the value of the bit. If the bit value is low, the color RAM bank 0 is
accessed by the 8502. If the value of the bit is high, the upper color RAM bank is
accessed by the 8502 microprocessor.

Bit 1 of location 1 controls the HIRAM signal line. HIRAM selects color RAM
bank 0 or 1 as seen by the VIC chip, depending on the value of the bit. If the bit value is
low, the color RAM bank 0 is accessed by the VIC chip. If the value of the bit is high,
the upper color RAM bank 1 is accessed by the VIC chip.

These control lines add flexibility to the already powerful C128 graphics system.
This allows you to change colors of the multi-color bit map or character screen on the fly,
without any time delay. It allows you to swap color RAM banks instantly.

In standard bit map mode, color information is obtained from the bit map
screen memory (the video matrix, S1C00 through $1FFF). not color memory. Bit
map mode interprets screen memory differently than character mode. Color RAM
is used in standard character mode, multi-color bit map mode, multi-color character
mode and the split-screen mode.

C64 BASIC
In standard character mode, color RAM is located in the same place as in C128 mode:
55296 ($D800) through 56295 (SDBE7).

In bit map mode, C64 BASIC receives color information from screen memory (the

THE POWER BEHIND COMMODORE 128 GRAPHICS 219

video matrix) as does C128 mode, though the default location for screen memory is
1024 ($0400) through 2023 ($07E7).

MACHINE LANGUAGE
In machine language or in BASIC, standard character mode color data always comes
from the same place. Color RAM is used for multi-color character mode. In
standard bit map mode, however, color data originates from screen memory, so wher-
ever you place screen memory, the color data for the bit map comes from the specified
screen memory (video matrix) range. Multi-color bit map mode receives color from three
places: color RAM, screen memory and background color register 0. This is explained in
depth in the sections on the multi-color character and multi-color bit map modes.

CHARACTER MEMORY (ROM)

CI28 BASIC-CHARACTER MODES
In standard character mode, character information is stored in the character ROM in the
memory range 53248 ($D000) through 57343 (SDFFF). In location 1 of the Com-
modore 128 memory map, the CHAREN (CHARacter EN able) signal determines whether
the character set is available in any given video bank (0-3). Bit 2 of location 1 is the
CHAREN bit. If the CHAREN bit is high (1), the Commodore character set is not
available within the currently selected video bank in context. If the value of bit 2 in
location 1 is low, equal to zero, then the C128 character set is available in the currently
selected video bank. This is true in any of the four video banks in both 64K RAM
banks. This feature allows the Commodore 128 character set to be available in any video
bank at any time. To read the character ROM, enter BANK 14 either in BASIC or the
MONITOR, and read the ROM, starting at location 53248. This configuration switches
out I/O, and maps in character ROM in the range $D000 through SDFFF. Figure 8-8
shows how the character sets are stored in the character ROM:

BLOCK

0

1

* = in C64

A D D R

DECIMAL

53248
53760
54272
54784
55296
55808
56320
56832

mode only

E S S

HEX

D000-D1FF
D200-D3FF
D400-D5FF
D600-D7FF
D800-D9FF
DA00-DBFF
DC00-DDFF
DE00-DFFF

VIC*
IMAGE

1000-1 IFF
1200-13FF
1400-15FF
1600-17FF
1800-19FF
1A00-1BFF
1C00-1DFF
1E00-1FFF

CONTENTS

Upper case characters
Graphics characters
Reversed upper case characters
Reversed graphics characters
Lower case characters
Upper case & graphics characters
Reversed lower case characters
Reversed upper case & graphics
characters

Figure 8-8. Breakdown of Character Set Storage in Character ROM

The character memory is relocatable as is screen memory. To move standard
character memory in C128 BASIC, alter the lower four bits (nybble) of location 2604
($0A2C). Location 2604 is a shadow register for 53272 for the text screen memory
(upper four bits) and character memory (lower four bits). To move the standard
character memory use the following command:

POKE 2604, (PEEK(2604) AND 240) OR Z.

where Z is a value in Figure 8-9.

VALUE

OFZ

0
2
4

6
8

10
12
14

* = in

BITS

xxxxooox
XXXX001X
XXXX010X

XXXX011X
XXXX100X
XXXX101X
XXXX110X
XXXX111X

C64 mode only.

LOCATION OF CHARACTER MEMORY

DECIMAL

0
2048
4096

6144
8192

10240
12288
14336

HEX

$0000-$07FF
$0800-$0FFF
$1000-$17FF

$18OO-$1FF
$2000-$27FF
$2800-$2FFF
$3000-$37FF
$3800-$3FFF

ROM IMAGE in BANK 0 & 2
(default)*
ROM IMAGE in BANK 0 & 2*

Figure 8-9. Character Memory Locations

As with the other graphic system components, character data behaves differently in
bit map mode than in text mode.

Remember, the upper nybble controls where the screen memory maps in, so make
sure not to upset those bits. The AND 240 in the POKE statement above takes care of
preserving the upper four bits.

In C128 mode the character sets are available in all video banks depending on the
value of CHAR ENable

NOTE: Remember to add an offset of $4000 to the start address of
character memory, for each bank above 0; i.e., for bank 3 add
3*$4000 = $C000

THE POWER BEHIND COMMODORE 128 GRAPHICS 221

C!28 BASIC-BIT MAP MODES
In bit map mode, the character memory data, also referred to as the bit map, defaults to
the range 8192 ($2000) to 16191 ($3F3F). The bit patterns of these 8000 bytes tell the
computer which pixels to turn on. This block of memory "maps out" the picture on the
screen, according to the data in this 8000-byte block. Since the standard bit map screen
is 320 x 200, 64000 pixels make up the screen image. Divide 64000 by 8 to arrive at
8000 bytes of memory for the bit map.

Besides the upper four bits for the video matrix, bit 3 of location 2605 ($0A2D) is
the only significant bit in bit map mode. Location 2605 is the indirect memory location
of 53272 for bit map mode only.

When you issue the GRAPHIC 1 command, bit 3 in 2605 is set. This specifies
the bit map (data) to start at location 8192 ($2000). Whenever you enter bit map mode
with the GRAPHIC command, bit 3 is always set. Outside of BASIC, you can specify
the bit map to start at location $0000; therefore, the value of bit 3 is zero.

If the C128 is running under the control of C128 BASIC, the bit map always starts
on a boundary of $2000 (since bit 3 is set) within a given video bank. In video bank
zero, the bit map starts at $2000. For banks 1, 2 and 3, the bit map begins at $6000,
$A000 and $E000, respectively, since you must add an offset of $4000 for each bank
number above zero. In machine language, however, bit 3 may have a value of zero or
one. Therefore the bit map may start at $0000 if bit 3 is zero, or at $2000 if bit 3 is one,
in each video bank. This means that the bit map has eight possible starting locations
(per 64K RAM bank) in machine language—two for each of the four video banks. In
C128 BASIC, the bit map can only start at one of the four locations.

Don't forget to add the mandatory $4000 offset for each video bank above 0. The
eight possible starting locations of a bit map in a machine language program are shown
in Figure 8-10.

This gives you the choice of eight starting locations in which to place your bit map
data. Though only one bit map can fit in each video bank, you must leave room for the
video matrix. Since the C128 has two RAM banks—each with four video banks per
RAM bank—you may have a total of eight bit maps in memory, one for each video
bank. Each video bank can fit only one bit map, because you need IK for screen RAM,
and 8K for the bit map since a video bank has a maximum of 16K. To access another bit
map, you must switch video banks. To access a bit map in the upper RAM bank (1),
you may have to switch RAM banks and video banks.

VIDEO BANK

0
1
2
3

VALUE OF

0
$0000
$4000
$8000
$C000

BIT 3 =

1
$2000
$6000
$A000
$E000

Figure 8-10. Starting Locations for Bit Map in Machine Language

C64 BASIC CHARACTER MODES
In standard character mode in C64 BASIC, the lower four bits of location 53272 control
where character memory is placed. As in C128 mode, the character ROM is actually
mapped into memory between 53248 ($D000) and 57343 ($DFFF). The ROM image
appears in RAM in the range 4096-8191 (in video bank 0) and 36864-40959 in bank 2,
since it must be accessible to the VIC chip in a 16K range in video banks 0 and 2. The
character sets are not accessible in video banks 1 and 3. This ROM imaging in RAM
applies only to character data as seen by the VIC chip. These memory ranges are still
usable for data and programs and have no effect on the contents of RAM as far as your
programs are concerned.

In C64 mode, the ROM image overlays the RAM underneath. A write operation
"bleeds through" to the RAM underneath, while a read returns a ROM value depending
on which memory configuration is currently in context. Since the VIC chip accesses
16K at a time, the character set images must appear in the 16K which the VIC chip is
currently addressing in video banks 0 and 2. Remember, in C128 mode, the character
sets are available in all video banks according to the value of the CHAREN bit in
location 1.

You can change the location of character memory with the following command:

POKE 53272, (PEEK(53272) AND 240) OR Z

where Z is a decimal value in the table in Figure 8-9.
The breakdown of the character sets is the same as in the C128 for the character

ROM (see Figure 8-8).

C64 BASIC BIT MAP MODE
In bit map mode, bit 3 of location 53272 specifies the start of the bit map either at
$0000 or $2000 depending whether the value of bit 3 is 0 or 1, respectively. Use the
following command:

POKE 53272 (PEEK (53272) AND 240) OR Z

where Z is zero if you want the bit map to start at $0000 in each bank, or Z = 8 if you
want to place the bit map starting at 8192 ($2000) in each video bank.

See Figure 8-10 for the arrangement of the bit map in each of the four 16K video
banks within the two RAM banks. If you switch video banks, don't forget to add the
$4000 (hex) offset for each bank above 0. See the Character Memory section under
C128 Bit Map Mode in the last section for more detail on the arrangement of bit maps in
memory.

THE POWER BEHIND COMMODORE 128 GRAPHICS 223

MACHINE LANGUAGE
There are three ways to select the placement of character memory, as shown in Figure
8-11. Example A places character memory using the shadow register $0A2C in place of
the actual $D018 register. Example B specifies the start of the bit map at $2000 (using
shadow register $0A2D). Example C specifies the start of the C64 bit map or character
memory.

A B C

LDA $02AC LDA $02AD LDA $D018
AND #$F0 AND #$F0 AND #$F0
ORA #$Z ORA #$08 ORA #$Z
STA $02AC STA $02AD STA $D018
Figure 8-11. Selected Character Memory Location

In Figure 8-11, Z is a value in the table in Figure 8-9.

STANDARD CHARACTER MODE

HOW TO ENTER STANDARD
CHARACTER MODE
The C128 powers up in standard character mode. This mode displays characters on the
default screen. The character is displayed in a single color on a single color background.
This is the mode in which you write (enter) programs. When you press RUN/STOP and
RESTORE, the C128 defaults to the text screen.

Location 53265 (and its shadow register $00D8) determine whether the C128 is
operating in standard character mode. If bit 5 is 0, as it is on power-up, the C128 is in
character mode; otherwise it is in bit map mode.

Location 53270 (and its shadow register S00D8) determine whether the characters
are standard (single color) or multi-color. Bit 4 of 53270, and the shadow bit, bit 7 of
$00D8, specify multi-color mode. If these bits are equal to zero, characters are standard;
otherwise they are multi-color. See the Multi-color Character Mode section for more
details on selecting multi-color character mode.

SCREEN LOCATION
In standard character mode, the screen memory defaults to the range 1024 ($0400) through
2023 ($07E7). This is relocatable. See the Screen Memory section in the preceding pages.

Since the screen is 40 columns by 25 lines, the text screen requires 1,000 memory
locations to store all of the screen information in memory. The final twenty-four memory
locations in screen memory do not store displayed data; they are used for other purposes.
Each column of every row you see on the screen has its own screen memory location.
The top-left screen location, referred to as HOME, is stored at address 1024 ($0400).
The second screen location marked by the cursor is 1025 ($0401), and so on. Although
the screen you see is constructed in rows and columns, the screen memory within the
computer is stored linearly, starting at 1024 ($0400) and ending at location 2023 ($07E7).

Figure 8-12 shows a screen memory map, so you can visualize how a screen memory
location corresponds to the location on the physical screen of your video monitor.

SCREEN MEMORY MAP

Figure 8-12. Screen Memory Map

HOW THE SCREEN MEMORY DATA
IS INTERPRETED
This screen memory range stores whole characters only. The characters are not repre-
sented as ASCII character string codes (CHR$). Instead, they are stored in memory as
screen codes as shown in Appendix D. The screen codes and character string codes are

THE POWER BEHIND COMMODORE 128 GRAPHICS 225

different due to the way they are stored in the character ROM. Notice in Appendix D
that the screen code for an at-sign (@) is 0. The (5> is numbered 0 because it is the first
character to be stored in the character ROM. The letter " A " is the second character
ROM; therefore its code is 1. The letter " B " is the third character in the character
ROM, etc. The screen code is actually an index from the starting location of the
character ROM, beginning with zero.

If you want to POKE a character directly into screen memory, use the screen code
rather than the ASCII character string (CHR$) code. The same holds true for the
machine language monitor. For example:

POKE 1024,1

places the letter A in the HOME position on the VIC screen. From the monitor, placing
the value 1 in location $0400 (decimal 1024) also displays the letter A in the HOME
position on the VIC screen.

COLOR DATA
In standard character mode, color information comes from color RAM, in the address
range 55296 ($D800) through 56295 ($DBE7). This memory determines the color of the
characters in each of the 1,000 screen locations. The background color of the screen is
determined by the background color register 0 which is location 53281.

The color RAM and the screen RAM locations correspond on a one-to-one basis.
Screen location 1024 pertains to color RAM location 55296; screen location 1025
corresponds to color location 55297, etc. Figure 8-13 is the color RAM memory map.
The map shows how color RAM corresponds to the locations in screen RAM and the
placement on your video display.

COLOR MEMORY MAP

HOW COLOR MEMORY IS
INTERPRETED
The contents of the color RAM locations contains the color codes 0-15. Each color
memory location may have a different color code. The lower four bits (nybble) of
COLOR RAM are significant. Figure 8-14 shows the COLOR RAM color codes:

0
1
2
3
4
5
6
7

Black
White
Red
Cyan
Purple
Green
Blue
Yellow

8
9

10
11
12
13
14
15

Orange
Brown
Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Figure 8-14. Color Codes—40 Columns

Notice these color code values are one less than the color codes used by the
keyboard and BASIC. If you want to store a value directly into COLOR RAM, store the
values in the table above, not the color codes used by BASIC and the keyboard. For
example:

POKE 55296,1

colors the character in the HOME position white. From the monitor, place the value 1 in
location $D800, and the same results occur.

Remember, these color codes only control the color of the foreground character.
The background color is controlled by background color register 0 (53281). The pixels
that make up the character image are enabled by bits in character memory. If the bit is
enabled, the pixel in the foreground is turned on in the foreground color, and is
therefore controlled by color RAM. If the bits making up the character are turned off,
they default to the color in background color register 0. The combination of on and off
bits makes up the image of the character. The value of these bits determines whether the
color data comes from color RAM or background color register 0. You'll learn more
about character patterns in the next few paragraphs.

CHARACTER MEMORY

In standard character mode, the C128 receives character data from the CHARACTER
ROM. The character ROM is stored in the range 53248 ($D000) through 57343
(SDFFF). Since the VIC chip is capable of accessing 16K at a time, the C128 needs a
way to have the character ROM available in the 16K VIC range. In C128 mode, the
character ROM is available in any VIC bank in C128 mode, based on the value of

THE POWER BEHIND COMMODORE 128 GRAPHICS 227

CHAREN. See the chapter set availability in the Character Memory section in the
beginning of this chapter.

In C64 mode the character ROM is available only in banks 0 and 2. This is
accomplished by having a ROM IMAGE of the character ROM (53248-57343) mapped
into memory in place of RAM, in the range 4096-8191 ($1000-$1FFF) in video BANK
0, and 36864-40959 ($9000-$9FFF) in video BANK 2. In banks 1 and 3, the character
ROM is not available to the VIC chip.

Notice that the range where the character ROM is actually stored (53248-57343)
is also occupied by the I/O registers but not at the same time. When the VIC chip
accesses the character ROM, the character ROM is switched into the currently selected
video bank as a ROM image (in C64 mode only). When the character ROM is not
needed, the I/O registers are available in the usual range. It is important to note the
ROM image applies only to the character data as seen by the VIC chip. The RAM loca-
tions where the ROM image maps in are still usable for programs and data. The locations
where the VIC chip looks for the character data are relocatable. See the Character
Memory section elsewhere in this chapter for information on moving character memory.

HOW TO INTERPRET CHARACTER MEMORY
IN STANDARD CHARACTER MODE

Typically, a complete character set contains 256 characters. The C128 contains two sets
of characters, for a total of 2 times 256 or 512 characters. In 40-column (VIC) output,
only one character set is available at a time. Upon power-up, the uppercase/graphics
character set is available through the keyboard. To access the second character set, press
the Commodore key (0s) and shift key at the same time. The second character set is
composed of the upper- and lowercase/graphics characters.

In character ROM, each character requires eight bytes of storage to make up the
character pattern. Since 256*8 is equal to 2048 bytes or 2K, and since there are two
character sets, the C128 has a total of 4K of character ROM. Figure 8-15 shows where
each character set is stored in the character ROM.

BLOCK

0

1

A D D R

DECIMAL

53248
53760
54272
54784
55296
55808
56320
56832

E S S

HEX

D000-D1FF
D200-D3FF
D400-D5FF
D600-D7FF
D800-D9FF
DA00-DBFF
DC0O-DDFF
DE00-DFFF

VIC-II
IMAGE

1000-1 IFF
1200-13FF
1400-15FF
1600-17FF
1800-19FF
1A00-1BFF
1C00-1DFF
1E00-1FFF

CONTENTS

Upper case characters
Graphics characters
Reversed upper case characters
Reversed graphics characters
Lower case characters
Upper case & graphics characters
Reversed lower case characters
Reversed upper case & graphics
characters

Figure 8—15. Location of Character Sets in Character ROM

Note that there is really 8K of character ROM—4K for C64 mode and 4K for
C128 mode. The system automatically selects the appropriate character ROM for each
mode of operation.

The bit patterns stored in the character ROM have a direct relationship to the
pixels on the screen, where the character is displayed. In memory, each character
requires eight bytes of storage. On the screen, a character is made up of an 8 by 8 pixel
matrix. Think of a character as eight rows of eight pixels each. Each row of pixels
requires one byte of memory, so each pixel requires one bit.

Since a character is an 8 by 8 pixel matrix, each character requires a total of 64
bits or eight bytes. Within each byte, if a bit is equal to 1, the corresponding pixel in
that character position is turned on. If a bit in a character ROM byte is equal to 0, the
corresponding pixel within the character on that screen position is turned off. The
combination of on and off pixels creates the image of the characters on the screen.
Figure 8-16 demonstrates the correspondence between a character on the screen and the
way it is represented in the character ROM.

Character on
the Screen

Bytel
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Character as
Represented

in Character ROM

$D000
$D001
$D002
$D003
$D004
$D005
$D006
$D007

Figure 8-16. Relationship of Screen Character to Character ROM.

In Figure 8-16, the first eight bytes of character ROM, ($D000-$D007) are equal
to 60,102,110,110,96,98,60 and 0. These decimal numbers are calculated from the
binary value of the eight bytes that pertain to each row of pixels in the character. For
each bit that is equal to one, raise two to the bit position (0-7). For example, the first
byte of character ROM ($D000) is equal to 60, which is calculated by raising two to the
following bit positions:

22 + 23 + 24 + 25 = 4 + 8+16 + 32 = 60

The bits that are set (on) correspond to pixels that are enabled on the screen in the
foreground color. Bits that are clear correspond to pixels that are disabled, which are
displayed in the background color, according to background color register 0 at location
53281.

The second byte (row of pixels) of the at-sign (@) character is equal to 102
(decimal) and is obtained by the following:

THE POWER BEHIND COMMODORE 128 GRAPHICS 229

21 + 22 + 25 + 26 = 102

The last byte of the at-sign character is equal to zero, since no bits are set.
Therefore, each pixel on the screen is displayed in the background color. The values of
the binary digits on the right in Figure 8-16 are directly related to the image of the
character as it appears on the screen on the left in Figure 8-16.

ACCESSING CHARACTER ROM

C128 BASIC
To access character ROM in C128 BASIC, type and run the following program:

10 BANK 14
20 FOR 1=53248 TO 53248+7:PRINTPEEK(I);:NEXT
3 0 BANK 15

Enter Bank 14, the only BASIC bank where the character ROM is accessible.
Then print the PEEK value of the first eight bytes of the character ROM. When
finished, return to Bank 15.

MACHINE LANGUAGE

To access character ROM in C128 Machine Language, type and run the following
program:

MONITOR
PC

; FB000

. 01800

. 01802

. 01805

. 01807

. 0180A

. 0180D

. 0180E

. 01810

. 01812

. 01814

. 01817

SR
00

A9
8D
A2
BD
9D
E8
E0
DO
A9
8D
60

AC
00

01
00
00
00
40

07
P5
00
00

XR
00

FF

DO
18

FF

YR SP
00 F6

LDA
STA
LDX
LDA
STA
INX
CPX
BNE
LDA
STA
RTS

#$01
$FF00
#$00
$D000,X
$1840,X

#$07
$1807
#$00
SFFOO

10 SYS 6144
20 FOR 1=6208 TO 6208 +7:PRINTPEEK(I);:NEXT

These machine language and BASIC routines accomplish the same task as the preceding
four-line BASIC program. The first two machine language instructions switch in the
character ROM, and switch out I/O. The next six instructions transfer the first eight

bytes of character ROM into locations 6208 ($1840) through 6215 ($1847). The last
three instructions switch out the character ROM, replace it with the I/O registers and
return from the machine language subroutine to BASIC.

The BASIC routine activates the machine language subroutine, then prints the
values that were temporarily stored in 6208 through 6215. See Chapter 6, How to
Enter Machine Language Programs, for details on how to input machine language
instructions on the C128.

C64 BASIC
To access character ROM in C64 BASIC, enter and run the following program:

40 POKE 56334,PEEK(56334)AND 254
5 0 POKE 1,PEEK(1) AND 2 51
80 FOR 1=0 TO ?:POKE 6144+1, PEEK(53248+1):NEXT
90 POKE 1,PEEK(1) OR 4
105 POKE 56334,PEEK(56334) OR 1
130 FOR 1=6144 TO 6144+7:PRINTPEEK(I);:NEXT

Line 40 turns off the interrupt timer. Line 50 switches out I/O and replaces it with
character ROM. Line 80 transfers the first eight bytes of character ROM (53248-53255)
to 6144—6151. Line 90 switches out character ROM, and replaces it with the I/O
registers. Line 105 turns on the interrupt timer. Line 130 prints the first eight character
ROM values that were temporarily stored in 6144 through 6151.

You may need to transfer parts of the character ROM data into RAM if you are
creating your own character set, and you want the remainder to be from the C128
character set. This is covered in more detail later in the chapter. These methods of
looking at the character ROM demonstrate how the character ROM is accessed, what the
patterns of the characters look like and why you would want to access the character
ROM.

The next section explains how to program your own custom characters in C128
mode.

PROGRAMMABLE CHARACTERS

The Commodore 128 has a feature that allows you to redefine the character set into
custom characters of your own. In most cases, you'll want to redefine only a few
characters at most, while obtaining the rest of the character set from the Commodore
128 character ROM.

With programmable characters, you tell the C128 to get character information
from RAM. Usually, characters are taken from the character ROM. If you only want
certain characters, you can choose the ones you want, copy the character patterns into
RAM and leave the rest in ROM. You cannot write to the character data in ROM;
however, the character data placed in RAM can be redefined.

The first step in programming your own characters is to define the image. In the

THE POWER BEHIND COMMODORE 128 GRAPHICS 231

Standard Character Mode section, you saw how a character on the screen is stored in the
character ROM. Each character requires eight bytes of storage. Each byte corresponds to
a row of pixels on the visible screen within the 8 by 8 character matrix; therefore, eight
rows of pixels make up one character.

This section shows how to customize an uppercase cursive (script) character set
for the letters A through H. Figure 8—17 shows the design for the uppercase cursive
letter A. The grid in the figure demonstrates how the character appears on the screen
within the 8 by 8 pixel matrix. Each row of the grid determines which bits are on within
the character bit pattern, and, hence, which corresponding pixels are enabled on the
screen. The eight-bit binary strings to the right of the grid are the bit patterns as stored
in RAM. The numbers to the right of the binary strings are the decimal equivalents of
the binary bit patterns. This decimal value is the data you POKE into RAM in order to
display the character.

= 00001110 = 14

= 00010001 = 17

= 00100000 = 32

= 01000010 = 66

= 10000010 = 130

= 10000100 = 132

= 10001010 = 138

= 01110001 = 123

0

1

2

3

4

5

6

7

/

•

0

•

0

0

5

0

0

4

e

s

3
0

0

2
0

e

1
0

0

o

0

0

0

0

Figure 8-17. Design for Cursive letter " A "

The following program creates and displays the upper-case cursive characters A
through H. Enter it into the computer and RUN it. You'll see the letters A through H
change from uppercase block letters to uppercase cursive letters. When you press the
newly defined lettered keys, they are displayed in cursive form.

Line 10 selects the uppercase character set, the set being redefined. Line 20
protects the character set from being overwritten by the BASIC program and prepares a
location in RAM in which to place your character set. The end of user BASIC text and
the top of string storage is moved from 65280 to 12288 (decimal), which substantially
cuts down the size of BASIC programming space. The character set will be placed
beginning at location 12288, but it does not have to be located there. The character set
does have to be within the first 16K of memory unless another bank is selected. The
VIC chip can only access 16K at a time so each video bank consists of 16K of memory.

10 PRINT CHR$(142) :REM SELECT UPPER CASE
20 POKE54,48:POKE58,48:CLR:REM PROTECT CHAR SET
30 BANK 14 :REM SWITCH TO BANK 14 FOR CHARACTER ROM
40 FORI=1 TO 511:POKEI+12288,PEEK(1+53248):NEXT:REM ROM TO RAM TRANSFER
50 BANK 15:REM SWITCH TO DEFAULT BANK
60 POKE 2604,(PEEK(2604) AND 240)+12:REM START CHAR BASE AT 12288
70 F0RJ=12288TO12288+71 :REM PLACE CHARACTER DATA IN RAM
80 READ A
90 POKEJ,A
100 NEXT J
110 SCNCLR
120 DATA 0,0,0,0,0,0,0,0:REM ?
130 DATA 14,17,32,66,130,132,138,123:REM A
140 DATA 124,66,66,124,66,81,225,126:REM B
150 DATA 62,67,130,128,128,128,131,126:REM C
160 DATA 125,9 8,125,65,6 5,193,161,254:REM D
170 DATA 225,6 6,6 4,56,120,65,66,124:REM E
180 DATA 12 7,12 9,2,4,14,2 28,6 8,56:REM F
190 DATA 193,163,253,3 3,2 49,65,99,190:REM G
200 DATA 227,165,36,36,126,36,37,231:REM H

You can leave yourself more BASIC text area, but to do this you must enter a video
bank higher than zero. This sample program operates in Bank 0. If you place your
character set in a higher video bank, remember to add an offset of 16384 ($4000) to the
start of RAM character memory for each bank above video Bank 0.

The CLR in line 20 clears out memory starting at 12288 because, prior to the
placement of the character set there, the memory locations are filled with random bytes.
The random bytes must be cleared before new character information can be stored.

. Line 30 selects BANK configuration 14. This configuration makes the character
ROM visible with a PEEK command or within the machine language monitor, and
temporarily switches out the I/O registers. Both the I/O functions and the 4K character
ROM share the same locations ($D000-$DFFF). Depending on whether bit 0 in the
configuration register (location $FF00) is on or off, the C128 addresses the I/O registers
or the character ROM. Normally the C128 powers up with bit 1 turned off; therefore,
the I/O registers in locations $D000-$DFFF are addressed. The BANK command in line
30 sets bit 0 in location $FF00; therefore, the character ROM in locations 53248-57343
($D000-$DFFF) is addressed. The character ROM is accessed in order to make the
transfer of characters to RAM.

Line 40 makes the actual transfer from ROM to RAM. Since the character ROM is
accessed in line 30, it now begins at location 53248. The first 512 bytes (the uppercase
character set) from the character ROM are POKEd into the 512 bytes of RAM beginning
at location 12288 and ending at 12800. At this point the character set is ready to be
redefined to custom characters.

Line 50 switches the I/O registers back in, meaning the character ROM is no
longer available.

Line 60 specifies the start of the character set base at location 12288. The character
set base can be stored in locations other than 12288. (See the Character Memory section
earlier in this chapter for more information on moving character memory.) Location
2604 is the intermediate memory location that the interrupt-driven C128 screen editor
uses to point to screen and character memory in character mode. You must use this
indirect location to change the value of the actual register that points to the screen and
character memory 53272. If you try to POKE directly to location 53272, the interrupt will

THE POWER BEHIND COMMODORE 128 GRAPHICS 233

change the value back to the original one within a sixtieth of a second. (You can, how-
ever, disable the interrupt-driven screen editor. See the Shadow Register section for details.)

The value (AND 240) or 12 is placed in address 2604 to tell the C128 to point to
character memory in RAM, starting at address 12288. If the value (AND 240) or 8 is
placed into 2604, the character set will begin at 8192 and your BASIC program must be
less than 6K, but the complete 4K of characters can be redefined. If the value (AND 240)
or 14 is placed into that location, the character set starts at 14336. Your BASIC program
then must be less than 2K, since the programmable character set must reside within a
single 16K block, but the BASIC program that creates the characters can be almost 14K.
If a number other than 12 is POKED into 2604, other program lines must be modified.

Lines 70 through 100 start a loop at the beginning of the character base (12288),
read the values from the data statements which define the new characters (lines 120 and
200), and POKE them (line 90) into the locations allocated for the character set base,
starting at location 12288. The value 12288 + 71 in line 70 sets aside seventy-two
storage locations for the data values in lines 120 through 200 for storage in locations
12288 through 12359. When more data statements are added, the value (12288 + 71)
must be increased to 12288 plus the number of data values in the data statements minus
1. For example, if more characters were defined and there were twenty data statements
with eight values in each, then line 70 would read:

70 FOR J = 12288 TO 12288+ (160-1)

MULTI-COLOR CHARACTER MODE

Standard character mode displays text in two colors: the foreground color of the
character as determined by COLOR RAM, and the background color as determined by
background color register 0 at location 53281 ($D021).

Multi-color character mode gives you the ability to display characters in four colors
within an 8 by 8 character matrix. This substantially increases the freedom of using color.
However, the horizontal resolution is only half the resolution of standard character mode
(160*200), since multi-color mode bits and screen pixels are grouped in pairs. This means
that the color definition and pixel density is twice as wide as standard character mode. The
tradeoff in horizontal resolution is compensated for by the increased freedom of using color.

HOW TO ENTER MULTI-COLOR MODE
Location 53270 and its shadow register ($00D8) determine whether the C128 is output-
ting standard or multi-color characters on the screen. Bit 4 of 53270 and bit 7 of 216
(S00D8) control multi-color mode for character and bit map modes. If bit 4 of 53270
(and bit 7 of 216) is equal to 1, multi-color mode is enabled. Otherwise, standard mode
is enabled. Most of the new 7.0 BASIC graphics commands have provisions for multi-
color mode. However, if you want to enter multi-color mode with a POKE command, type:

10 POKE 216,255: REM Disable IRQ Editor
20 POKE 53270, PEEK (53270) or 16: REM Select MCM

This enters multi-color mode, either for character mode or bit map mode.

SCREEN LOCATION
The screen location in multi-color character mode defaults to 1024 ($0400) through 2023
(S07E7), the same as standard character mode. The screen memory locations can be
relocated. See the Screen Memory section for details.

HOW SCREEN DATA IS INTERPRETED
In multi-color character mode, the screen data from screen memory is interpreted as
screen codes the same way as in standard character mode. The screen codes are listed in
Appendix D. See the screen data interpretation in the standard character memory
section. The only difference between standard character mode and multi-color character
mode is the way color is assigned to the characters on the screen.

CHARACTER MEMORY LOCATION
The character memory in multi-color character mode, as in standard character mode, is
taken from between 53248 ($D000) and 57343 ($DFF) when I/O is switched out. See
standard character mode for more detailed information on character memory.

HOW CHARACTER MEMORY IS INTERPRETED
IN MULTI-COLOR CHARACTER MODE
Character memory is interpreted virtually the same way in multi-color and in
standard character modes, except for one difference: In standard character mode, if
a bit in the character definition image is on, the pixel corresponding to that bit
is colored in the foreground color as specified by color RAM. If a bit in the character
image in the character ROM is equal to zero, the corresponding pixel on the screen is
colored in the background color, as specified by background color register 0 (loca-
tion 53281).

In multi-color character mode, color assignments to the pixels that make up the
character on the screen are not in a direct one-to-one relationship to the bits in the
character ROM data patterns. Instead, the bits that make up a character are grouped in
pairs, as shown in figures 8-18, 8-19 and 8-20.

Figure 8-18. " A t " Sign ((a) Character as It Appears on the Screen

THE POWER BEHIND COMMODORE 128 GRAPHICS 23S

Figure 8-19. Bit Patterns of the "At" Sign (@) Character as They Appear in
Character ROM

00
01
01
01
01
01
00
00

11
10
10
10
10
10
11
00

11
01
11
11
00
00
11
00

00
10
10
10
00
10
00
00

Figure 8-20. Bit Patterns of the "At" Sign (@) Character as They Are Grouped
in Pairs in Multi-Color Character Mode

The bits are grouped in pairs, since the horizontal resolution is only half as wide in
multi-color mode. The bit pair determines the color assignments for the pixels within the
character on the screen. The following section describes how the colors are assigned in
multi-color character mode.

COLOR DATA
The color of the pixels in a multi-color character originate from four sources, depending
on the bit pairs. Since the bit pairs have four color possibilities, two bits are needed to
represent four values: 00, 01, 10 and 11. In Figure 8-21, the value of the four bit pair
combinations determines the color assignments for the pixels in a multi-color character.

BIT PAIR

00
01
10
11

COLOR REGISTER

Background #0 color (screen color)
Background #1 color
Background #2 color
Color specified by the
lower 3 bits in color memory

LOCATION

53281 ($D021)
53282 ($D022)
53283 ($D023)
color RAM

Figure 8-21. Truth Table for Color Data

If the bit pair equals 00 (binary), the color of those two pixels corresponding to the
bit pair are colored by background color register 0 (location 53281 ($D021)). If the bit
pair equals 01 (binary), the pixels are colored by background color register 1 (location
53282 (SD022)). If the bit pair equals 10 (binary), color for those two pixels within the
character are colored from background color register 2 (location 53283 ($D023)).
Finally, if the bit pair from the character pattern equals 11 (binary), those two pixels are
colored from the color specified in the lower three bits (2, 1, 0) of color RAM. Color
RAM is located between 55296 (SD800) and 56295 ($DBE7).

When multi-color character mode is selected, you can still display standard
characters on some screen locations, and display others in multi-color mode. Bit 3 of
each color RAM location determines whether the character is displayed in standard or
multi-color mode. If bit 3 in color RAM is set (1), characters are displayed in
multi-color mode. If bit 3 is clear (0), characters are displayed in standard character mode.
This means that in order to display characters in multi-color mode, you must fill color
RAM with a color code greater than 7. The colors greater than 7 (the ones that are
displayed in multi-color mode) are shown in Figure 8-22.

COLOR CODE

8
9

10
11
12
13
14
15

COLOR

Orange
Brown
Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Figure 8-22. Color Codes

Remember, the multi-color bit (bit 3) must be set to display multi-color characters.
The following program illustrates multi-color character mode.

10 COLOR 0,1 :REM BKGND = BLACK
20 COLOR 2,1 :REM MULTCLR 1 = WHITE
3 0 COLOR 3,2 :REM MULTCLR 2 = RED
31 FOR I=1TO25
32 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
3 3 NEXT
35 FOR 1=55296+512 TO 55296+1023:POKE I,7:NEXT:REM PLACE YELLOW IN COLOR RAM
37 POKE 216, 255:REM DISABLE SCREEN EDITOR
40 POKE 53270,PEEK(53270) OR 16:REM SET MULTICOLOR BIT
50 FOR I=1TO25
60 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
7 0 NEXT
85 FOR 1=55296 TO 55296+1023:POKE I,14:NEXT:REM FILL COLOR RAM WITH BLUE
90 GRAPHIC 0:REM RETURN TO STANDARD COLOR

Lines 10, 20 and 30 place the color codes for black, white and red into background
color registers 0, 1 and 2, respectively. Lines 31 through 33 print the letters of the

THE POWER BEHIND COMMODORE 128 GRAPHICS 237

alphabet on the screen twenty-five times. Line 35 fills the last 512 bytes of color RAM
with yellow. Line 37 disables the IRQ VIC screen editor. Line 40 enables multi-color
mode. At this point, all the screen locations corresponding to the color RAM locations
which have a color code greater than or equal to 8 are displayed in multi-color mode.
Since the yellow color code is 7, all the color RAM locations having this code are
placed in standard character mode. The default color for color RAM is code 13 (light
green) for C128 mode, and code 14 (light blue) for C64 mode. Line 85 fills color RAM
with the light blue color code. The multi-color characters displayed on the screen are
red, white and blue on a black background.

EXTENDED BACKGROUND COLOR MODE

The third type of character display mode, extended background color mode, allows you
to display three colors at a time on the text screen. For example, you have the character
color, the background color of the screen, and an additional background color within
each 8 by 8 character matrix. This means you can display a white character with a green
background in the 8 by 8 character matrix, on a black screen background. This mode
offers the use of an additional color in an 8 by 8 character matrix, without any loss in
screen resolution.

There is one sacrifice, however. In extended background color mode, only the
first sixty-four characters of the screen code character set are available. The reason for
this is that bits 6 and 7 determine which color will be selected for the background within
the 8 by 8 pixel character matrix. This only leaves five bits for the computer to interpret
which character is currently on the screen. The highest number you can represent with
five bits is 63. This means only the screen code values between 0 and 63 are available
for display on the screen within extended background color mode.

HOW TO ENTER EXTENDED
BACKGROUND COLOR NODE
Enabling bit 6 of location 53265 selects extended background color mode. Use this
POKE in BASIC:

POKE 53265, PEEK(53265) OR 64

To turn it off, use this POKE:

POKE 53265, PEEK(53265) AND 191

SCREEN LOCATION
The screen location in extended background color mode is the same as the standard
character and multi-color character modes, 1024 ($0400) through 2023 ($07E7). This
screen range can be relocated. See the SCREEN MEMORY section for details.

HOW TO INTERPRET SCREEN DATA
The data in screen memory is interpreted as screen codes, which are actually the indexes
into the character ROM. Instead of representing the data as ASCII characters, the screen
codes represent the index into the character ROM which provide the ASCII codes. The
first character in character ROM is the at sign ((2); therefore the first screen code, 0, is the
code for the at sign.

Remember, since extended background color mode only uses five bits to deter-
mine the screen code value, only the first 64 screen code characters (0-63) are available.

COLOR DATA
The color assignments for the three colors on the screen stem from three sources. Just as
in standard character mode, the foreground color is assigned by COLOR RAM, in the
range 55296 (SD800) through 563295 (SDFE7). As described in the standard character
mode section, each color RAM location has a direct one-to-one correspondence with the
screen memory locations. See the Standard Character Mode section for screen and color
memory maps and an explanation of how the two sections of memory correspond to one
another.

The screen background color is assigned by background color register zero (location
53281 ($D021)). This is the color of the entire screen, on which the foreground and an
additional 8 by 8 character matrix background is placed.

The additional 8 by 8 character matrix background colors are determined by the
value of bits 6 and 7 of the screen code character value. Depending on the value of these
bits, the extended background color (the color within the 8 by 8 character matrix for
each character), comes from one of the four background color registers. Since there are
four choices for the extended background color, the computer needs two bits to
represent the four color choices. Figure 8-23 shows the four-bit combinations and the
corresponding background color registers associated with them.

C H A R

RANGE

0-63
64-127

128-191
192-255

A C T E R

BIT 7

0
0
1
1

C O D E

BIT 6

0
1
0
1

B A C K G R O U

R E G I

NUMBER

0
1
2
3

N D C O L O R

S T E R

ADDRESS

53281 ($D021)
53282 ($D022)
53283 ($D023)
53284 ($D024)

Figure 8-23. Extended Background Color Registers

For example, POKE the screen code for the letter A (1) into screen location 1024.
Now POKE the screen value 65 into screen location 1025. You might expect the
character to be a reverse A, the second character of the second screen code character set.

THE POWER BEHIND COMMODORE 128 GRAPHICS 239

However, in this mode, you can only represent the first sixty-four characters, since you
only have five bits to represent screen characters. By trying to represent the screen code
65, bit 6 is enabled, which tells the computer to select the background color register 1
(location 53282 (SD022)), and display the same character, but with the extended
background color specified by background color register 1.

Here's a program that illustrates how extended background color mode operates:

5 SCNCLR
10 COLOR 0,1 :REM BKGRD=BLACK
20 COLOR 2,1 :REM MULTICOLOR 1
3 0 COLOR 3,2 :REM MULTICOLOR 2
40 POKE 53284,3:REM BACKGRD COLOR 3
45 POKE 53265,PEEK(53265) OR 64:REM SET EXTENDED BKGRND BIT
50 FOR 1=1024 TO 1256:POKE I,1-1023:NEXT
60 PRINT:PRINT:PRINT:PRINT

In the program, line 5 clears the screen. Lines 10 through 40 assign colors to the
four background color registers: black, white, red and cyan, respectively. Line 45
enables extended background color mode. Line 50 POKEs 232 characters into screen
memory. Each time sixty-four characters are stored into the screen memory, the same
set of sixty-four characters is POKEd into the next sixty-four screen locations. However,
the next extended background color is displayed. First, the sixty-four characters are
displayed with a black extended background, then a white extended background, then
red, then cyan.

CHARACTER DATA
Character data is interpreted the same way as in standard character mode, except only
the first 64 characters of the screen character set are available. The character data is also
located in the same range as in standard character mode. See standard character mode
for more information on character data.

STANDARD BIT MAP MODE

Standard Bit Map Mode, also referred to as high-resolution mode, offers the ability to
display detailed graphic images in two colors. The resolution of bit map mode is
320 by 200 pixels. In this mode, the C128 no longer operates in terms of characters,
which are 8 by 8 pixel images stored in those complete units at a time. Bit map mode
allows you to address single pixels at a time, therefore exercising a substantial amount
of control over the detail of images on your screen. The smallest unit addressed in the
character display modes is an 8 by 8 pixel character. Standard bit map mode allows you
to address every individual pixel of the possible 64000 pixels that make up an entire
high-resolution screen image. Figure 8-24 shows how that bit-map coordinate plane is
set up.

X Coordinate

Figure 8-24. Bit Map Screen Coordinates

HOW TO ENTER STANDARD BIT MAP MODE
To enter standard bit map mode, set bit 5 of location 216 ($00D8) (the shadow
register of location 53265 (SD011)). When you issue the GRAPHIC 1,1 command
in C128 BASIC, bit map mode is enabled and the bit map screen is cleared.

You can also use a POKE command as follows, but you should use the highest-
level commands wherever possible:

POKE 216, PEEK (216) OR 32

This command turns on bit 5 of the GRAPHM register, which is the interface between
the VIC chip and the interrupt-driven C128 screen editor. This indirectly turns on bit 5
in location 53265 and enters bit map mode.

You can disable the interrupt-driven screen editor and select bit map mode directly
with these commands:

POKE 216, 255
POKE 53265, PEEK (53265) OR 32

In C128 mode machine language, use this program sequence:

LDA $00D8
ORA #$20
STA $00D8

In C64 mode machine language, try this:

LDA $D011
ORA #$20
STA $D011

THE VIDEO MATRIX
(SCREEN MEMORY) LOCATION
The default location of the C128 video matrix (i.e., the bit map screen memory) is 7168
($lC00) through 8167 ($1FE7).

The default location of the C64 video matrix is 1024 ($0400) through 2023

THE POWER BEHIND COMMODORE 128 GRAPHICS 241

($07E7). The video matrix can be moved, however. See the Screen Memory section
elsewhere in this chapter for information on relocating the video matrix.

HOW THE VIDEO MATRIX
IS INTERPRETED
In bit map mode, the video matrix (bit map screen memory) is interpreted differently
than it is in the character display modes. In the character display modes, the screen
memory data is interpreted as screen codes corresponding to the characters in character
ROM. However, in bit map mode, the video matrix data is interpreted as the supplier of
color information for the bit map. The upper four bits (nybble) supply the color
information for the bit map foreground, and the lower nybble supplies the color code for
the bit map background.

The next section explains how pixels on the bit map screen are assigned to either
the foreground color or the background color.

BIT MAP DATA
In bit map mode, the character data, referred to as the bit map, is also interpreted
differently than in the character display modes. The character data is not taken from
character ROM at all. Instead, it is taken from an 8K section of RAM memory, known
as the bit map.

The standard high-resolution screen is composed of 200 rows of 320 pixels, so
that the entire screen is composed of 64,000 pixels. In bit map mode, one bit in memory
is dedicated to an individual pixel on the screen. Therefore 64000 pixels require 64000
bits (or 8000 bytes) of memory to store the entire bit mapped image.

If a bit in memory in the 8000 byte bit map is set, the corresponding pixel on
the screen is enabled, and becomes the color of the foreground as specified in the upper
four bits of the video matrix. If a bit in the bit map is equal to zero, the corresponding
pixel on the screen becomes the color of the background, as specified in the lower four
bits of the video matrix. The combination of on and off bits in the bit map and the
corresponding pixels on the screen define the highly detailed image on the video screen.

The bit map default location in memory ranges from 8192 ($2000) through 16191
($3F3F). This requires 8000 bytes or just under 8K of memory. The spare bytes are used
for other purposes. Location 53272 determines the location of the video matrix and bit
map in memory. Since the screen editor is running on the IRQ, location 2605 ($0A2D)
is an indirect address you must use to place a value in location 53272 ($D018). The
upper four bits of 53272 determine where the video matrix begins and the lower four
bits determine where the bit map begins. In bit map mode, only bit 3 is significant, so
the bit map is either placed starting at location 0 or location 8192 ($2000) in each video
bank.

If you change to a higher bank number, remember to add an offset of $4000 to the
start of the bit map and the video matrix for each bank number above 0.

The video matrix is relocatable. See the Screen Memory section in the beginning
of the chapter for details on how to move the video matrix.

The bit map tells the computer which pixels in the foreground to enable on the
screen. Like a road map, it spells out exactly which pixels to turn on (in the foreground)
and off (in the background color) in order to display a picture on the screen. For
example, if the bit map started at location 8192 (the C128 BASIC default) the first
byte of the bit map corresponds to the bit map pixel coordinates 0,0 through 0,7. The
second byte of the bit map, location 8193, corresponds to coordinates 1,0 through 1,7
and so on. See Figure 8-25 to see how the bit map data in locations 8192-16191
correspond to the pixels on the visual screen:

X Coordinate

Figure 8-25. Relationship of Bit Map Data to Screen Pixels

Now you know how bit map mode operates internally within your C128. However,
you need an easy way to turn on and off pixels in the bit map in order to display
graphics on the screen. The new, high level BASIC 7.0 commands such as DRAW,
CIRCLE, BOX and PAINT allow you to control the turning on and off of bits and their
corresponding screen pixels. The use of the X and Y coordinates on the bit map
coordinate plane easily orient you to displaying graphics. You can display high-
resolution graphics in other ways, outside of the BASIC 7.0 graphics commands.
This includes using commercial software packages that employ graphics tablets or
joysticks to draw on the screen, writing your own draw routines using a joystick or
paddle, or physically entering data into the bit map (which is painfully tedious and not
recommended).

THE POWER BEHIND COMMODORE 128 GRAPHICS 243

Another way to display graphics, which involves manipulating bits in the bit map,
is through mathematical equations, using geometry. Several books are available which
offer geometrical equations on how to draw three-dimensional objects and to move them.
Refer to the Suggestions for Further Reading the back of the book for sources on graphics.

COLOR RAM
In standard bit map mode, color RAM is not used since the color information for the bit
map is taken from the upper and lower nybble of screen RAM. Color RAM is used,
however, in multi-color bit map mode.

MULTI-COLOR BIT HAP MODE

Multi-color bit map mode is a combination of standard bit map mode and multi-color
character mode. Multi-color bit map mode allows the display of four colors within an 8
by 8 pixel bit map area. Like multi-color character mode, the horizontal resolution is
only half of the standard bit map mode, though the tradeoff in resolution is compensated
for by the use of two additional colors within an 8 by 8 pixel, bit mapped area.

HOW TO ENTER MULTI-COLOR
BIT MAP MODE
To enter multi-color bit map mode from C128 BASIC, issue the following command:

GRAPHIC 3

You can enter this mode with a POKE command as well. But make use of the
highest level commands available for the easiest programming:

POKE 216, PEEK (216) OR 160

This POKEs the value 160 and turns on the multi-color mode bit 7 (value 128) and
the bit map mode bit 5 (value 32) in the GRAPHM register which interfaces to the C128
interrupt driven screen editor. This indirectly turns on, respectively, bit 4 (multi-color
mode) of location 53270 (SD016), and bit 5 (bit map mode) of location 53265 ($D011).

Bit 5 of location 53265 determines whether the C128 is in bit map mode or
character mode. If bit 5 is equal to 1, bit map mode is enabled. Bit 4 of location 53270
determines whether the C128 is in standard or multi-color mode. If bit 4 is set, the
C128 operates in multi-color mode, regardless of whether it is in character or bit map
mode.

In C64 mode, you can store a value directly to these registers. But in C128 mode,
the GRAPHM intermediate register must be used as a gateway to these actual registers.
Again, this is because the C128 screen editor is interrupt driven, enabling the split-
screen modes for text and simultaneous bit map displays. Since the screen editor is
interrupt driven, an indirect register is used to restore the values that you need to use for

specific VIC registers. GRAPHM is one such register; therefore, every sixtieth of a
second, the value in the GRAPHM register is loaded into the appropriate VIC registers.

MACHINE LANGUAGE
To select multi-color bit map mode in C128 machine language, perform the following
instructions:

LDA $A0; enables bits 4 and 5 of GRAPHM, the shadow location
STA $00D8

In C64 machine language, enter:

LDA $D011
ORA #$20; select Bit map mode
STA $D011
LDA $D016
ORA #$10; select multi-color mode
STA $D016

In both cases, you must clear the screen, color RAM and the bit map in your own
program.

VIDEO MATRIX LOCATIONS
The video matrix defaults to locations 7168 ($1COO) through 8167 (S1FE7) in C128
mode.

In C64 mode, the video matrix defaults to locations 1024 ($0400) through 2023
(S07E7). This is relocatable. See the Screen Memory section earlier in this chapter.

HOW TO INTERPRET THE VIDEO MATRIX
The contents of the video matrix are interpreted the same way as in standard bit map
mode. The upper nybble is the color code for the foreground color; the lower nybble is
the color code for the background color of the bit map.

ADDITIONAL COLOR DATA
The upper and lower nybbles of screen memory supply the multi-color bit map screen
with two of the color sources. This mode offers two additional colors—background
color register 0 (location 53281) and the lower nybble of color RAM.

As in multi-color character mode, the bit patterns of the bytes in the bit map
determine the color assignments for the pixels on the screen. The bits are similarly
grouped in pairs, within 8-bit bytes, so there are 4-bit pairs in each byte. Bits 0 and 1, 2
and 3, 4 and 5, and 6 and 7 are grouped in pairs respectively. Depending on the values
of the bit pairs, the corresponding pixels in the bit map are assigned colors from the
sources in Figure 8-26.

THE POWER BEHIND COMMODORE 128 GRAPHICS 245

BITS COLOR INFORMATION COMES FROM

00 Background color #0 (screen color)
01 Upper four bits of video matrix
10 Lower four bits of video matrix
11 Color RAM

Figure 8-26. Multi-Color Bit Map Pixel Color Assignments

THE BIT MAP
Bit patterns determine how color is assigned to the multi-color bit map screen. If the bit
pair is equal to 00 (binary), color is taken from background color register 0 (location
53281). If the bit pair is equal to 01 (binary), the color assigned to these two pixels
comes from the upper nybble of video matrix. If the bit pair in the bit map is equal to
10 (binary), then the color assigned to those two pixels comes from the lower nybble of
video matrix. Finally, if the bit pair in the bit map is equal to 11 (binary), the color is
taken from the lower four bits of color RAM. Unlike multi-color character mode, the
screen is either all standard bit map, or all multi-color bit map, unless you develop a
sophisticated interrupt-driven application program that handles the two separate bit
maps.

COLOR RAM
In multi-color bit map mode, color RAM is used if the bit pair from the bit map equals
11 (binary). Each color RAM location may have one of sixteen color codes, which
means that one 8 by 8 bit map area can have black, red, white and blue colors,
respectively, for the background color register 0, the upper nybble, the lower nybble, and
the color RAM. The 8 by 8 multi-color bit map area next to it can have black, red, white
and green colors, since each color RAM location is independent of any other. The other
three color sources usually remain constant throughout a bit map screen, though you can
change the upper and lower nybbles of the video matrix. The background color register
is almost always the same throughout a bit map screen.

The C128 has powerful and varied graphics display capabilities. Certain applica-
tions call for one type of display over another. Experiment with them all and see which
one meets your needs best. Figures 8-28 through 8-32 provide a graphics programming
summary that should be helpful in understanding graphics on the C128.

SPLIT-SCREEN MODES

The Commodore 128 has a split-screen feature that allows you to display the top portion
of the screen in bit map mode and the bottom portion in character mode. This allows you to
enter a BASIC graphics program and RUN it while the BASIC program listing is

present and the bit map image is displayed, which saves time switching back and forth
between bit map and character modes.

Before, you would have had to enter the graphics program (in machine language),
RUN it and switch back to the text screen to make a change. Now you can display the
graphic image and have your text screen available to you all at the same time. You can
alter the program while your bit map image is still on the screen, RUN it and see the
immediate results without losing the text screen.

Without the Commodore 128's split-screen capabilities, you would have to pro-
gram a split screen yourself. This involves raster interrupts which utilize either two
screen memories in two different video banks, or a fairly choppy single-screen memory,
usually with a visible raster line. With the C128 split-screen mode, all you have to do to
enter a split-screen mode is to issue the GRAPHIC command in BASIC. For example,
the command:

GRAPHIC 2,1

sets up a standard bit map screen on top and a text screen on the bottom. Similarly, the
command:

GRAPHIC 4,1

constructs a multi-color bit map screen on the top portion of the screen and a text screen
on the bottom portion. The " 1 " in these commands clears the bit map screen. To leave
the bit map screen intact, once you have already displayed an image, replace the " 1 "
with a zero (0).

The GRAPHIC command has an additional parameter that allows you to define
where the split occurs. The split-screen starting location is defined in terms of a
character row, as if the C128 were in a character display mode. For example,

GRAPHIC 4,1,15

selects a split screen with multi-color bit map mode on top of the screen and the text
screen on the bottom, starting at character row 15. If the start of the split screen is not
defined, the C128 defaults the start to line 19.

HOW SPLIT-SCREEN MODES ARE
ORGANIZED IN MEMORY

SCREEN LOCATIONS
The split-screen modes, both multi-color and standard, use two independent screen
memories. The bit map video matrix is taken from the address range 7168 ($1COO)
through 8191 ($1FFF), just as in standard and multi-color bit map modes. The text
portion of the screen takes its screen memory from default character mode screen
locations 1024 ($0400) through 2023 ($07E7), just as in standard and multi-color
character mode. The hidden portions of the screen, the bottom portion of the bit map
screen and the upper portion of the text screen, still store data, but it is invisible
since the other screen memory has overlaid it.

THE POWER BEHIND COMMODORE 128 GRAPHICS 247

INTERPRETING SCREEN DATA
The text portion of the split screen is interpreted according to the standard character mode
section. The bit map portion, whether standard or multi-color, is interpreted according to the
description in the bit map mode section. Consult the Standard Character Mode, Standard Bit Map
Mode and Multi-color Bit Map Mode sections for information on how screen data is interpreted.

CHARACTER MEMORY LOCATIONS
The split-screen modes also take character data from two independent parts of memory.
The bit map data, referred to simply as the bit map, is taken from the default range 8192
($2000) through 16191 (S3FE7) for both the multi-color and standard bit map mode
portions of the screen.

The character memory for the text portion of the split screen is derived from the
character ROM. The actual character ROM occupies the memory locations 53248
($D000) through 57343 ($DFFF) overlaying the I/O registers. The I/O registers must be
switched out to view the actual character ROM, in bank configuration 14, for example.

For information on how character data is interpreted in standard character, stan-
dard bit map and multi-color bit map modes, see the sections describing these modes.
See also the Color RAM Banking section.

COLOR DATA
Each of the standard bit map, multi-color bit map and standard character modes interpret
color differently. See each section for detailed information on color assignments.

MACHINE LANGUAGE
In machine language, you must program a split screen yourself. This is not the easiest of
programming tasks, since it involves raster interrupt processing, which can be tricky. In
C128 mode, bit 6 in the GRAPHM register is the split screen bit. If bit 6 of $0008
(GRAPHM) is set, a split screen is displayed. Otherwise, bit 6 is clear (0) and a single
screen is displayed.

The C64 mode has no corresponding split screen bit. C64 mode is programmed
differently for split screens. See the Raster Interrupt Split-Screen Program at the end of
the chapter to learn how to program a split screen in machine language.

CAUTION: A system crash may occur if the display mode is changed
while the interrupt-driven screen editor is enabled. See the Shadow
Register section for details.

THE INTERRUPT-DRIVEN SCREEN EDITOR
The intermediate memory locations, sometimes referred to in this guide as shadow
registers, are designed specifically for handling the split-screen modes. In order to
provide split-screen modes, the C128 screen editor has to be wedged into the system's
interrupt handling routines.

Unlike the Commodore 64, the C128 handles interrupts exclusively according to
the raster beam. This has made it necessary to merge the C128 screen editor into the
interrupt request routines (IRQ). The C64 uses interrupt timers which makes interrupt
processing less predictable. By processing the interrupts from the raster beam, the
operating system always knows where and when the interrupt will occur. Timer inter-
rupts made catching a raster interrupt less reliable because the operating system never
knew exactly where an interrupt would occur in relation to the raster beam.

The raster interrupt-driven screen editor made it necessary to use indirect storage
locations for certain registers of the VIC chip and 80-column chip. This way, the
intermediate memory locations refresh the actual video chip registers every sixtieth of a
second, each time the raster beam begins a new scan at the top of the screen. The raster
beam scans the entire screen sixty times a second, so on each pass of the raster beam the
intermediate memory locations refresh the actual VIC chip and 8563 chip registers.

RASTER INTERRUPT
SPLIT SCREEN PROGRAM
WITH HORIZONTAL SCROLLING

This section explains how and provides a program to perform split screen raster
interrupts in machine language. The program is explained as it applies to Commodore
64 mode, but it can be modified to run in Commodore 128 mode.

You already have a way to split the screen in C128 mode with the BASIC
GRAPHIC command. The program provided in this section splits the screen in machine
language in C64 mode. See the figure in the shadow register section to see which
addresses must be changed to make this program work in C128 Mode. A few differ-
ences will occur in the timing of the raster. In Commodore 128 mode, all interrupts
occur according to the position of the raster beam as it scans the screen. This is why
shadow registers are necessary for certain graphics locations, since the C128 screen
editor is interrupt driven to allow the split screen modes in BASIC.

The program in this section also scrolls text on the bottom quarter of a standard
character screen, while the top three quarters are displayed in multi-color bit map mode.
The standard character screen resides in video bank 0 ($0400-$07E7) while the multi-
color bit map video matrix is stored in video bank 1 starting at $5C00 ($1COO +
$4000 = $5C00). Every time an interrupt occurs, the program changes video banks,
display modes, the character memory and video matrix pointers. This program supplies
the data that scrolls at the bottom of the screen, but it assumes you have placed an 8000
byte bit map starting at address 8192 ($2000) plus an offset of 16384 ($4000) for the
change of video banks. This makes the absolute start address of the bit map 24576 ($6000).

An 8000 byte bit map is just too large to present in this book. However, the easy
way to place a bit map in this area is as follows:

THE POWER BEHIND COMMODORE 128 GRAPHICS 249

1. First start in C128 mode, and enter split screen (multi-color) bit map
mode through BASIC with this command:

GRAPHIC 4,1

2. Now draw on the screen with the BOX, CIRCLE, DRAW and PAINT
commands either in a program or in direct mode.

3. When you are finished drawing, enter the machine language monitor either by
pressing the F8 function key or by typing the MONITOR command.

4. Now transfer the video matrix and bit map from the C128 default locations of
$1COO through $1FFF and $2000 through $3FFF respectively, to $5C00 through
$5FFF and $6000 through $7FFF respectively. The new start addresses are
the default locations plus an offset of $4000 for both the video matrix and bit
map pointers. The new start of the video matrix is at $5C00 ($lC00 +
$4000). The new bit map begins at address $6000 ($2000+ $4000). This
transfer can be accomplished with a single transfer command within the
machine language monitor as follows:

T 1C00 3FFF 5C00

This command transfers the contents of memory locations $lC00 through $3FFF
to $5C00 through $7FFF. Since the default locations of the video matrix and bit map are
continuous in memory, the transfer can be done with a single command. If the default
addresses of the video matrix and bit map had not been contiguous, two transfers would
have been necessary. See Chapter 6 for details on using the Machine Language Monitor.

Now that you are still within the control of the Machine Language Monitor, begin
entering the machine language instructions in the listing provided in the next few pages.
Start entering the program at address $0C00. The program, including the scrolled data
occupies memory up to address $0DF9, which means the program is a total of 505 bytes,
or almost half a kilobyte (K).

Now save the program you just painstakingly entered with the Monitor Save (S)
command as follows:

S "filename", 08, 0C00, 0DFF

If you have a C128 assembler, create a source file, assemble and load it. If your
assembler allows it, save the program as a binary file.

NOTE: If you have the Commodore 64 Assembler Development System,
create a source file (with start address $0C00), assemble and load it in
C64 mode. Then press the RESET button (not the ON/OFF switch) to enter
C128 mode. Don't worry, your program will still be in memory, but this
time it's in C128 memory. Next enter the Machine Language Monitor
and use the Monitor Save (S) command to make a binary file as described
above.

Now you are ready to enter C64 mode and run the program with the following
command:

GO 64

Reply to the question "ARE YOU SURE?" by pressing the " Y " key and
RETURN. You are now placed in C64 mode.

At this point, you may say to yourself, "After I just did all that work, why am I
going to waste it by changing modes?"

Actually, you are not wasting any effort. When you GO 64 (or press the reset
button), much of the RAM for machine language programs and data is preserved in
RAM bank 0. BASIC programs are erased, however. Specifically, these are the ranges
of RAM that are preserved when changing between C128 and C64 modes:

C128 MEMORY LAYOUT

$0C00 - $0DFF RS232 Input and Output Buffers
$1300 - $1BFF Available Memory for Machine Language application programs
$1COO - $1FFF Bit Map Video Matrix
$2000 - $3FFF Bit Map Data
$4000 - $FF00 BASIC Text Area

Figure 8-27. Preserved RAM Between C128 and C64 Modes

The rest of the RAM memory is allocated for other purposes and the contents
change from mode to mode. There are other particular bytes that are preserved from
mode to mode, but these small chunks of memory are not worth mentioning here. The
blocks of memory mentioned above provide enough of a clue to the RAM used by both
modes. Remember, however, that the RAM is only preserved if you switch from C128
mode to C64 mode with the GO 64 command, or you switch from C64 to C128 mode
with the reset button (warm start). If you perform a cold start, turn the computer power
off, then on again, all RAM is cleared and none is preserved.

Notice that the address ranges where you placed your program, the video
matrix and the bit map are in the portions of RAM that are preserved from mode to
mode.

Now start (run) the program from C64 BASIC with this command:

SYS 12*256

The top three quarters of the screen is the bit map screen you created with the
C128 BASIC graphics commands, the lower quarter is horizontally scrolling text.

The following program is the listing that performs the split screen and scrolling.

THE POWER BEHIND COMMODORE 128 GRAPHICS 251

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680

1690 AND #$7F
1700 STA $D011 ;DISABLE INTRPT DIS BIT
1710 ;
1720 CLI
1730 ;
17 40 ;
1750 ;
1760 ;
1770 CHECK LDA FLAG2
1780 BPL CHECK
1790 LDA #500
1800 STA FLAG2
1810 ;
1820 LDX #39
1830 LDY #39
1840 SHIFT LDA (TXTPTR),Y
1850 STA SO770,X
18 60 DEX
1870 DEY
1880 BPL SHIFT
1890 INC TXTPTR
1900 BNE MVTIME ;TIME TO RESET POINTER
1910 INC TXTPTR+1
1920 MVTIME LDA TXTPTR ;ARE WE AT THE END OF THE TEXT YET
1930 CMP #<ENDTXT
19 40 BNE CHECK
1950 LDA TXTPTR+1
1960 CMP #>ENDTXT
1970 BNE CHECK
1980 LDA #<FRANK ;SET POINTER BACK TO THE BEGINNING
1990 STA TXTPTR
2000 LDA #>FRANK
2010 STA TXTPTR+1
20 20 JMP CHECK
2030 ;
2040 FRANK .BYT
2050 .BYT '
2060 .BYT 'THIS IS AN EXAMPLE OF SCROLLING
2070 .BYT 'IN THE HORIZONTAL (X) DIRECTION.
2080 .BYT 'ONCE THE DATA HAS BEEN DISPLAYED,
2090 .BYT 'SCROLLING STARTS AGAIN FROM THE
2100 .BYT 'BEGINNING.'
2110 ;
2120 ENDTXT .BYT
2130 .BYT
2140 ;
2150 ; INTERRUPT SERVICE ROUTINE
2160 ;
2170 MINE LDA $D019
2180 STA SD019
2190 ;
2200 LDA FLAG ; FLAG =0 . A=0
2210 EOR #1 ;FLAG =0 .A=l
2220 STA FLAG ;FLAG =1 .A=l
2230 TAX ;.X=l .A=l
2240 LDA POINT,X ;.X=1 .A=200
2250 STA RASTRO ;.X=1 RASTRO=200
2260 CPX #1
22 70 BNE BOTTOM
2 2 8 0 ;
2290 LDA $D011 ;BIT MAP MODE
2300 ORA #$2 0
2310 STA 5DO11 ;BMM
2320 LDA $D018
2330 ORA #$78 ;CHAR=$2000+$4000
2340 STA $D018 ;SCR=$1C00+540O0
2350 LDA $D016
2360 ORA #$10
2370 STA $D016;SET MULTICOLOR

THE POWER BEHIND COMMODORE 128 GRAPHICS 2S3

For readability, the program is listed as a source file, as though it was entered
through an assembler editor. It is easier to understand as a source file rather than a
listing from the Machine Language Monitor. To enter this program into the Machine
Language Monitor, reference the actual address in place of the variable operand ad-
dresses. Most of the actual addresses are listed in the beginning of the program (lines
1010 through 1100). Keep in mind that these are only line numbers for an assembler

editor. You will enter the program into a memory location number (address) in the
Machine Language Monitor. In this case, the program is stored in memory starting at
address S0C00. Line 1120 specifies this start address with:

* = $ocoo
Here's an instruction-by-instruction explanation of the scrolling split screen program.
Line 1010 assigns the variable IVEC to the address $0314, the hardware interrupt

request (IRQ) vector. The interrupt vector is the means by which the Commodore 128
displays split screens and scrolling. By wedging your own routine into the hardware
interrupt vector (in this case scrolling and splitting the screen), it enables you to perform
operations that usually take too long for the microprocessor to perform under an
application program not using interrupts. The interrupt vector is checked for an interrupt
routine every 60th of a second. In this program, the screen is split 60 times per second,
so it appears you have two different screens displayed at the same time. You could not
split the screen without requesting an interrupt; the microprocessor is not able to perform
all the required operations fast enough to keep up with the raster scan of the video
controller. The speed that the screen is continually updated, known as the raster scan,
also occurs at the speed of 60 times per second. For a split screen to occur, you tell the
computer the point on the screen where one type of display ends and the new one (bit
map for example) begins. The way you tell the computer this is by placing the number
of a pixel row, also called a raster row, in the raster compare register located at address
SD012. Line 1030 assigns this address to the variable RASTRO.

You'll see later in the program that the value placed in the Raster Compare Register
starts the text screen at raster row 201. The raster scan is again interrupted at raster row
50 at the top of the screen to display the bit map screen. This is repeated 60 times every
second, so it appears to the human eye that two different display modes are active at the
same time.

On with the program explanation. Line 1040 defines the BACOL variable for the
background color register zero, located at address $D021. Line 1050 assigns the variable
POINT to location $1802. POINT is used to store the raster row value where the text
screen begins. Line 1060 assigns the variable FLAG to location $FC. FLAG is used later
in the program (lines 2200-2270) to determine where the interrupt occurred, either raster
row 50 or raster row 200.

Lines 1070 and 1080 assign the variables FLAG2 to location $FD and SCROLL to
location $FE respectively. Both FLAG2 and SCROLL store the value of the scrolling
register. SREG is assigned to location $D016, the scrolling register. Only bits 0 through
2 are used as the scrolling bits. The other bits in this address are used for other
purposes. Three scrolling bits are necessary since characters that are scrolled are moved
over seven pixels then shifted to the next character position to the left or right, then
scrolled smoothly again seven more pixels.

Line 1100 assigns the variable TXTPTR to address $FA. This variable marks the
starting address in memory where the scrolled characters are stored.

As was mentioned earlier, line 1120 specifies where the program storage begins in
memory. This is the address where the execution of the program begins in memory. You

THE POWER BEHIND COMMODORE 128 GRAPHICS 2SS

will SYS to this address to start the program in BASIC, or GO to this address from the
Machine Language Monitor.

The first sequence of program instructions starting at line 1140 places the contents
of the address (named FRANK) of the beginning of the scrolling text into the memory
locations ($FA and $FB) called TXTPTR and TXTPTR+ 1. FRANK is the label in line
2040 which marks the location where the first scrolled character is stored. In this
program the first character is a space; in fact the first forty characters that are scrolled
across the screen are spaces. The forty-first character marks the beginning of the data
'THIS IS AN EXAMPLE OF SCROLLING' in line 2060. The scrolled data in lines
2040 through 2130 is stored starting at location $0C98, once this source file is
assembled into object code. In this case, the low byte stored in $FA is $98 and the high
stored in $FB is $0C. The full 16-bit address $0C98 is important, since this is the base
address which you increment as you scroll each letter across the VIC screen. When the
text pointer (TXTPTR) reaches the end of the scrolling text, the base address S0C98 is
again stored in TXTPTR.

The second sequence of instructions starting at line 1190 sets the high value of the
two scrolling variables SCROLL ($FE) and FLAG2 ($FD) to 7. These are used and will
be explained later in the program.

Sequence three starting at line 1230 sets the data direction register to output.
The next module of instructions in lines 1280 through 1300 set the screen size to

38 columns, reducing the screen width by a column on each side. In order to scroll
smoothly, you must set the screen size to 38 columns. Clearing bit 3 of location $D016
sets 38 column size. Setting bit 3 restores the VIC screen to its normal 40 column size.

The extra column on each side of the screen border provides a place for the
scrolled data to scroll smoothly to and from offscreen. This program scrolls left, so each
newly scrolled character is placed in column 39 on the right, before it becomes visible in
column 38. At the same time, the lead character on the left scrolls from column 2 to
offscreen column 1. This occurs in lines 1770 through 2020 and is explained as the
program progresses.

Lines 1330 through 1380 set the text screen color RAM to a white fore-
ground. The lower four bits specify the foreground character color in standard
character mode.

The screen memory is stored in video bank 0 where the scrolling text appears at
the bottom fourth of the screen. The bit map and video matrix are stored in video bank
1, the 16K range between $4000 and $7FFF.

The reason only 200 color RAM locations are filled is because only the lower five
rows are visible on the text screen. There is no point clearing the other 800 locations
since they are not visible.

Lines 1410 through 1700 make up the interrupt initialization routine. Line 1430,
labeled LOOP1, sets the interrupt disable bit in the status register. When this bit is set,
interrupts are disabled and none can occur. Only when the interrupt disable bit is cleared

(0) can interrupts occur. The last line (1720) of the interrupt initialization routine clears
the interrupt disable and allows interrupts to occur.

Lines 1440 through 1470 store the original contents of the Interrupt Request (IRQ)
vector into temporary storage locations TEMP (low byte $1806) and TEMP + 1 (high
byte $1807). This is necessary in order to store the original contents of the IRQ vector
so you can jump back to this location once the interrupt is serviced as in line 2900.

Lines 1480 through 1510 store the starting location of the interrupt service routine
into the IRQ vector. In this case, MINE is the source file label in line 2170 where the
interrupt service routine begins. In the assembled object file, as in the Machine
Language Monitor, the low byte is $71 and the high byte is $0D, to form the 16 bit
address 50D71. Once the interrupt disable bit is cleared and an interrupt occurs, the
8502 microprocessor finishes executing its current instruction and sets the interrupt
disable status bit, so no other interrupts can occur. The processor then places the
contents of the high byte and low byte of the program counter and the status register on
the stack respectively. Finally, the 8502 fetches the address contained in the IRQ vector
and executes the routine starting at this address, in this case S0D71.

Lines 1530 and 1540 disable the CIA timer in location $DC0E. In addition, line
1550 initializes the variable FLAG to zero. This variable is used later in the program to
figure out where the raster interrupt has occurred, either at the top of the screen (raster
row 49) for bit map mode or near the bottom fourth of the screen (raster row 201) for
standard character mode.

The instructions in lines 1570 through 1590 define the variable POINT ($1802) as
the value of the raster row 49 ($31) where the interrupt occurs to select bit map mode. In
addition, this value is also stored in the Read/Write Raster Register ($D012) for raster
row comparisons later in the program.

The C128 VIC screen consists of 200 raster rows, each row one pixel tall, having
320 pixel columns. You know how BASIC addresses the bit map coordinates on a
coordinate plane of 0,0 in the top left corner and 319,199 in the bottom right. However,
the visible raster rows are not labeled in the same way. The visible raster rows start at
50 at the top of the screen and end at 250 at the bottom. These are the same row
numbers as sprites use. Notice there are still 200 rows but that they offset the bit map
coordinate row number by 50. The raster row numbers below 50 and above 250 are off
the visible screen. These offscreen raster rows are referred to as the vertical retrace.

The instructions in lines 1610 and 1620 define the variable POINT + 1 ($1803) as
the value of the raster row 201 ($C9) where the interrupt occurs to select standard
character mode.

Lines 1650 and 1660 enable the raster IRQ Mask Register. Line 1670 sets the
Raster Compare IRQ Flag. By setting bit one in these registers, the raster interrupt
attached to the IRQ line is allowed to occur (once lines 1680 through 1720 are
executed), depending upon whether the physical raster row compares and matches with
either of the values in POINT or POINT+1. If either of these match, the interrupt
occurs.

The instructions in lines 1680 through 1700 clear the raster compare high bit (bit
8). This is an extra bit from location $D012 for raster compares.

THE POWER BEHIND COMMODORE 128 GRAPHICS 257

The instruction in line 1720 clears the interrupt disable status bit, which enables
interrupts to occur. This is the last operation to be performed by the interrupt initializa-
tion routine. Now interrupts are ready to occur and be serviced.

Lines 1770 through 1800 check the value of FLAG2. If FLAG2 is positive, the
program branches to the label CHECK in line 1770 and checks the value of FLAG2
again. The value stored in FLAG2 represents the value of the lower three bits in the
horizontal scrolling register at location $D016. The variable SCROLL is also associated
with the variable FLAG2. In the interrupt service routine (in lines 2760 through 2810),
the value in SCROLL is decremented and stored in FLAG2. This value pertains to the
value placed in the actual horizontal scrolling register at $D016. The reason this is
counted is as follows.

The direction of the scrolling is right to left; therefore, you must place the
maximum value (7) in the lower three bits of SD016 and decrement that value by one. If
the program had scrolled left to right, you would initialize the scrolling register to zero
and increment the lower three bits. When the scrolling register value is decremented, the
characters in the screen memory locations which are to be scrolled are moved to the left
by one pixel. Each time the scrolling register is decremented, the characters move
another pixel to the left. When the value (the lower three bits) of the scrolling register
equals zero, you must move the scrolled characters up in screen memory by one location.
This routine is contained in lines 1840 through 1880. After the shift, the lower three bits
of the scrolling register are set back to 7, the characters are again shifted by the VIC
chip 7 pixels to the left and your routine shifts the characters up in memory again by
one. The additional details are covered in the explanation of lines 2760 through 2900.

The instructions in lines 1820 through 1880 shift the text to be scrolled up in
memory by one location for each cycle of the loop. First the X and Y registers are
loaded with the decimal value 39 ($27). The instruction in line 1840 loads the value of
the memory location where the scrolled text begins using indirect Y addressing. The
address is calculated by taking the contents of zero page memory variable TXTPTR
($98) and adding the offset 39 to its contents to arrive at $BF. The effective address
gives the low byte where the scrolled data begins. The first scrolled character is actually
a space. Subsequent data elements are accessed by modifying the value of the Y register.

The store instruction in line 1850 stores the first character of the scrolling text in
screen location 1943 ($0770 + $27), which is the fortieth column of the twenty-third
row. This column is not visible when the screen size is set to 38 columns for horizontal
scrolling. Each newly scrolled character must be placed in this position in order to scroll
smoothly from the offscreen location. Lines 1860 and 1870 decrement the X and Y
registers respectively. Line 1880 branches to the label SHIFT if the Y register is positive
(greater than zero).

The second time through the loop, the low byte of the scrolled character (at
location $98 + $26 = $BE) is stored in screen location 1942 ($0770+ $26). so the
(space) character in $0CBE is stored in screen location $0796. The third time through
the loop, $0CBD is stored in $0795 and so on. This process continues until the X and
Y registers equal zero. So far, only the series of 39 space characters in lines 2040 and
2050 have been shifted across the screen.

Once the X and Y registers have been decremented to zero, the TXTPTR is
incremented in line 1890 so that subsequent characters such as "THIS IS AN EXAM-
PLE . . . " can be scrolled. In the first 39 cycles through the loop fin lines 1840 through
1880) 39 spaces are shifted (scrolled) one character position on the twenty-third character
row on the screen. The next 39 cycles shift 38 spaces and the letter " T " in "THIS" one
character position across the screen. The next 39 cycles, 37 spaces and the letters "TH"
in "THIS" are shifted in memory and scrolled one character position on the screen and
so on. This process occurs until all characters in the data (in lines 2040 through 2130)
are scrolled.

Line 1900 branches to the label MVTIME while TXTPTR (the low byte of the
start of scrolled data) is greater than zero, otherwise TXTPTR + 1 incremented to update
the high byte. Lines 1920 through 1970 check to see if the text pointers are at the end of
the scrolled character data ($0D70 in the assembled program). If the pointers are not at
the end of the character data, the program branches to the label CHECK and the data is
shifted by the VIC chip by seven pixels and the scrolling process repeats again. If the
text pointers are at the end of the scrolled character data, lines 1980 through 2010 set the
text pointers to the beginning of the scrolled data in memory and the process is repeated
continuously as specified by the JMP CHECK instruction.

Lines 2040 through 2130 represent the data to be scrolled by the program. The
data is stored in .BYTE statements as it appears in the Commodore Assembler 64
Development System. In your case, the Machine Language Monitor handles data by
simply storing it in an absolute memory range. In the assembled object code program
the data turns out to be stored in the range $0C98 through $0D70. You will refer to the
data with these addresses and not with a label as in this explanation.

THE INTERRUPT SERVICE ROUTINE
The program instructions in lines 2170 through the end of the program make up the
interrupt service routine. Depending upon the value of the raster comparison, particular
segments of the routine are executed upon the detection of an interrupt. For instance, if
the result of the raster comparison detects an interrupt to occur at raster row 49, lines
2290 through 2560 are executed. This selects bit map mode and performs additional
functions that are explained in a moment. If the raster comparison detects the interrupt
to occur at raster row 201, lines 2590 through 2900 are executed. These instructions
select standard character mode, among other things. Keep in mind that both segments of
the interrupt service routine are executed within a single, complete raster scan of the
screen sixty times per second. Instructions 2170 through 2270 are always executed when
an interrupt occurs.

The instruction in line 2170 clears the raster compare IRQ flag after the interrupt
has occurred. The address of the label MINE, which is loaded into the IRQ vector in
lines 1480 through 1510, tells the 8502 where the interrupt service routine resides upon
the occurrence of an interrupt. In the assembled object code, this is an absolute address
($0D71).

THE POWER BEHIND COMMODORE 128 GRAPHICS 259

Lines 2200 through 2270 determine the location (raster row) in which the raster
interrupt has occurred. Line 2200 loads the value of FLAG, which was initialized to
zero, into the accumulator. Line 2210 XOR's the accumulator with 1, which effectively
places a one in the accumulator for the first pass through this routine. This value is then
stored back into FLAG. In each subsequent occurrence of an interrupt, the value of both
the accumulator and FLAG are toggled between zero and one. The accumulator is then
transferred to the X register in line 2230. Line 2240 loads the value of POINT or POINT
+ 1 depending upon the value in the X register. If the X register equals 0, POINT is
loaded into the accumulator, which specifies the interrupt to occur at raster row 49. If
the X register equals 1, POINT +1 is loaded into the accumulator, which specifies the
interrupt to occur at raster row 201. Line 2250 stores the accumulator value into the
variable RASTRO. The X register is compared with 1 in line 2260. If the X register
equals 1, the interrupt has occurred at raster row 201 and the program branches to the
instructions in lines 2590. If the value of the X register equals 0, the branch in line 2270
falls through and the instructions in lines 2290 through 2650 are performed.

The instructions in lines 2290 through 2560 perform the operations associated with
bit map mode. Lines 2290 through 2310 select bit map mode. Lines 2320 through 2340
set the video matrix at $!C00 and the bit map at $2000. Both of these start addresses are
offset by the compulsory $4000, since this screen appears in video bank 1 ($4000-$7FFF).
Lines 2350 through 2370 set multi-color mode. Lines 2390 through 2410 select video
bank 1. Lines 2430 through 2460 set the lower two bits of the scrolling register (to the
value 3).

The instructions in 2510 through 2550 restore the original values of the X, Y and
A (accumulator) registers. Line 2560 returns from the interrupt and exits the interrupt
service routine.

Lines 2590 through 2900 perform all the associated text mode operations. Lines
2590 through 2610 select standard character mode. Lines 2630 through 2650 changes
back to video bank 0, the default bank ($0000-$3FFF). Lines 2670 through 2690 disable
multi-color mode, and return to the standard color mode. Lines 2710 and 2720 set the
default screen location 1024 ($0400) and the default start of character memory, with the
decimal value 23 ($17). All numbers which are not preceded by a dollar sign are
assumed to be decimal in this particular assembler editor. Lines 2740 and 2750 set the
background color for the text screen to black.

Lines 2760 through 2890 set the value of the scrolling register, which scrolls the
characters across the screen by 7 pixels, before they are shifted in memory with the
routine in lines 1840 through 1880.

Finally, line 2900 jumps to the default IRQ vector which was saved early in the
program into the variable TEMP. This allows the 8502 to process the normal interrupt
services as though this program's service routine had not occurred.

Although this program example is long and complex, it contains useful routines
and explanations that have never appeared before in any Commodore text. Study these
routines carefully and add them into your own programs. This section includes a wealth
of information for the novice and experienced software developer alike. Figures 8-28
through 8-32 on the following four pages provide a summary of graphics programming.

CI28
BASIC

CI28
MACHINE
LANGUAGE

C64
BASIC

C64
MACHINE
LANGUAGE

CHANGING VIDEO BANKS

POKE 56576, (PEEK (56576)
AND 252) OR X

WHERE X IS THE DECIMAL
VALUE OF BITS 0 AND 1 IN
TABLE 8-30 ON PAGE 262

LDA $DD00
AND #$FC
ORA #$X
STA $DD00

WHERE X IS THE HEX VALUE
OF THE BITS IN TABLE 8-30 ON
P. 262

POKE 56576, (PEEK (56576)
AND 252) OR X

WHERE X IS THE DECIMAL
VALUE OF BITS 0 and 1 IN
TABLE 8-30 on P. 262

LDA SDD00
AND #$FC
ORA #$X
STA $DD00

WHERE X IS THE HEX VALUE
OF BITS 0 AND 1 IN
TABLE 8-30 ON P. 262

MOVING SCREEN RAM

TEXT

POKE 2604, (PEEK(2604 AND 15)
OR X

WHERE X IS THE DECIMAL
VALUE IN TABLE 8-29 ON P. 262

BIT MAP

POKE 2605, (PEEK(2605 AND 15)
OR X

WHERE X IS A VALUE IN
TABLE 8-29 ON P. 262

TEXT BIT MAP

LDA $0A2C LDA $0A2D
AND #$0F AND #$0F
ORA #$X ORA #$X
STA $0A2C STA $0A2D

WHERE X IS A HEX EQUIVA-
LENT OF THE DECIMAL
VALUE IN FIGURE 8-29 ON P.
262

TEXT OR BIT MAP

POKE 53272, (PEEK(53272)
AND 15) OR X

WHERE X IS A DECIMAL
VALUE IN FIGURE 8-29 ON P.
262

TEXT OR BIT MAP

LDA $D018
AND #$0F
ORA #$X
STA $D018

WHERE X IS A HEX
EQUIVALENT OF THE DECIMAL
VALUE IN FIGURE 8-29 ON P.
262

IN C64 MODE, YOU CAN SET
UP TWO DIFFERENT SCREENS,
ONE FOR TEXT AND THE
OTHER FOR BIT MAP, AS THE
C128 KERNAL DOES.

Figure 8-28. Graphics Programming Summary—PART I

THE POWER BEHIND COMMODORE 128 GRAPHICS 261

MOVING CHARACTER MEMORY

TEXT

POKE 2604, (PEEK(2604)AND 240) OR Z

BIT MAP*

POKE 2605, (PEEK (2605)AND 240) OR Z

WHERE Z IS A DECIMAL VALUE
IN FIGURE 8-31 ON P. 262

* = ONLY BIT 3 IS SIGNIFICANT
IN BIT MAP MODE

TEXT BIT MAP*

LDA $0A2C LDA $0A2D
AND #$F0 AND #$F0
ORA #$Z ORA #$Z
STA $0A2C STA $0A2D
WHERE Z IS THE HEX EQUIVALENT OF
A DECIMAL VALUE IN FIGURE 8-31 ON
P. 262

* = ONLY BIT 3 IS SIGNIFICANT IN BMM

TEXT OR BIT MAP*

POKE 53272, (PEEK(53272)AND240) OR Z

WHERE Z IS A DECIMAL VALUE IN
FIGURE 8-31 ON P. 262

* = ONLY BIT 3 IS SIGNIFICANT
IN BIT MAP MODE

TEXT OR BIT MAP*

LDA $D018
AND #$F0
ORA #$Z
STA $D018

WHERE Z IS THE HEX EQUIVALENT
OF A DECIMAL VALUE IN FIGURE
8-31 ON P. 262

* = ONLY BIT 3 IS SIGNIFICANT
IN BIT MAP MODE

ACCESSING CHARACTER ROM

10 BANK 14: REM SWAP IN CHAR ROM
20 FOR I = 0 TO 7
30 ? PEEK (I)
40 NEXT
50 BANK 15

LDA #$01
STA $FF00
LDX #$00
LDA #$D000,X

LOOP STA $TEMP,X
INX
CPX #$07
BNE LOOP
LDA #$00
STA $FF00

5 TEMP = 6144
10 POKE 56334,PEEK (56334) AND 254
20 POKE 1, PEEK (1) AND 251
30 FOR 1 = 0 TO 7
40 POKE (TEMP + I, PEEK (53248 + I)
50 NEXT
60 POKE 1, PEEK (1) OR 4
70 POKE 56334, PEEK (56334) OR 1
80 FOR I = TEMP TO TEMP + 7
90 ? PEEK (I);
100 NEXT

LDA $DC0E
AND #$FE
STA $DC0E
LDA $01
AND #$FB
STA $01
LDX #$00

LOOP LDA $D000,X
STA $TEMP,X
INX
CPX #$07
BNE LOOP
LDA $01
ORA #$01
STA $01
LDA $DC0E
ORA #$01
STA $DC0E

X

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

BITS

ooooxxxx
0001XXXX
0010XXXX
0011XXXX
0100XXXX
0101XXXX
0110XXXX
0111XXXX
1000XXXX
1001XXXX
1010XXXX
1011XXXX
1100XXXX
1101XXXX
1110XXXX
1111XXXX

L O C A

DECIMAL

0
1024
2048
3072
4096
5120
6144
7168
8192
9216

10240
11264
12288
13312
14336
15360

TI ON*

HEX

$0000
$0400 (DEFAULT)
$0800
$0C00
$1000
$1400
$1800
$1COO
$2000
$2400
$2800
$2C00
$3000
$3400
$3800
$3C00

*Remember that the BANK ADDRESS offset of $4000 for each video
bank above zero must be added to the screen memory address.

Figure 8-29. Screen Memory Locations

BANK

0
1
2
3

ADDRESS RANGE

$0-$3FFF
$4000-$7FFF
$8000-$BFFF
$C000-$FFFF

VALUE OF BITS 1 & 0 IN $DD00

BINARY DECIMAL

11 = 3 (DEFAULT)
10 = 2
01 = 1
00 = 0

Figure 8-30. Video Bank Memory Ranges

LOCATION OF CHARACTER MEMORY*

VALUE
OFZ BITS DECIMAL HEX

0
2
4

6
8

10
12
14

XXXXOOOX
XXXX001X
XXXX010X

XXXX011X
XXXX100X
XXXX101X
XXXX110X
XXXX111X

0
2048
4096

6144
8192

10240
12288
14336

$0000-$07FF
$0800-$0FFF
$1000-$17FF

$18OO-$1FFF
$2000-$27FF
$2800-$2FFF
$3000-$37FF
$3800-$3FFF

ROM IMAGE in BANK 0 & 2
(default)*
ROM IMAGE in BANK 0 & 2*

Remember to add an offset of $4000 to the start address of character memory for each
bank above 0; for bank 3 add 3*$4000 = $COOO

* = in C64 mode only.

Figure 8—31. Character Memory Locations

THE POWER BEHIND COMMODORE 128 GRAPHICS 263

C128 BASIC
(DEFAULTS)

C128
MACHINE
LANGUAGE

C64 BASIC
(DEFAULTS)

C64
MACHINE
LANGUAGE

SCREEN DATA
TEXT

1024-2023
($040Q~$07E7)

1024-2023
($0400-$07E7)

THIS IS
ALSO PRO-
GRAMMABLE

1024-2023
(S0400-S07E7)

THIS TO

1 rilo lo

ALSO PRO-
GRAMMABLE

1024-2023
($0400~$07E7)

THIS IS ALSO
MABLE

BIT MAP

7168-8167
($1 COO-
SI FE7)

7168-8167
($1COO-$1FE7)

THIS IS
ALSO PRO-
GRAMMABLE
SEE
GRAPHICS
SUMMARY

1024-2023
($040O~$07E7)

1024-2023
($0400-$07E7)

PROGRAM-

COLOR DATA

TEXT

55296-56295
(SD800-
SDBE7)

55296-56295
(SD80O-
SDBE7)

55296-56295
($D800-
SDBE7)

55296-56295
(SD800-
SDBE7)

BIT MAP

*TAKEN
FROM BIT
MAP VIDEO
MATRIX

*TAKEN
FROM BIT
MAP VIDEO
MATRIX

TAKEN
FROM BIT
MAP VIDEO
MATRIX

•TAKEN
FROM BIT
MAP VIDEO
MATRIX
UPPER
NYBBLE=
FOREGROUND

LOWER
NYBBLE=
BACKGROUND

CHARACTER DATA
TEXT

53248-57343
(SD000-
SDFFF)

TEXT

53248-57343
(SD0OO-
SDFFF)

ROM IMAGE
IS AT
4096-8191*
($1000-
1SFFF)

ROM IMAGE
IS AT
4096-8191*
($1OOO-S1FFF)

* - actual character
ROM location =
53248-57343
(SDOOO-DFFF)

BIT MAP

8192-16383
(S20OO-S3FFF)

8192-16383
($2000-$3FFF)

THIS IS
ALSO PRO-
GRAMMABLE
SEE
GRAPHICS
SUMMARY

NO DEFAULT
MUST
BE PRO-
GRAMMED
SEE
GRAPHICS
SUMMARY

NO DEFAULT

MT !QT RP
1VI U CJ 1 DC

PRO-
GRAMMED
SEE
GRAPHICS
SUMMARY

Figure 8-32. Default Graphics Memory Locations

NOTE: These locations pertain to video bank zero (0) only.

9
SPRITES

SPRITES:
MOVABLE OBJECT BLOCKS

A sprite is a movable bit-mapped object that you can define into a particular shape for
display on the screen. The sprite image can be as large as 24 pixels wide by 21 pixels
tall. Each pixel corresponds to a bit in memory in the sprite storage range; therefore,
each sprite requires 63 bytes of storage. The C128 has predefined storage locations for
sprite data in the range 3584 ($0E00) through 4095 ($0FFF).

The C128 graphics system has 8 sprites. Each sprite moves on its own indepen-
dent plane. A sprite may move in front of or behind objects or other sprites on the
screen, depending on the specified priority. Standard bit-mapped sprites may be any one
of the sixteen available colors. Multi-color sprites may have three colors. The colors that
are assigned to the pixels within the sprite depend on the bit patterns of the image. In
sprite storage memory, the on bits (1) enable the sprite pixels to display the color
selected by the sprite color register; the off bits (0) disable the corresponding sprite pixels,
making them transparent and thus allowing the background color to pass through and be
displayed. Sprites also can be expanded to twice the normal size in both vertical and
horizontal directions.

Most of the commercially available graphics software packages for the Commo-
dore 128 and C64 rely on sprites. For graphics programming applications, sprites offer
superior animation capabilities. Single sprites are useful for small moving objects.
However, you can adjoin and overlay several sprites to give greater detail to animated
graphic images. For example, suppose you are writing a program that animates a person
running on the screen. You can make the image of the person as a single sprite, but the
effect looks much more realistic if you allocate separate sprites for different parts of the
person's body. The arms can be one sprite, the body another, and the legs a third. Then,
you can define two additional sprites: one as a second set of legs in a different position,
and the other as a second set of arms in a different position. Position the first set of
arms, the body and the first set of legs on the screen so that they are joined into a full
body. By continually turning on and off the two different sets of arms and legs, the
image appears to be running. This process involves overlaying and adjoining sprites.
The explanation given here is a simplified algorithm, and the actual programming can be
tricky. Sprite programming has been made easy with the new BASIC 7.0 sprite
commands.

The first part of this section explains the new BASIC sprite commands and
illustrates the procedure for overlaying and adjoining sprites. The second part
explains the internal operations of sprites, including storage information, color assign-
ments, sprite expansion and addressing the sprite registers in machine language.

SPRITES 267

BASIC 7.0
SPRITE COMMAND SUMMARY

Here's a brief description of each BASIC 7.0 sprite command:

COLLISION: Defines the type of sprite collision on the screen, either sprite to sprite or
sprite to data collision

MOVSPR: Positions or moves sprites from one screen location to another
SPRCOLOR: Defines colors for multi-color sprites
SPRDEF: Enters sprite definition mode to edit sprites
SPRITE: Enables, colors, sets sprite screen priorities, and expands a sprite
SPRSAV: Stores a text string variable into a sprite storage area and vice versa or

copies data from one sprite to another
SSHAPE: Stores the image of a portion of the bit-map screen into a text-string variable

BASIC 7.0
SPRITE COMMAND FORMATS

COLLISION
Define sprite collision priorities
where:

COLLISION type ^statement]

type Type of collision, as follows:
1 = Sprite-to-sprite collision
2 = Sprite-to-display data collision
3 = Light pen (40 columns only)

statement BASIC line number of a subroutine

EXAMPLE:

COLLISION 1,5000 Detects a sprite-to-sprite collision and program control sent
to subroutine at line 5000.

COLLISION 1 Stops interrupt action which was initiated in above example.

COLLISION 2,1000 Detects sprite-to-data collision and program control directed
to subroutine in line 1000.

MOVSPR
Position or move sprite on the screen (using any of the following four formats):

1. MOVSPR number ,X,Y Place the specified sprite at absolute
sprite coordinate X,Y.

2. MOVSPR number, + X, + Y Move sprite relative to its current
position.

3. MOVSPR number, X;Y Move sprite distance x at angle y
relative to its current position.

4. MOVSPR number, angle # speed Move sprite at an angle relative to its
original coordinates, in the clockwise
direction and at the specified speed.

where:
number is sprite's number (1 through 8)
X,Y> is coordinate of the sprite location.

ANGLE is the angle (0-360) of motion in the clockwise direction relative to the sprite's
original coordinate.

SPEED is the speed (0-15) at which the sprite moves.

This statement positions a sprite at a specific location on the screen according to
the SPRITE coordinate plane (not the bit map plane). MOVSPR also initiates sprite
motion at a specified rate. This chapter contains a diagram of the sprite coordinate
plane.

EXAMPLES:

MOVSPR 1, 150, 150 Position sprite 1 at coordinate 150,150.

MOVSPR 1, +20, +30 Move sprite 1 to the right 20 (X) coordinates and down
30 (Y) coordinates.

MOVSPR 4, 50; 100

MOVSPR 5, 45 #15

Move sprite 4 by 50 coordinates at a 100 degree
angle.

Move sprite 5 at a 45 degree angle in the clockwise
direction, relative to its original x and y coordinates.
The sprite moves at the fastest rate (15).

NOTE: Once you specify an angle and a speed in the fourth form of the
MOVSPR statement, the sprite continues on its path (even if the sprite
is disabled) after the program stops, until you set the speed to zero (0)
or press RUN/STOP and RESTORE.

SPRCOLOR
Set multi-color 1 and/or multi-color 2 colors for all sprites

SPRCOLOR [smcr-1] [,smer-2]

where:

SPRITES 269

smcr-1 Sets multi-color 1 for all sprites.
smer-2 Sets multi-color 2 for all sprites.

Either of these parameters may be any color from 1 through 16.

EXAMPLES:

SPRCOLOR 3,7 Sets sprite multi-color 1 to red and multi-color 2 to blue.

SPRCOLOR 1,2 Sets sprite multi-color 1 to black and multi-color 2 to white.

SPRDEF
Enter the SPRite DEFinition mode to create and edit sprite images.

SPRDEF

The SPRDEF command defines sprites interactively.
Entering the SPRDEF command displays a sprite work area on the screen which is

24 characters wide by 21 characters tall. Each character position in the grid corresponds
to a sprite pixel in the displayed sprite to the right of the work area. Here is a summary
of the SPRite DEFinition mode operations and the keys that perform them:

USER INPUT

1-8 keys
A
CRSR keys
RETURN key
RETURN key

HOME key

CLR key
1-4 keys
CTRL key, 1-8
Commodore key, 1-8
STOP key
SHIFT RETURN

X
Y
M
C

DESCRIPTION

Selects a sprite number at the SPRITE NUMBER? prompt only.
Turns on and off automatic cursor movement.
Moves cursor.
Moves cursor to start of next line.
Exits sprite designer mode at the SPRITE
NUMBER? prompt only.
Moves cursor to top left
corner of sprite work area.
Erases entire grid.
Selects color source and enables sprite pixels.
Selects sprite foreground color (1-8).
Selects sprite foreground color (9-16).
Cancels changes and returns to prompt.
Saves sprite and returns to
SPRITE NUMBER? prompt.
Expands sprite in X (horizontal) direction.
Expands sprite in Y (vertical) direction.
Multi-color sprite.
Copies sprite data from one sprite to another.

This SPRite DEFinition area is shown in Figure 9-1

Figure 9-1. SPRite DEFinition Area

SPRITE CREATION PROCEDURE IN
SPRITE DEFINITION MODE
Here's the general procedure to create a sprite in SPRite DEFinition mode:

1. Clear the work area by pressing the shift and CLR/HOME keys at the same
time.

2. If you want a multi-color sprite, press the M key and the cursor (+) appears
twice as large as the original one. The double-width cursor appears since
multi-color mode actually turns on two pixels for every one in standard
sprite mode. Multi-color sprites have only half the horizontal resolution of
standard sprites.

3. Select a sprite color. For colors between 1 and 8, hold down the CONTROL
key and press a key between 1 and 8. To select color codes between 9 and
16* hold down the Commodore (CO key and press a key between 1 and 8.

4. Now you are ready to create the shape of your sprite. The numbered keys 1
through 4 fill the sprite and give it shape. For a single-color sprite, use the 2
key to fill a character position within the work area. Press the 1 key to erase
what you have drawn with the 2 key. If you want to fill one character

SPRITES 271

position at a time, press the A key. Now you have to move the cursor
manually with the cursor keys. If you want the cursor to move automatically
to the right while you hold it down, press the A key again. As you fill in a
character position within the work area, you can see the corresponding pixel
in the displayed sprite turn on. The sprite image changes as soon as you edit
the work area.

In multi-color mode, the 2 key fills two character positions in the work
area with the multi-color 1 color, the 3 key fills two character positions with
the multi-color 2 color.

You can turn off (color the pixel in the background color) filled areas
within the work area with the 1 key. In multi-color mode, the 1 key turns
off two character positions at a time.

5. While constructing your sprite, you can move freely in the work area
without turning on or off any pixels using the RETURN, HOME and cursor
keys.

6. At any time, you may expand your sprite in both the vertical and horizontal
directions. To expand vertically, press the Y key. To expand horizontally,
press the X key. To return to the normal size sprite display, press the X or Y
key again.

When a key turns on AND off the same control, it is referred to as
toggling, so the X and Y keys toggle the vertical and horizontal expansion of
the sprite.

7. When you are finished creating your sprite and are happy with the way it
looks, save it in memory by holding down the SHIFT key and pressing the
RETURN key. The Commodore 128 stores the sprites data in the appropri-
ate sprite storage area. The displayed sprite in the upper right corner of the
screen is turned off and control is returned to the SPRITE NUMBER
prompt. If you want to create another sprite enter another sprite number and
edit the new sprite just as you did with the first one. If you want to display
the original sprite in the work area again, enter the original sprite number. If
you want to exit SPRite DEFinition mode, simply press RETURN at the
SPRITE NUMBER prompt.

8. You can copy one sprite into another with the C1 key.
9. If you do not want to SAVE your sprite, press the STOP key. The Commo-

dore 128 turns off the displayed sprite and any changes you made are
cancelled. You are returned to the SPRITE NUMBER prompt.

10. To EXIT SPRite DEFinition mode, press the RETURN key while the
SPRITE NUMBER prompt is displayed on the screen without a sprite
number following it. You can exit under either of the following conditions:

• Immediately after you SAVE your sprite in memory (shift RETURN)
• Immediately after you press the STOP key

Once you have created a sprite and have exited SPRite DEFinition mode, your
sprite data is stored in the appropriate sprite storage area in the Commodore 128's

memory. Since you are now back in the control of the BASIC language, you have to
turn on your sprite in order to see it on the screen. To turn it on, use the SPRITE
command you learned. For example, you created sprite 1 in SPRDEF mode. To turn it
on in BASIC, color it blue and expand it in both the X and Y directions and enter this
command:

SPRITE 1,1,7,0,1,1,0

Now use the MOVSPR command to move it at a 90-degree angle at a speed of 5,
as follows:

MOVSPR 1, 90 # 5

Now you know all about SPRDEF mode. First, create the sprite, save the sprite
data and exit from SPRDEF mode to BASIC. Next, turn on your sprite with the SPRITE
command. Move it with the MOVSPR command. When you're finished programming,
SAVE your sprite data in a binary file with the BSAVE command as follows:

BSAVE "filename", BO, P3584 TO P4096 (This saves all 8 sprites.)

SPRITE
Turn on and off, color, expand and set screen priorities for a sprite

SPRITE number> [,on/off][,fngd][,priority] [,x-exp] [,y-exp] [,mode]

The SPRITE statement controls most of the characteristics of a sprite. The
brackets signify optional parameters. If you omit a parameter, you still must include a
comma in its place.

PARAMETER DESCRIPTION

number Sprite number (1-8)
on/off Turn sprite on (1) or off (0)
foreground Sprite foreground color (1-16)
priority Priority is 0 if sprites appear in front of objects on the screen. Priority

is 1 if sprites appear in back of objects on the screen,
x-exp Horizontal expansion on (1) or off (0)
y-exp Vertical expansion on (1) or off (0)
mode Select standard sprite (0)

or multi-color sprite (1)

Unspecified parameters in subsequent sprite statements take on the characteristics of the
previous SPRITE statement. You may check the characteristics of a SPRITE with the
RSPRITE function.

EXAMPLES:

SPRITE 1,1,3 Turn on sprite number 1 and color it red.

SPRITES 273

SPRITE 2,1,7,1,1,1 Turn on sprite number 2, color it blue, make it pass behind
objects on the screen and expand it in the vertical and
horizontal directions.

SPRITE 6,1,1,0,0,1,1 Turn on SPRITE number 6, color it black. The first 0
tells the computer to display the sprites in front of objects
on the screen. The second 0 and the 1 following it tell the
C128 to expand the sprite vertically only. The last 1
specifies multi-color mode. Use the SPRCOLOR com-
mand to select the sprite's multi-colors.

SPRSAV

Store sprite data from a text string variable into a sprite storage area or vice versa.

SPRSAV origin >, destination >

This command copies a sprite image from a string variable to a sprite storage area.
It also copies the data from the sprite storage area into a string variable. Either the origin
or the destination can be a sprite number or a string variable but both cannot be string
variables. If you are copying a string into a sprite, only the first 63 bytes of data are
used. The rest are ignored since a sprite can only hold 63 data bytes.

EXAMPLES:

SPRSAV 1,A$ Copies the bit pattern from sprite 1 to the string variable A$.

SPRSAV B$,2 Copies the data from string variable B$ into sprite 2.

SPRSAV 2,3 Copies the data from sprite 2 to sprite 3.

SSHAPE

Save/retrieve shapes to/from string variables
SSHAPE and GSHAPE are used to save and load rectangular areas of multi-color

or bit-mapped screens to/from BASIC string variables. The command to save an area of
the screen into a string variable is:

SSHAPE string variable, XI, Yl [,X2,Y2]

where:

string variable String name to save data in
X1,Y1 Corner coordinate (0,0 through 319,199) (scaled)
X2,Y2 Corner coordinate opposite (XI,Yl) (default is the PC)

Also see the LOCATE command described in Chapter 3 for information on the
pixel cursor.

EXAMPLES:

SSHAPE A$,10,10

SSHAPEB$,20,30,47,51

SSHAPE D$,+ 10.+ 10

Saves a rectangular area from the coordinates 10,10 to
the location of the pixel cursor, into string variable A$.

Saves a rectangular area from top left coordinate
(20,30) through bottom right coordinate (47,51) into
string variable B$.

Saves a rectangular area 10 pixels to the right and 10
pixels down from the current position of the pixel cursor.

ADJOINING SPRITES
The following program is an example of adjoining sprites. The program creates an outer
space environment. It draws stars, a planet and a spacecraft similar to Apollo. The spacecraft
is drawn, then stored into two data strings, A$ and B$. The front of the spaceship, the cap-
sule, is stored in sprite 1. The back half of the spaceship, the retro rocket, is stored in
sprite 2. The spacecraft flies slowly across the screen twice. Since it is traveling so slowly
and is very far from Earth, it needs to be launched earthward with the retro rockets. After the
second trip across the screen, the retro rockets fire and propel the capsule safely toward Earth.

Here's the program listing:

5 COLOR 4,1:COLOR 0,1:COLOR 1,2:REM SELECT BLACK BORDER & BKGRND, WHITE FRGRD
10 GRAPHIC 1,1:REM SET HI RES MODE
17 FOR I=lTO40
18 X=INT(RND(l)*320)+l:REM DRAW STARS
19 Y=INT(RND(l)*200)+l:REM DRAW STARS
21 DRAW 1,X,Y:NEXT : REM DRAW STARS
22 BOX 0,0,5,70,40,,1:REM CLEAR BOX
23 BOX 1,1,5,70,40:REM BOX-IN SPACESHIP
24 COLOR 1,8:CIRCLE 1,190,90,35,25:PAINT 1,190,95:REM DRAW & PAINT PLANET
25 CIRCLE 1,190,90,65,10:CIRCLE 1,190,93,65,10:CIRCLE 1,190,95,65,10:COLOR 0,1
2 6 DRAW 1,10,17 TO 16,17 TO 32,10 TO 33,20 TO 32,30 TO 16,23 TO 10,23 TO 10,17
28 DRAW 1,19,24 TO 20,21 TO 27,25 TO 26,28:REM BOTTOM WINDOW
35 DRAW 1,20,19 TO 20,17 TO 29,13 TO 30,18 TO 28,23 TO 20,19:REM TOP WINDOW
38 PAINT l,13,20:REM PAINT SPACESHIP
40 DRAW 1,34,10 TO 36,20 TO 34,30 TO 45,30 TO 46,20 TO 45,10 TO 34,10:REM SP1
42 DRAW 1,45,10 TO 51,12 TO 57,10 TO 57,17 TO 51,15 TO 46,17:REM ENG1
43 DRAW 1,46,22 TO 51,24 TO 57,22 TO 57,29 TO 51,27 TO 45,29:REM ENG2
44 PAINT 1,40,15:PAINT 1,47,12:PAINT 1,47,26:DRAW 0,45,30 TO 46,20 TO 45,10
45 DRAW 0,34,14 TO 44,14 :DRAW 0,34,21 TO 44,21:DRAW 0,34,28 TO 44,28
47 SSHAPE A$,10,10,33,32:REM SAVE SPRITE IN A$
48 SSHAPE B$,34,10,57,32:REM SAVE SPRITE IN B$
50 SPRSAV A$,1:REM SPR1 DATA
55 SPRSAV B$,2:REM SPR2 DATA
60 SPRITE 1,1,3,0,0,0,0:REM SET SPRl ATTRIBUTES
65 SPRITE 2, 1,7,0,0,0,0:REM SET SPR2 ATTRIBUTES
82 MOVSPR 1,150 ,150:REM ORIGINAL POSITION OF SPRl
83 MOVSPR 2
8 5 MOVSPR 1
87 MOVSPR 2

92 MOVSPR 1
9 3 MOVSPR 2
9 5 MOVSPR 1
96 MOVSPR 2

172 ,150:REM ORIGINAL POSITION OF SPR2
270 #
270 #

:REM MOVE SPRl ACROSS SCREEN
:REM MOVE SPR2 ACROSS SCREEN

90 FOR I=1TO 5950:NEXT:REM DELAY
150,150:REM POSITION SPRl FOR RETRO ROCKET LAUNCH
174,150:REM POSITION SPR2 FOR RETRO ROCKET LAUNCH
270 # 10 :REM SPLIT ROCKET
90 # 5 :REM SPLIT ROCKET

97 FOR 1 = 1 TO 1200:NEXT:REM DELAY
98 SPRITE 2,0:REM TURN OFF RETRO ROCKET (SPR2)
99 FOR I=1TO 20500:NEXT:REM DELAY
100 GRAPHIC 0,l:REM RETURN TO TEXT MODE

SPRITES 275

Here's an explanation of the program:

Line 5 COLORs the background black and the foreground white.
Line 10 selects standard bit map mode and clears the bit map screen.
Lines 17 through 21 DRAW the stars.
Line 23 BOXes in a display area for the picture of the spacecraft in the top-left

corner of the screen.
Line 24 DRAWs and PAINTs the planet.
Line 25 DRAWs the CIRCLES around the planet.
Line 26 DRAWs the outline of the capsule portion of the spacecraft.
Line 28 DRAWs the bottom window of the space capsule.
Line 35 DRAWs the top window of the space capsule.
Line 38 PAINTs the space capsule white.
Line 40 DRAWs the outline of the retro rocket portion of the spacecraft.
Line 42 and 43 DRAW the retro rocket engines on the back of the spacecraft.
Line 44 PAINTs the retro rocket engines and DRAWs an outline of the back of the retro

rocket in the background color.
Line 45 DRAWs lines on the retro rocket portion of the spacecraft in the background

color. (At this point, you have displayed only pictures on the screen. You have
not used any sprite statements, so your rocketship is not yet a sprite.)

Line 47 positions the SSHAPE coordinates above the first half (24 by 21 pixels) of the
capsule of the spacecraft and stores it in a data string, A$.

Line 48 positions the SSHAPE coordinates above the second half (24 by 21 pixels) of
the spacecraft and stores it in a data string, B$.

Line 50 transfers the data from A$ into sprite 1.
Line 55 transfers the data from B$ into sprite 2.
Line 60 turns on sprite 1 and colors it red.
Line 65 turns on sprite 2 and colors it blue.
Line 82 positions sprite 1 at coordinate 150,150.
Line 83 positions sprite 2, 23 pixels to the right of the starting coordinate of

sprite 1.
Lines 82 and 83 actually join the two sprites.
Lines 85 and 87 move the joined sprites across the screen.
Line 90 delays the program. This time, delay is necessary for the sprites to complete the

two trips across the screen. If you leave out the delay, the sprites do not have
enough time to move across the screen.

Lines 92 and 93 position the sprites in the center of the screen, and prepare the
spacecraft to fire the retro rockets.

Line 95 propels sprite 1, the space capsule, forward. The number 10 in line 95 specifies
the speed in which the sprite moves. The speed ranges from 0 (stop) to 15
(fastest).

Line 96 moves the expired retro rocket portion of the spacecraft backward and off the
screen.

Line 97 is another time delay so the retro rocket, sprite 2, has time to move off
the screen.

Line 98 turns off sprite 2, once it is off the screen.
Line 99 is another delay so the capsule can continue to move across the screen.
Line 100 returns you to text mode.

SPRITE PROGRAM EXAMPLES

The best way to create sprites is with SPRDEF. The following examples assume you
have created your sprites in SPRDEF mode.

The first example sprite program illustrates the use of the SPRITE and MOVSPR
commands. It positions all eight sprites so they appear to converge on one screen
location, then scatter in all eight directions. Here's the listing:

10 REM MOVE SPRITE EXAMPLE
20 FOR 1=1 TO 8
30 MOVSPR I,100,100
4 0 NEXT
50 FOR 1=1 TO 8
60 SPRITE 1,1,1,1,1,1,0
70 MOVSPR 1,1*30 # I
8 0 NEXT

Lines 20 through 40 place all eight sprites at sprite coordinate location 100,100.
At this point, the sprites are not yet enabled, but when they are, all eight are on top of
one another.

Lines 50 and 60 turn on each of the eight sprites in eight different colors. The first
" I " is the sprite number parameter. The first " 1 " in line 60 signifies the enabling of
each sprite. The second " I " specifies the color code for each sprite. The second " 1 "
(the fourth parameter) sets the display priority for all the sprites. A display priority of
one tells the C128 to display the sprites behind objects on the screen. A zero display
priority enables sprites to pass in front of objects on the text or bit-map screen. The fifth
and sixth parameters, both of which are ones (1), expand the sprites' size in both the
vertical and horizontal directions to twice their original size. The final parameter in the
SPRITE statement selects the graphics display mode for the sprites; either standard
bit-map sprites (0) or multi-color bit-map sprites (1). In this example, the sprites are
displayed as standard bit-map sprites.

Line 70 moves the sprites on the screen. The first parameter, I, represents the
sprite number. The second parameter, "1*30", defines the angle at which the sprites
travel on the screen. The pound sign (#) notation signifies that the sprites move
according to a particular angle and speed. The final parameter " I " specifies the speed at
which the sprites travel on the screen. In this example, sprite 1 moves at the slowest rate
of 1, sprite 2 moves at the next highest speed of 2, while sprite 8 moves the fastest of
the eight sprites at speed 8. The highest speed a sprite can move is 15.

Finally, line 80 completes the FOR . . . NEXT structure of the loop.

SPRITES 277

Notice that the sprites move continuously even after the program has stopped
RUNning. The reason for this is that sprites are wedged into the interrupt processing of
the C128. To turn off and stop the sprites on the screen, either issue a SPRITE
command that turns them off, or press RUN/STOP and RESTORE,

The second sprite program example provides a simplified adjoining sprite algo-
rithm. It moves two adjoined sprites across the screen at a ninety-degree angle,
assuming that your sprites already reside in the sprite storage range between 3584
($0E00) and 4095 ($0FFF). For simplicity, if you don't have any actual sprite images
stored in the sprite data area, fill the sprite data area with 255 ($FF) from within the
Machine Language Monitor with this command:

F 0E00 OFFF FF

For now, this command turns on all pixels within each sprite. Now you can see
how the adjoining algorithm places and moves sprites 7 and 8 side by side.

Here's the listing:
10 REM ADJOINING SPRITE ALGORITHM
20 REM THIS PROGRAM ASSUMES YOUR SPRITES ALREADY EXIST IN SPRITE STORAGE
30 1=1 :REM INITIALIZE DISTANCE I
35 SCNCLR
40 MOVSPR 8,50,100:REM SET ORIG POSITION OF SPRITE 8

73,100:REM SET ORIG POSITION OF SPRITE 7 TO ADJOIN SPR

1,3:REM ENABLE SPR 8
1,4:REM ENABLE SPR 7
I ;90:REM MOVE SPR 8 I UNITS AT A 90 DEGREE ANGLE

5 0 MOVSPR
60 DO
70 SPRITE
80 SPRITE
90 MOVSPR
100 MOVSPR 7,1 ;90:REM MOVE SPR 8 I UNITS AT A 90 DEGREE ANGLE
110 1=1+1 :REM INCREMENT LOOP
120 LOOP

Line 30 initializes the distance variable I to 1.
Line 40 positions sprite 8 at absolute coordinates 50,100. Since this program

moves two adjoining sprites from the left to right at a ninety-degree angle, sprite 7,
which is attached to sprite 8 must be positioned in such a way that it is touching the right
edge of sprite 8. Line 50 places sprite 7 on the exact right edge of sprite 8. Since a sprite
is 24 pixels wide (before expansion), to adjoin two sprites together, place the ajoining
sprite exactly 24 pixels to the right of the top left corner coordinate position of sprite 8.
The position of a sprite is placed on the sprite coordinate plane according to the upper
leftmost pixel of the sprite. Since the original position of sprite 8 is 50,100, add 24
(inclusive) to the X (horizontal) coordinate to make them join exactly on the respective
edges of both sprites. This is provided your sprites are exactly 24 pixels wide. If you
don't fill the entire dimensions of a sprite, you may have to adjust the coordinates so
that they meet correctly.

At this point, the sprite coordinates are perfectly adjoined. Line 60 initiates a loop,
so that the distance can be updated to enable the sprites' movement across the screen.
Lines 70 and 80 enable sprites 8 and 7 and color them red and cyan, respectively.

Lines 90 and 100 move sprite 8 and 7, respectively, at a 90-degree angle
according to the distance specified by the variable I. Line 110 updates the distance of 1
each cycle through the loop. Line 120 circulates the loop until the distance variable I is
equal to 320.

The third sprite example provides an algorithm to overlay two sprites and move
them on the screen on a 45-degree angle. Again, this program assumes your sprite data
resides in sprite storage. If your sprite images are not stored there, fill the sprites with
data as you did in the last adjoining example.

Here's the listing:

10 REM OVERLAY EXAMPLE
20 REM THIS PROGRAM ASSUMES SPRITE DATA RESIDES IN SPRITE STORAGE
30 1=1 :REM INITIALIZE DISTANCE I
3 5 SCNCLR
40 MOVSPR 8,50,100:REM SET ORIG POSITION OF SPRITE 8
50 MOVSPR 7
6 0 DO
70 SPRITE 8
8 0 MOVSPR 8
90 SPRITE 8

50,100:REM SET ORIG POSITION OF SPRITE 7 TO OVERLAY SPR 8

1,3 :REM ENABLE SPR 8
I;45 :REM MOVE SPR 8 I UNITS AT A 45 DEGREE ANGLE
0,3 :REM TURN OFF SPR8

100 SPRITE 7,1,4 :REM ENABLE SPR 7
110 MOVSPR 7,I;45 :REM MOVE SPR 8 I UNITS AT A 45 DEGREE ANGLE
120 SPRITE 7,0,3 :REM TURN OFF SPR 7
140 LOOP

As in the last program, line 30 initializes the distance variable I to 1.
Lines 40 and 50 position sprites 8 and 7, respectively, at coordinate 50,100. At

this point the sprites are not yet enabled, but when they are, sprite 7 will overlay sprite 8
since the lower sprite number has display priority over the higher sprite number.

Line 60 initiates a DO loop to move the sprites along the sprite coordinate plane.
Line 70 enables sprite 8 and colors it red. Line 80 moves sprite 8 a distance of one

coordinate according to the current value of I. Line 90 disables sprite 8.
Lines 100 through 120 perform the same operations for sprite 7 as lines 70 through

90 did for sprite 8: enable, move a single distance coordinate according to I and disable.
Line 140 repeats the process.

Since this process is repeated so quickly, it appears as though the two sprites
alternate movements. When you create the actual images you will use in your overlay
sprite program, the images between which you alternate will be ones that simulate the
movement of two images and create one animated image.

Create two sprites that appear to form a single animated image. You may have to
perfect the timing of the enabling and disabling of the images to make the animated
image appear more smooth. Nonetheless, you have a basis for animating two objects
into one single moving object.

Although these program examples are written in BASIC, the algorithms are the
same whether you are programming in BASIC or machine language. The next section
discusses sprite operations independent of the BASIC language. Since this section
explained sprites according to BASIC, the next section elaborates on the inner workings
of sprites from a machine level (language) perspective.

SPRITES 279

THE INNER WORKINGS OF SPRITES

You have seen how to create, move, color and expand sprites with the BASIC 7.0 sprite
commands. This section explains how to control sprites outside of the BASIC sprite
commands (except SPRDEF). This tells you which VIC registers are affected and the
specific bits that must be set or cleared to manipulate the sprite features.

Registers of the VIC chip control all aspects of sprites. The enabling of specific
bits in certain VIC registers turns on the features of the eight available sprites. The order
in which you turn on these features is critical to sprite animation. Following is a
summary of the steps necessary to display, color, move and expand sprites. Next to each
step is the VIC chip register or other memory location involved in each element of sprite
programming.

SPRITE PROGRAMMING SEQUENCE REGISTERS INVOLVED

1. Create the sprite image Sprite Data Storage: 3584-^1095 ($0E00-$0FFF)
This is also programmable. You must change the sprite
pointer values.

2. Point to the sprite data Sprite Data Pointers: 2040-2047 ($07F8-$07FF), or
8184-8191 ($1FF8-$1FFF) when the bit map screen has
been cleared with GRAPHIC 1,1

3. Enable (turn on) the sprite 53269 ($D015) (bits 7-0, depending on sprite number)

4. Color the sprite Standard 53287-53294 ($D027-$D02E)

Multi-color 53276 ($D01C), 53285 ($D025), 53286 ($D026)

5. Position the sprite 53248-53264 ($D000-$D010)

6. Expand the sprite 53271 ($D017) (Y direction), 53277 ($D01D) (X direction)

7. Define sprite display priorities 53275 ($D01B)

8. Define sprite collision priorities 53278 ($D01E), 53279 ($D01F)

These registers control most sprite characteristics. Once you learn these programming
steps, you will be able to exercise full control over the display and movement of sprites.

CREATING THE SPRITE IMAGE
An easy way to create sprites on the C128 is through SPRite DEFinition mode
(SPRDEF). For an explanation of SPRDEF see the SPRDEF entry in the beginning of
this chapter. This section assumes your sprite image is already created, and it resides in
the sprite data storage area. Before leaving SPRDEF, remember to press the SHIFT key
and RETURN at the same time; this allows SPRDEF to store the sprite data in the sprite
data storage area. Press RETURN a second time to exit SPRDEF.

The Commodore 128 has a dedicated portion of memory ranging from decimal
address 3584 ($0E00) through 4095 ($0FFF), where sprite data is stored. This portion of

memory takes up 512 bytes. As you know, a sprite is 24 pixels wide by 21 pixels tall. In
standard sprites, each pixel corresponds to one bit in memory. If the bit in a sprite is off
(equal to 0), the corresponding pixel on the screen is transparent, which allows the
background to pass through the sprite. If a bit within a sprite is on (equal to 1), the
corresponding pixel on the screen is turned on in the foreground color as determined by
the sprite color registers. The combination of zeroes and ones produces the image you
see on the screen. Multi-color sprites assign colors differently. See the multi-color sprite
section later in this chapter for details.

Since a sprite is 24 by 21 pixels and each pixel is represented by one bit of storage
in memory, one sprite uses up 63 bytes of memory. See Figure 9-2 to understand the
storage requirements for a sprite's data.

12345678 12345678 12345678

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
Each Row = 24 bits = 3 bytes

Figure 9-2. Sprite Data Requirements

A sprite requires 63 bytes of data. Each sprite block is actually made up of 64
bytes; the extra byte is not used. Since the Commodore 128 has eight sprites and each
one consists of a 64-byte sprite block, the computer needs 512 (8x64) bytes to
represent the data of all eight sprite images.

The area where all eight sprite blocks reside starts at memory location 3584
($0E00) and ends at location 4095 ($0FFF). Figure 9-3 lists the memory address ranges
where each individual sprite stores its data.

SPRITES 281

$OFFF (4095 Decimal)
]—Sprite 8

$0FC0
]—Sprite 7

$0F80
]—Sprite 6

$0F40
]—Sprite 5

$0F00
]—Sprite 4

$0EC0
]—Sprite 3

$0E80
]—Sprite 2

$0E40
]—Sprite 1

$0E00 (3584 Decimal)

Figure 9—3. Memory Address Ranges for Sprite Storage

Keep in mind that sprites are referred to as 1 through 8 in BASIC, but 0 through 7
in machine language.

SPRITE POINTERS
The VIC chip needs to know where to look for the bit patterns (data) that make up the
sprite image in memory. The sprite pointers are used explicitly for this purpose.

Unlike the Commodore 64, the C128 has automatically filled the sprite data
pointers with values that direct the VIC chip to point to the data stored in the sprite data
range 3584 ($0E00) through 4095 ($0FFF). These sprite data pointers are located at
2040 ($O7F8) through 2047 ($07FF) for sprites 0 and 7 respectively. They are also located
in the address range 8184 ($1FF8) through 8191 ($1FFF), once the bit map screen is
cleared with the GRAPHIC 1,1 command. The default contents of these locations are:

Hexadecimal 38 39 3A 3B 3C 3D 3E 3F
Decimal 56 57 58 59 60 61 62 63

To find the actual location where the sprite data pointers are looking for data in
memory, multiply the contents of the sprite data pointer by 64 (decimal). By multiplying
these values, you'll see that the pointers look for data in the default sprite storage
locations in Figure 9-3. See Figure 9-4 for an illustration.

The way the Commodore 128 automatically points to the correct sprite data is conven-
ient for programming, since it eliminates a step (provided the original values of the sprite
pointers have not been modified). If you want to store sprite data somewhere else in
memory, however, you'll have to change the original value of the sprite pointer (from
location 2040 through 2047, or 6184 through 8191) to a value that is equal to:

Start of Sprite Data / 64 = new contents of sprite pointer

DATA POINTER START OF

CONTENTS** SPRITE DATA

Sprite 0 Data Pointer = 56 * 64 = 3584 ($0E00)
Sprite 1 Data Pointer = 57 * 64 = 3648 ($0E40)
Sprite 2 Data Pointer = 58 * 64 = 3712 ($0E80)
Sprite 3 Data Pointer = 59 * 64 = 3776 ($0EC0)
Sprite 4 Data Pointer = 60 * 64 = 3840 ($0F00)
Sprite 5 Data Pointer = 61 * 64 = 3904 ($0F40)
Sprite 6 Data Pointer = 62 * 64 = 3968 ($0F80)
Sprite 7 Data Pointer = 63 * 64 = 4032 ($0FC0)
** = This applies to video bank 0 only.

Figure 9-4. Sprite Data Locations

The start of sprite data is divided by 64 because the data area is allocated in 64-byte
sections. For example, you want to place your sprite 0 data in the new location 6144
($1800). Divide 6144 by 64 to get 96. Place the value 96 ($60) in address 2040 ($078F).

ENABLING A SPRITE
Once the sprite image has been defined, and the data pointer is pointing to the correct
data, you can turn on the sprite. You do this by placing a value in the Sprite Enable
Register, location 53269 ($D015). The value placed in this register depends on which
sprite(s) you want to turn on. Bits 0 through 7 correspond to sprites 0 through 7. To
enable sprite 0, set bit 0. To enable sprite 1, set bit 1 and so on. The value you
place in the sprite enable register is equal to two raised to the bit position in decimal.

If you are programming in machine language and want to enable more than one
sprite at a time, add the values of two raised to the bit positions together and store the
result in the sprite enable register. For example, to enable sprite 5, raise two to the fifth
power (32 ($20)) and store it as follows:

LDA #$20
STA $D015

To enable sprites 5 and 7, raise two to the fifth (32 ($20)) and add it to two to the
seventh (128($80)) to obtain the result 160 (SAO):

LDA $A0
STA $D015

An easier way of perceiving the idea is through binary notation in the Machine
Language Monitor as follows:

LDA # % 10100000
STA $D015

To disable the sprite display, clear the bits in the sprite enable register.

SPRITES 283

ASSIGNING COLOR TO SPRITES
Sprites have two kinds of color displays: standard bit-map and multi-color bit-map
sprites. The color assignments to the pixels within the sprites work in a similar way to
standard bit-map and multi-color bit-map modes for the screen.

STANDARD BIT-MAP SPRITES
Standard bit-map sprites each have their own color register. The lower four bits of each
sprite color register determine the sprite color as specified by the sixteen C128 color
codes. Figure 9-5 shows the standard bit-map sprite color registers.

ADDRESS

53287 ($D027)

53288 ($D028)

53289 ($D029)

53290 ($D02A)

53291 ($D02B)

53292 ($D02C)

53293 ($D02D)

53294 ($D02E)

DESCRIPTION

SPRITE 0 COLOR
SPRITE 1 COLOR
SPRITE 2 COLOR
SPRITE 3 COLOR
SPRITE 4 COLOR
SPRITE 5 COLOR
SPRITE 6 COLOR
SPRITE 7 COLOR

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

Figure 9-5. Standard Bit Map Sprite Color Registers

Figure 9-6 lists the color codes that are placed in the standard bit-map sprite color
registers:

0
1
2
3
4
5
6
7

Black
White
Red
Cyan
Purple
Green
Blue
Yellow

Figure 9-6.

8
9

10
11
12
13
14
15

Sprite

Orange
Brown
Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Color Codes

In standard bit-map sprites, the data in the sprite block determine how the colors
are assigned to the pixels on the screen within the visible sprite. If the bit in the
sprite storage block is equal to 1, the corresponding pixel on the screen is assigned
the color from the standard sprite color register. If the bit in the sprite data block

is equal to zero, those pixels on the sprite are transparent and the background data
from the screen passes through the sprite.

MULTI-COLOR SPRITES
Multi-color sprites offer a degree of freedom in the use of color, but you trade the
higher resolution of standard sprites for the added color. Multi-color sprites are displayed
in three colors plus a background color. Multi-color bit-map sprites are assigned colors
similar to the way the other multi-color modes work. Before you can assign a sprite
multiple colors, you must first enable the multi-color sprite. The sprite multi-color
register in location 53276 ($D01C) operates in the same manner as the sprite enable
register. Bits 0 through 7 pertain to sprites 0 through 7. To select a multi-color sprite,
set the bit number that corresponds to the sprite number. This requires that you raise
two to the bit position of the sprite that you want displayed in multi-color. For example,
to select sprite 4 as a multi-color sprite, raise two to the fourth power (16) and place
it in the multi-color sprite register. In machine language, perform the following
instructions:

LDA #$10
STA $D01C

To select more than one multi-color sprite, add the values of two raised to the bit
positions together and store the value in the multi-color sprite register.

The VIC chip provides two multi-color registers (0 and 1), in which to place color
codes. These are the locations of the sprite multi-color registers;

ADDRESS

Sprite Multi-Color Register 0 53285 ($D025)
Sprite Multi-Color Register 1 53286 ($D026)

The color codes are those listed in Figure 9-6.

Like multi-color character mode, the pixels in the multi-color sprites are assigned
color according to the bit patterns in the sprite storage block. In this mode, the bits in
the sprite block are grouped in pairs. The bit pair determines how the pixels are assigned
their individual colors, as follows:

BIT PAIR DESCRIPTION

00 TRANSPARENT (SCREEN COLOR)
01 SPRITE MULTI-COLOR REGISTER #0 (53285) ($D025)
10 SPRITE COLOR REGISTER
11 SPRITE MULTI-COLOR REGISTER #1 (53286) ($D026)

SPRITES 285

If the bit pair is equal to 00, the pixels are transparent and the background from
the screen passes through the sprite. If the bit pattern equals 10 (binary), the color is
taken from the sprite color register (locations 53287-53294) of the sprite being defined.
Otherwise, the other two bit pair possibilities (01 and 11) are taken from sprite
multi-color registers 0 and 1 respectively.

POSITIONING SPRITES ON THE SCREEN
Each sprite has two position registers to control the sprite's position on the visible screen:
horizontal (X coordinate) and vertical (Y coordinate) positions. Figure 9—7 gives the
memory locations of the sprite position registers as they appear in the C128 memory.

L O C A T I O N

DECIMAL HEX DESCRIPTION

53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264

($D000)
($D001)
($D002)
($D003)
($D004)
($D005)
($D006)
($D007)
($D008)
($D009)
($D00A)
($D00B)
($D00C)
($D00D)
($D00E)
($D00F)
($D010)

SPRITE 0 X POSITION REGISTER
SPRITE 0 Y POSITION REGISTER
SPRITE 1 X POSITION REGISTER
SPRITE 1 Y POSITION REGISTER
SPRITE 2 X POSITION REGISTER
SPRITE 2 Y POSITION REGISTER
SPRITE 3 X POSITION REGISTER
SPRITE 3 Y POSITION REGISTER
SPRITE 4 X POSITION REGISTER
SPRITE 4 Y POSITION REGISTER
SPRITE 5 X POSITION REGISTER
SPRITE 5 Y POSITION REGISTER
SPRITE 6 X POSITION REGISTER
SPRITE 6 Y POSITION REGISTER
SPRITE 7 X POSITION REGISTER
SPRITE 7 Y POSITION REGISTER
SPRITE X MSB REGISTER

Figure 9-7. Memory Location of Sprite Position Register

The sprite position registers together plot the sprite on a vertical and horizontal
coordinate. The position of reference for the calculated vertical and horizontal coordi-
nate is taken from the upper-left corner pixel within the sprite. Whenever you want to
place the sprite on a particular screen position, calculate the position using the upper left
corner pixel within the sprite. The sprite coordinate plane is not the same as the bit-map
coordinate plane. The bit-map coordinate plane starts in the upper-left corner of the
screen at coordinate 0,0. The lower right corner of the bit map coordinate plane is point
319,199. The sprite coordinate plane starts at point 24,50 in the top-left corner of the
visible screen. The final visible point on the sprite coordinate plane at the bottom-right
corner of the screen is 343,249. Figure 9-8 shows how the sprite coordinate plane
relates to the visible screen.

'North American television transmission standards for your home TV.

Figure 9-8. Visible Sprite Coordinates

After seeing the sprite coordinate plane, you may have noticed something unusual.
The vertical coordinate positions have a range of 200. The horizontal coordinate
positions have a range of 320 coordinates. Since the C128 is an 8-bit computer, the
highest value any register can represent is 255.

How do you position a sprite past the 255th horizontal screen position? The
answer is, you have to borrow a bit from another register in order to represent a value
greater than 255.

An extra bit is already set aside in the Commodore 128 memory in case you want
to move a sprite past the 255th horizontal coordinate. Location 53264 controls sprite
movement past position 255. Each of the 8 bits in 53264 controls a sprite. Bit 0 controls
sprite 0, bit 1 controls sprite 1 and so on. For example, if bit 7 is set, sprite 7 can move
past the 255th horizontal position.

Each time you want a sprite to move across the entire screen, turn on the borrowed
bit in location 53264 when the sprite reaches horizontal position 255. Once the sprite
moves off the right edge of the screen, turn off the borrowed bit so the sprite can move
back onto the left edge of the screen. The following commands allow sprite seven to
move past the 255th horizontal position:

SPRITES 287

LDA $D010
ORA #$80
STA $D010

The number 128 is the resulting decimal value from setting bit 7. You arrive at this
value by raising two to the seventh power. If you want to enable bit 5, raise two to the
fifth power, which, of course, is 32. The general rule is to raise two to the power of the
sprite number that you want to move past the 255th horizontal screen position. Now you
can borrow the extra bit you need to move a sprite all the way across the screen. To
allow the sprite to reappear on the left side of the screen, turn off bit seven again, as
follows:

LDA $D010
AND #$7F
STA $D010

Not all of the horizontal (X) and vertical (Y) positions are visible on the screen.
Only vertical positions 50 through 249 and horizontal positions 24 through 343 are
visible. Location 0,0 is off the screen as is any horizontal location less than 24 and
greater than 343. Any vertical location less than 50 and greater than 249 is also off the
screen. The off-screen locations are set aside so that an animated image can move
smoothly on and off the screen.

EXPANDING THE SIZE OF SPRITES
The VIC chip offers a feature that allows sprites to be expanded in size, in both the
horizontal and vertical directions. When the sprite is expanded, the sprite resolution
does not increase, the pixels within the sprite just cover twice as much area; therefore,
the sprite is twice as large. Here are the locations in memory for vertical and horizontal
sprite expansion:

ADDRESS

Vertical (Y) Sprite Expansion Register 53271 ($D017)
Horizontal (X) Sprite Expansion Register 53277 ($D01D)

These registers operate in the same manner as the sprite enable register.
Bits 0 through 7 pertain to sprites 0 through 7. To expand the sprite size in either
direction, raise two to the bit position and place it in the expansion register(s). For
example, to expand sprite 7 in both directions, perform these machine language
instructions:

LDA #$80 (% 10000000 = binary notation in the Monitor)
STA $D017
STA $D01D

To expand more than one sprite, add two raised to the bit position for the sprite
numbers you want to expand, and store the result in the expansion registers.

To return the sprites to their original size, clear the bits in the expansion
registers.

SPRITE DISPLAY PRIORITIES
In your sprite programs, you have the option of displaying sprites in front of or behind
other sprites or objects on the screen. This is known as defining the sprite's display
priorities. The VIC chip defines two distinct sprite display priorities:

1. Sprite-to-sprite
2. Sprite-to-data

SPRITE-TO-SPRITE DISPLAY PRIORITIES
Each of the eight sprites available on the Commodore 128 is assigned its own plane in
which it moves independent of other sprites or of the pictures on the screen background.
Visualize the sprite planes as in Figure 9-9.

The display priority of each sprite plane depends on the sprite number. The
sprite-to-sprite display priorities are predefined according to the sprite number. This

SPRITES 289

feature is preset by the C128 hardware, and is not controlled through a software
register. The lower the sprite number, the higher the priority. The higher priority sprite
passes in front of the lower priority sprite. Sprite 0 has the highest priority; therefore, it
passes in front of any other sprites that may be on the screen should they meet at a
particular screen location. For example, sprites 1 and 5 are moving toward a common
location on the screen. When the sprites reach the common location, sprite 1 passes in
front of sprite 5, since the lower sprite number has the higher display priority. Keep this
in mind when you want sprites to intersect paths and pass behind or in front of one
another. This is important when overlaying sprites. Assign the sprite you want to pass in
front of other sprites to the lower sprite number.

Portions of sprites (pixels) that are not assigned color (the bits in the sprite storage
block corresponding to those pixels are equal to zero) are transparent. Holes in these
sprites allow background data to pass through the transparent area and create a "win-
dow" effect. The same window effect occurs when a higher priority sprite with "holes"
passes in front of a lower priority sprite. Even though one sprite has a higher priority,
if portions of that higher priority sprite are transparent, the lower priority sprite or
the background display data is allowed to pass through the higher priority sprite.

SPRITE-TO-DATA DISPLAY PRIORITIES
The sprite to data (background screen) priority is selected through a software register
within the VIC chip. The Sprite to Background Display Priority Register (location
53275 ($D01B)) specifies whether a sprite passes in front of or behind the objects on the
screen background plane. This feature makes sprites seem more realistic. The default
value of this register is zero; therefore, all sprites pass in front of objects on the screen
background unless you change the bit values in this register. In other words, upon
power-up, all sprites have a higher priority than the screen background.

Bits 0 through 7 pertain to sprites 0 through 7. If a bit in this register is set,
the sprite passes behind the objects on the screen background. The bit number corre-
spondence to the sprite number works the same way as the sprite enable register and
many of the other sprite registers. To set these bits, raise two to the power of the bit
position for the sprite number that you want to pass behind the screen background
objects. For instance, to cause sprite 6 to pass behind objects on the screen background,
raise 2 to the sixth power and place the hexadecimal equivalent in location 53275
($D01B) in machine language as follows:

LDA #$40 (%01000000 = binary rotation in the Monitor)
STA $D01B

To set the sprite-to-data display priorities for more than one sprite, add the values
together for two raised to the respective bit positions and store the result in location
53275 ($D01B).

SPRITE COLLISION PRIORITIES
The VIC chip has a feature that enables you to detect when a collision occurs between
sprites, or between a sprite and screen objects.

SPRITE-TO-SPRITE COLLISIONS
A sprite-to-sprite collision occurs when an enabled pixel in the foreground of one sprite
overlaps an enabled pixel from the foreground of another sprite at any point on the sprite
coordinate plane. The collision may also occur at an off-screen coordinate location.
Location 53278 ($D01E) flags whether a sprite-to-sprite collision has occurred. This
register, like most of the sprite registers, has a bit which detects a collision for each
sprite. Bits 0 through 7 pertain to sprites 0 through 7. If a sprite is involved in a
sprite-to-sprite collision, the bit corresponding to the sprite involved in the collision is
set; therefore, at least two bits are always set in a sprite-to-sprite collision. These bits
remain set until they are read at which time the VIC clears the register. You should store
the value of this register in a variable until the collision or conditional code depending
on the collision is fully processed.

Once a sprite-to-sprite collision is detected, the sprite-to-sprite collision Interrupt
Request (IRQ) flag, bit 2 of location 53273 ($D019), is set and an interrupt occurs if
enabled in the IRQ Mask Register at 53274 ($D01A). When this occurs, you can
incorporate an interrupt routine to be activated upon the collision of two sprites.
Therefore, your sprite-to-sprite collision interrupt routine is only executed upon the
condition that two sprites collide. This built-in feature gives you a way to conditionally
wedge an interrupt (IRQ) routine into your application program, depending on the
behavior of the sprites on the screen.

SPRITE-TO-DATA COLLISIONS
A sprite-to-data collision occurs when an enabled pixel in the foreground of a sprite
overlaps a pixel from the foreground of an object on the screen. Location 53279
($D01F) flags whether a sprite-to-data collision has occurred. This register has a bit
which detects a collision for each sprite. Bits 0 through 7 pertain to sprites 0 through 7.
If a sprite is involved in a sprite-to-data collision, the bit corresponding to the sprite
involved in the collision is set. These bits remain set until they are read at which time
the VIC chip clears the entire register. A recommended programming practice is to store
the value of this register in a variable until the collision or conditional code depending
on the collision is fully processed.

Once a sprite-to-data collision is detected, the sprite-to-data collision IRQ flag in
bit 1 of location 53273 ($D019) is set and an interrupt occurs if enabled in the IRQ
Mask Register at 53274 (SD01A). When this occurs, you can incorporate an interrupt
routine to be activated upon the collision of two sprites. Therefore, your sprite-to-data
collision interrupt routine is only executed upon the condition that a sprite has collided
with an object on the screen foreground. Again, this gives you a way to conditionally
wedge an IRQ routine into your application program depending on the behavior of your
animated graphic objects on the screen.

Note that sprite-to-data collisions do not occur with multi-color bit pair 01
(binary). This permits those bits to be interpreted as background display data, without
interfering with sprite-to-data collisions.

10
PROGRAMMING
THE 80-COLUMN
(8563) CHIP

The Commodore 128 computer offers two types of video output: 40-column, composite
video through the VIC chip and 80-column, RGBI through the 8563 chip. The 80-column
display adds an important feature to the Commodore family of home and business
computers: The C128 can be regarded as a business machine. The 8563 chip enables the
C128 to display spreadsheets, wordprocessors, database managers and existing CP/M
applications in 80 columns. Now, the latest in the family of inexpensive Commodore
computers runs the Perfect series of business applications, and many other business
applications in C128 mode. In CP/M mode, the C128 runs Wordstar, and many other
popular business applications. In addition, the C128 supports all the hardware and
software available for the Commodore 64. The Commodore 128 is truly the complete
personal computer.

THE 8563 VIDEO CHIP
FEATURES

The primary purpose of the 8563 video chip is to display characters on the screen. The
8563 has two sets of characters, each with 256 elements. Unlike the VIC chip, however,
the 8563 can display all 512 characters simultaneously. The VIC chip displays only one
character set at a time.

The 8563 chip supports a limited bit map mode. Bit mapping can be achieved
through your own programs, preferably machine language. The BASIC 7.0 graphics
commands do not support the 80-column screen. Programming the bit-mapped screen in
BASIC is not recommended, since the language is not geared to manipulating single
display bits at a time. Later in this chapter, bit mapping the 80-column screen is
illustrated in machine language.

Another feature of the 8563 is smooth scrolling in the vertical and horizontal
directions. The 8563 chip is equipped with a set of scrolling registers that enable text to
be scrolled up, down, left or right. This is discussed later in the chapter.

PROGRAMMING THE
80-COLUMN (8563) CHIP

Programming the 8563 video chip is a quite different from programming the VIC chip.
As you know, the registers of the VIC chip are located in the range 53248 ($D000)
through 53296 ($D030) in bank 15. Unlike the VIC chip, the 8563 has only two
memory locations in Commodore 128 I/O memory. $D600 and $D601. This means that
only two memory locations in the Commodore 128 I/O memory pertain to the 8563
video chip. Internally, the 8563 has thirty-seven internal registers, though they are not
addressable in C128 I/O memory. In addition, the 8563 has 16K of RAM of its own that

PROGRAMMING THE 80-COLUMN (8563) CHIP 293

is independent of the Commodore 128 RAM, You must address locations $D600 and
$D601 as the gateways through which you indirectly address the thirty-seven internal
registers and 16K of 8563 RAM. You cannot directly access any of the thirty-seven
internal registers or the 16K of 8563 RAM.

Location $D600 is the Address Register, and $D601 is the Data Register.
Generally, you place an 8563 register number in the address register ($D600) then either
write to or read from the data register in location $D601. This is a simplified explanation—
the more-detailed information given in the following sections is needed to program the
8563 successfully.

8563 NOTES:

1. You cannot use BASIC PEEK, POKE, or WAIT instructions to access
the 8563, because these commands are implemented using indirect
operations. Any indirect machine instructions (such as LDA (),Y or
STA(),Y) must be avoided because they result in 'false' bus states
which are sensed by the 8563 and subsequently acted upon as though
they were valid instructions.

2. You should not, directly or indirectly, access the 8563 during inter-
rupts, because there is no way to save and restore the 8563 registers
without disrupting any I/O that might have been in progress at the
time of the interrupt.

DETAILS BEHIND PROGRAMMING
THE 80-COLUMN CHIP
So far, you have learned that the 8563 chip has:

1. Thirty-seven internal registers.
2. 16K of independent RAM (that is not addressable in the C128 memory map).
3. An address register ($D600 and a data register $D601) in C128 I/O memory.

Figure 10-1 is a summary of the 8563 registers, in the form of a register map:

REG

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

7

HT7
HD7
HP7

VW3
VT7

VD7
VP7

—
DS15
DS7

CP15
CP7

LPV7
LPH7
UA15

UA7
AA15

AA7
CTH3

_
COPY
TEXT

FG3
AI7

CB15
—

WC7
DA7

BA15
BA7

DEB7
DEE7

—

6

HT6
HD6
HP6

VW2
VT6

VD6
VP6

CM1
—

DS14
DS6

CP14
CP6

LPV6
LPH6
UA14

UA6
AA14

AA6
CTH2

—

5

HT5
HD5
HP5

VW1
VT5

VD5
VP5

CM0

DS13
DS5

CP13
CP5

LPV5
LPH5
UA13
UA5

AA13
AA5

CTH1

RVS CBRATE
ATR
FG2
AI6

CB14
—

WC6
DA6

BA14
BA6

DEB6
DEE6

—

SEMI
FG1
AI5

CB13
—

WC5
DA5

BA13
BA5

DEB5
DEE5

—
HSyNCVSyNC

4

HT4
HD4
HP4

VWO
VT4
VA4
VD4
VP4

CTV4
CS4
CE4

DS12
DS4

CP12
CP4

LPV4
LPH4
UA12
UA4

AA12
AA4

CTHO
CDV4
VSS4
DBL
FGO
AI4

RAM
UL4

WC4
DA4

BA12
BA4

DEB4
DEE4

—

—

BITS

3

HT3
HD3
HP3

HW3
VT3
VA3
VD3
VP3

CTV3
CS3
CE3

DS11
DS3

CPU
CP3

LPV3
LPH3
UAH
UA3

AA11
AA3

CDH3
CDV3
VSS3
HSS3
BG3
AI3

—
UL3

WC3
DA3

BAH
BA3

DEB3
DEE3
DRR3

—

l

HT2
HD2
HP2

HW2
VT2
VA2
VD2
VP2

CTV2
CS2
CE2

DS10
DS2

CP10
CP2

LPV2
LPH2
UA10

UA2
AA10

AA2
CDH2
CDV2
VSS2
HSS2
BG2
AI2

—
UL2

WC2
DA2

BA10
BA2

DEB2
DEE2
DRR2

—

l

HT1
HD1
HP1

HW1
VT1
VA1
VD1
VP1
IM1

CTV1
CS1
CE1
DS9
DS1
CP9
CP1

LPV1
LPH1

UA9
UA1
AA9
AA1

0

HTO
HDO
HPO

HWO
VTO
VAO
VDO
VPO
IMO

CTVO

cso
CEO
DS8
DSO
CP8
CPO

LPVO
LPHO

UA8
UAO
AA8
AAO

CDH1CDHO
CDV1
VSS1
HSS1
BG1
All

—
UL1

WC1
DAI
BA9
BA1

DEB1
DEE1
DRR1

—

CDVO

vsso
HSSO
BGO
AIO

—
ULO

WCO
DAO
BA8
BAO

DEBO
DEEO
DRRO

—

Horizontal Total
Horizontal Displayed
Horizontal Sync Position
Vert/Horiz Sync Width
Vertical Total
Vertical Total Adjust
Vertical Displayed
Vertical Sync Position
Interlace Mode
Character Total Vertical
Cursor Mode, Start Scan
Cursor End Scan Line
Display Start Address hi
Display Start Address lo
Cursor Position hi
Cursor Position lo
Light Pen Vertical
Light Pen Horizontal
Update Address hi
Update Address lo
Attribute Start Adr hi
Attribute Start Adr lo
Character Tot(h), Dsp(V)
Character Dsp(v)
Vertical smooth scroll
Horizontal smooth scroll
Foregnd/Bgnd Color
Address Increment / Row
Character Base Address
Underline scan line
Word Count
Data
Block Start Address hi
Block Start Address lo
Display Enable Begin
Display Enable End
DRAM Refresh rate
Horiz, Vert Sync Polarity

Figure 10-1. 8563 VDC Register Map

The numbers in the left column are the register numbers. When programming the
8563, the registers are referenced by number only, since they have no actual address in
the C128 memory map. Within the register map, columns 7 through 0 apply to the bits
within the registers. To the right are the register names, by function. Many of the
registers control more than one operation of the chip, so the names only reference the
primary purpose of the register. These registers are discussed individually at the end of
this chapter. Certain key registers are discussed in the next section. For an explanation
of each register, see the register-by-register description in the back of this chapter.

INPUT/OUTPUT GUIDE 39S

1 2 3 4 5 6 7 8 9 10 11 12

A B C D E F H J K L M N

Figure 12—6. User Port Pinouts

PIN

TOP SIDE

1
2
3

4
5
6
7
8
9

10
11
12

BOTTOM SIDE
A
B
C
D
E
F
H
J
K
L
M
N

DESCRIPTION

GROUND
+ 5V
RESET

CNT1
SP1
CNT2
SP2
PC2
SERIAL
ATNIN
9 VAC + phase
9 VAC-phase
GROUND

GROUND
FLAG2
PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PA2
GROUND

NOTES

(100 mA MAX.)
By grounding this pin, the Commodore 128 will do
a cold start, resetting completely. The pointers to
a BASIC program will be reset, but memory will
not be cleared. This is also a RESET output for
the external devices.
Serial port counter from CIA-1 (see CIA specs).
Serial port from CIA-1 (see 6526 CIA specs).
Serial port counter from CIA-2 (see CIA specs).
Serial port from CIA-1 (see 6526 CIA specs).
Handshaking line from CIA-2 (see CIA specs).
This pin is connected to the ATN line of the serial
bus.
Connected directly to the Commodore 128 trans-
former (100 mA Max.).

The Commodore 128 gives you control over Port
B on CIA chip 1. Eight lines for input or output
are available, as well as two lines for handshaking
with an outside device. The 1/0 lines for Port B
are controlled by two locations. One is the Port
itself, and is located at 56577 ($DD01 HEX).
Naturally you PEEK it to read an INPUT, or
POKE it to set an OUTPUT. Each of the eight
I/O lines can be set up as either an INPUT or an
OUTPUT by setting the Data Direction Register
properly.

Table 12-4. User Port Pin Descriptions

The Data Direction Register has its location at 56579 ($DD03 hex). Each of the
eight lines in the port has a bit in the 8-bit Data Direction Register (DDR) that controls
whether that line will be an input or an output. If a bit in the DDR is a 1, the

corresponding line of the port will be an output. If a bit in the DDR is a 0, the
corresponding line of the port will be an input. For example, if bit 3 of the DDR is set to 1,
then line 3 of the port will be an output. If the DDR is set like this:

BIT #: 7 6 5 4 3 2 10
VALUE: 0 0 1 1 10 0 0

lines 5, 4 and 3 will be outputs since those bits are l's. The rest of the lines will be
inputs, since those lines are 0's.

To PEEK or POKE the User Port, it is necessary to use both the DDR and the port
itself.

Remember that the PEEK and POKE statements need a number from 0 to 255.
The numbers given in the example must be translated into decimal before they can be
used. The value would be:

25 + 24 + 23 = 32 + 16 + 8 = 56

Notice that the bit number for the DDR is the same number that is equal to 2 raised to a
power to turn the bit value on.

(16 = 2 | 4 = 2 x 2 x 2 x 2 , 8 = 2 | 3 = 2 x 2 x 2)

The two other lines, flagl and PA2, are different from the rest of the User Port.
These two lines are mainly for handshaking, and are programmed differently from
port B.

Handshaking is needed when two devices communicate. Since one device may run
at a different speed than another device, it is necessary to give each device some way of
knowing what the other device is doing. Even when the devices are operating at the
same speed, handshaking is necessary to communicate when data is to be sent, and if it
has been received. The flagl line has special characteristics that make it well suited for
handshaking.

Flagl is a negative-edge-sensitive input that can be used as a general-purpose
interrupt input. Any negative transition on the flag line will set the flag interrupt
bit. If the flag interrupt is enabled, this will cause an Interrupt Request. If the
flag bit is not enabled, it can be polled from the Interrupt Register under program control.

PA2 is bit 2 of port A of the CIA. It is controlled like any other bit in the port.
The port is located at 56576 ($DDO0). The Data Direction Register is located at 56578
($DD02).

For more information on the 6526, see the hardware chapter.

THE COMPOSITE
VIDEO CONNECTOR
This DIN connector supplies direct audio and composite video signals. These can
be connected to the Commodore monitor or used with separate components. This is the
40-column output connector. Figure 12-7 shows the pinouts for the composite video
connector. Table 12-5 describes the pinouts.

INPUT/OUTPUT GUIDE 397

Figure 12-7. Composite Video Connector Pinouts

PIN

1
2
3
4
5
6
7
8

TYPE

LUM/SYNC
GND

AUDIO OUT
VIDEO OUT
AUDIO IN
COLOR OUT

NC
NC

NOTE

Luminance/SYNC output

Composite signal output

Chroma signal output
No connection
No connection

Table 12-5. Composite Video Connector Pin Descriptions

THE RGBI
VIDEO CONNECTOR
The RGBI video connector is a 9-pin connector that supplies an RGBI (Red/Green/Blue/
Intensity) signal. This is the 80-column output. Figure 12-8 shows the RGBI pinouts.
Table 12-6 defines the RGBI pinouts.

Figure 12-8. RGBI Connector Pinouts

PIN SIGNAL

1
2
3
4
5
6
7
8
9

Ground
Ground
Red
Green
Blue
Intensity
Monochrome
Horizontal Sync
Vertical Sync

Table 12—6. RGB! Connector Pin Descriptions

THE CASSETTE CONNECTOR
A 1530 Datassette recorder can be attached to the cassette port to store programs and
information. Figure 12-9 shows the cassette port pinouts. Table 12-7 describes the
pinouts.

Figure 12-9. Cassette Port Pinouts

PIN

A-l
B-2
C-3
D-4
E-5
F-6

TYPE

GND
+ 5V
CASSETTE
CASSETTE
CASSETTE
CASSETTE

MOTOR
READ
WRITE
SENSE

Table 12-7. Cassette Port Pin Descriptions

THE CONTROLLER PORTS
There are two controller ports, numbered 1 and 2. Each controller port can accept a
joystick, mouse or game controller paddle. A light pen can be plugged only into Port 1, the
port closest to the front of the computer. Use the ports as instructed with the software.

Figure 12-10 shows the Controller Port pinouts. Table 12-8 describes the pinouts.

INPUT/OUTPUT GUIDE 399

Figure 12-10. Controller Port Pinouts

CONTROL PORT 1

PIN

1
2
3
4
5
6
7
8
9

TYPE NOTE

JOYA0
JOYA1
JOYA2
JOYA3
POT AY
BUTTON A/LP
+ 5V MAX. 50mA
GND
POT AX

CONTROL PORT 2

PIN

1
2
3
4
5
6
7
8
9

TYPE NOTE

JOYB0
JOYB1
JOYB2
JOYB3
POT BY
BUTTON B
+ 5V MAX. 50mA
GND
POTBX

Table 12-8. Controller Port Pin Descriptions

THE EXPANSION PORT
The expansion port connector is a 44-pin female edge connector accessing the comput-
er's address and data buses. It accepts Commodore's preprogrammed game and utility
software cartridges. As a parallel port, it can accept Commodore's IEEE peripherals
with an IEEE interface for controlling instrumentation and other devices. RAM expan-
sion modules will also connect to this port and accept the BASIC commands of FETCH,
STASH and SWAP. x

Figure 12-11 shows the expansion port pinouts. Table 12-9 describes the pinouts.

222«2O19»8 I7IS15 14 13 12 11 10 B 8 7 6 5 4 3 2 1

Z Y X W V U T S R P N M L K J H F E D C B A

(view of port from the back of the C128)

Figure 12-11. Expansion Port Pinouts

PIN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

TYPE

GND
+ 5V
+ 5V
IRQ
R/W
Dot Clock
I/O 1
GAME
EXROM
I/O 2
ROML
BA
DMA
D7
D6
D5
D4
D3
D2
Dl
DO
GND

PIN

A
B
C
D
E
F
H
J
K
L
M
N
P
R
S
T
U
V

w
X
Y
Z

TYPE

GND
ROMH
RESET
NMI
S02
A15
A14
A13
A12
All
A10
A9
A8
A7
A6
A5
A4
A3
A2
Al
A0
GND

Table 12-9. Expansion Port Pin Descriptions

13
THE
COMMODORE 128
OPERATING
SYSTEM

The Commodore 128 operating system controls, directly or indirectly, all functions of
your computer. The Commodore 128 operating system is housed in a ROM chip called
the Kernal, which contains about 16K of machine language instructions. These instruc-
tions make up the routines that control all the machine's functions—even the ones you
take for granted. For instance, the Kernal controls all input and output functions,
including receiving the characters from the keyboard when you type, sending text to a
printer, and displaying graphics and text on the screen. Every task performed by the
computer other than application program activities is controlled by the Kernal. The
Kernal even manipulates and executes the application programs you load or type into
your computer's memory.

TAKING FULL ADVANTAGE OF THE
COMMODORE 128 OPERATING SYSTEM

The 16K of operating system instructions contained in the Kernal are available for use
with your own programs. Instead of "reinventing the wheel" and duplicating code, you
can call (that is, use) these Kernal routines in your own programs. You do this through
the Kernal Jump Table, which consists of a series of ROM entry points in which you
can call machine language routines already available in the Commodore 128 Kernal. By
calling these routines, which handle the most fundamental functions of the computer,
you avoid duplicating code. This helps you utilize your computer to its fullest potential.

The Kernal Jump Table also facilitates compatibility. If the Commodore 128
operating system is modified or upgraded, which happens frequently in the microcom-
puter industry, the entry points in the jump table are revised to reflect address changes
of Kernal subroutines. The key to keeping applications programs compatible from one
version of the operating system to another is to enter the operating system through the
Kernal Jump Table. Instead of jumping directly to a subroutine (JSR), use the Kernal
Jump Table as the entry point, since it contains the correct address vector to the
specified routine, regardless of the version of the Kernal being used. If you always enter
the operating system routines from the Kernal Jump Table, the address of the desired
routine will always be reached. On the other hand, if you bypass the Kernal Jump Table
and jump directly to the address where you think the routine resides, you may cause an
error, because the starting point of the desired routine may have changed from one
version of the operating system to another.

THE COMMODORE 128 OPERATING SYSTEM 403

HOW TO USE (CALL)
THE KERNAL ROUTINES IN
YOUR OWN PROGRAMS

Most of the system subroutines require specific parameters, or values, which must be
loaded into the accumulator, X or Y index registers. Some Kernal subroutines require
additional preparatory routines to be called before invoking the specific target routine.
Each Kernal subroutine terminates with an RTS instruction that tells the microprocessor
to return from the subroutine. Many of the Kernal routines return values that are placed
in the accumulator, X or Y registers. Some even return error codes in the status register,
which can be acted on in your applications program.

Here is the procedure for calling a Kernal subroutine:

1. Place the necessary preparatory values in the required registers—either the A,
X or Y registers.

2. Enable the appropriate system configuration. For example, if the routine
requires the Kernal to be present, invoke either configuration 12, 13, 14 or 15,
since these make the Kernal available. Bank 15 is the default configuration.

3. Call the subroutine with the JSR instruction, using the address of the jump
vector as shown in the Kernal Jump Table in Figure 13-1.

For example, the starting address of the routine ACPTR is stored, starting
in location $FFA5. Actually, the operation code (opcode) for the JMP instruc-
tion is stored at location $FFA5 and the address of the entry point of the
routine is stored at locations $FFA6 and $FFA7. What really happens is that
the JSR instruction in your application program transfers control to the jump
table address ($FFA5, for example); then the JMP instruction at $FFA5 jumps
to the subroutine at the address specified in locations $FFA6 and $FFA7. In
other words, when you issue a JSR instruction to the Kernal Jump Table, you
actually perform two jumps: one (JSR) to the jump table, and then a second
jump (JMP) to the actual starting address of the routine.

The routine terminates with an RTS instruction that is already part of the
Kernal subroutine. Your application program resumes with the instruction
immediately following the JSR instruction.

4. Upon return from the subroutine, check the status register for any error conditions. If
an error condition is present, take precautions in your application
program to handle the error and act on the value of the status register.

Figure 13-1 is the C128 system vector and jump table that includes the
name, address and function description of the operating system Kernal routines.

CI28 SYSTEM VECTORS

1. $FFFB SYSTEM
2. $FFFA NMI

operating system vector (RAM1)
;processor NMI vector

3. $FFFC RESET
4. $FFFE IRQ

processor RESET vector
;processor IRQ/BRK vector

CBM

1.
2.
3.

4.
5.
6.

7.
8.
9.

10.
11.
12.

13.
14.
15.

16.
17.
18.

19.
20.
21.

22.
23.
24.

25.
26.
27.

28.
29.
30.

31.
32.
33.

STANDARD

$FF81
$FF84
$FF87

$FF8A
$FF8D
$FF90

$FF93
$FF96
$FF99

$FF9C
$FF9F
$FFA2

$FFA5
$FFA8
$FFAB

$FFAE
$FFB1
$FFB4

$FFB7
$FFBA
$FFBD

$FFC0
$FFC3
$FFC6

$FFC9
$FFCC
$FFCF

$FFD2
$FFD5
$FFD8

$FFDB
$FFDE
$FFE1

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

KERNAL JUMP

CINT
IOINIT
RAMTAS

RESTOR
VECTOR
SETMSG

SECND
TKSA
MEMTOP

MEMBOT
KEY
SETTMO

ACPTR
CIOUT
UNTLK

UNLSN
LISTN
TALK

READSS
SETLFS
SETNAM

(IOPEN)
(ICLOSE)
(ICHKIN)

(ICKOUT)
(ICLRCH)
(IBASIN)

(IBSOUT)
LOAD
SAVE

SETTIM
RDTIM
(ISTOP)

TABLE CALLS

;init screen editor and devices
;init I/O devices
;init RAM and buffers

;init indirect vectors (system)
;init indirect vectors (user)
;kernal messages on/off

;serial: send SA after LISTN
;serial: send SA after TALK
;set/read top of system RAM

;set/read bottom of system RAM
;scan keyboard
preserved)

;serial: byte input
;serial: byte output
;serial: send untalk

;serial: send unlisten
;serial: send listen
;serial: send talk

;read I/O status byte
;set channel LA, FA, SA
;set filename pointers

;open logical file
;close logical file
;set input channel

;set output channel
: restore default channels
;input from channel

;output to channel
;load from file
;save to file

;set internal clock
;read internal clock
;scan STOP key

THE COMMODORE 128 OPERATING SYSTEM 405

34. $FFE4 JMP (IGETIN)
35. $FFE7 JMP (ICLALL)
36. SFFEA JMPUDTIM

;read buffered data
;close all flies and channels
;increment internal clock

37. $FFED JMPSCRORG
38. $FFF0 JMP PLOT
39. $FFF3 JMP IOBASE

;get current screen window size
;read/set cursor position
;read base address of I/O block

NEW CI28 KERNAL JUMP TABLE CALLS

1.

2.
3.
4.

5.
6.
7.

8.
9.

10.

11.
12.
13.

14.
15.
16.

17.
18.
19.

$FF47

$FF4A
$FF4D
$FF50

$FF53
$FF56
$FF59

$FF5C
$FF5F
$FF62

$FF65
$FF68
$FF6B

$FF6E
$FF71
$FF74

$FF77
$FF7A
$FF7D

JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

JMP
JMP
JMP

SPIN SPOUT

CLOSE ALL
C64MODE
DMA CALL

BOOT CALL
PHOENIX
LKUPLA

LKUPSA
SWAPPER
DLCHR

PFKEY
SETBNK
GETCFG

JSRFAR
JMPFAR
INDFET

INDSTA
INDCMP
PRIMM

;setup fast serial ports for I/O

;close all files on a device
Reconfigure system as a C64
;send command to DMA device

;boot load program from disk
;init function cartridges
;search tables for given LA

;search tables for given SA
;switch between 40 and 80 columns
;init 80-col character RAM

; program a function key
;set bank for I/O operations
;lookup MMU data for given bank

;gosub in another bank
;goto another bank
;LDA (fetvec),Y from any bank

;STA (stavec),Y to any bank
;CMP (cmpvec),Y to any bank
;print immediate utility

Figure 13-1. User-Callable Kernal Routines

Figure 13-2 lists the conventions used in the description of each Kernal subrou-
tine. The figure is followed by descriptions of the C128 system vectors and Kernal
subroutines. Included in each description are the subroutine name, call address, prepara-
tory routines needed (if any), the registers affected, the error codes associated with each
routine, how to use them and an example of each kernal subroutine call.

USER CALLABLE
KERNAL ROUTINE CONVENTIONS

Call Address: This is the call address of the Kernal routine, given in hexadecimal.
Function Name: Name of the Kernal routine.
Register: Registers, memory and flags listed under this heading are used to pass

parameters to and from the Kernal routines.
Preparatory Routines: Certain Kernal routines require that data be set up by prepara-

tory routines before the target routine can be called. The necessary routines are
listed here.

Error Returns: A return from a Kernal routine with the carry set indicates an error
was encountered in processing. The accumulator will contain the number of the
error.

Error Codes: Below is a list of error messages that can occur when using the
Kernal routines. If an error occurs during a Kernal routine, the carry bit of the
accumulator is set, and the number of the error message is returned in the
accumulator.

NOTE: Some Kernal I/O routines do not use these codes for error
messages. Instead, errors are identified using the Kernal READST routine.

NUMBER

0
1
2
3
4
5
6
7
8
9

41

MEANING

Routine terminated by the STOP key
Too many open files
File already open
File not open
File not found
Device not present
File is not an input file
File is not an output file
File name is missing
Illegal device number
File read error

Registers Affected: All registers, memory and flags used by the Kernal routine are
listed here.

Examples: An example of each Kernal routine is listed.
Description: A short explanation of the function of the Kernal routine is given here.

Figure 13-2. User-Callable Kernal Routine Conventions

THE COMMODORE 128 OPERATING SYSTEM 407

CI28 SYSTEM VECTORS

The vectors listed below, with the exception of the SYSTEM vector, are located not
only in system ROM but in each RAM bank. The beginning and end of the system
interrupt handlers are found in the top page ($FFxx) of all memory configurations as
well. The reason is simple: An interrupt can occur anytime, from any memory configu-
ration. The registers and memory configuration must be preserved prior to bringing the
operating system into context to process the interrupt. They must similarly be restored
before control is finally returned to the interrupted code. Note that the system vectors
are indirect jumps, and are not usually called by the user since they terminate with an
RTI instruction, not an RTS instruction. In other words, they process interrupted events,
not subroutine calls.

1. $FFF8 SYSTEM ;operating system vector (RAM1)

The SYSTEM vector and accompanying KEY string provide applications software
with a means of regaining system control after a hardware reset. With this vector,
software may be protected from an otherwise unrecoverable situation. The KEY
string provides the distinction between a "warm" reset and a "cold" power-up. If
the system has just powered up, the KEY string is missing and thus the SYSTEM
vector is invalid; the CBM KEY is installed and the SYSTEM vector is set to C128
mode. If the system was reset (i.e., KEY was found), the SYSTEM vector is
moved to common RAM at $02 and an indirect JMP is performed. In most cases,
the user need only call IOINIT before resuming control. The layout in RAM-1 is:

$FFF5 'C ($43)
$FFF6 'B' ($42)
$FFF7 'M' ($4D)
$FFF8 SYSTEM vector low
$FFF9 SYSTEM vector high

For example, suppose a programmer set out to do some heavy-duty "hacking"
using the built-in Monitor. Fully realizing the likelihood of losing control in a crash,
the programmer could redirect the SYSTEM vector to the Monitor itself and thus
regain control with minimal RAM loss, simply by pressing the RESET button. To
accomplish this, the programmer would enter:

a.
b.

>1FFF8
A 1300

00
JSR
JMP

13
$FF84
$B000

:aim
xall
xall

SYSTEM
IOINIT
Monitor

to $1300

2. $FFFA NMI ;processor NMI vector

The Non-Maskable Interrupt (NMI) vector is activated whenever the processor
NMI pin detects a negative edge. There are two possible sources of NMI's under
normal conditions: the R E S T O R E key and RS-232 I/O. In the event of an
NMI, the operating system disables IRQ's, saves the registers and current memory

configuration on the stack, brings the system configuration (ROM's, I/O, RAMO)
into context, and executes an indirect jump through the RAM vector located at
$318. The system NMI handler clears the ICR register of CIA-2, from which it
determines the source of the interrupt. If it is from timer A, control passes to the
RS-232 transceiver. If not, the R E S T O R E key is assumed, and for safety,
the CBM convention of requiring the S T O P key to be simultaneously de-
pressed is checked. If the STOP key is depressed, all system indirect vectors are
restored, IOINIT and CINT are called, and the SYSTEM_VECTOR (do not
confuse with the SYSTEM vector!) is taken. Control is returned upon restoration of
the registers and memory configuration. NMI's may be disabled by causing an initial
NMI from timer A, but never reading the ICR to clear it, thus keeping the NMI
signal grounded.

Application software can intercept an NMI event by modifying either of the
two RAM vectors mentioned above. The NMI indirect vector at $318 in common
RAM will pass control whenever an NMI occurs. The SYSTEM_VECTOR, located
at $A00 in RAMO, will pass control after STOP/RESTORE is detected and handled.

For example, suppose a situation similar to the one illustrated previously for
the SYSTEM vector occurs. To return control to the Monitor whenever STOP'
RESTORE is detected, enter:

a. >A00 00 BO :aim SYSTEMLVECTOR to Monitor

Similarly, to perform an action anytime an NMI occurs (e.g., RESTORE
alone), use the NMI indirect. For example, increment the VIC border color when-
ever you press R E S T O R E (or cause any other NMI). Enter:

a. >318 00 13 :aim indirect to $1300
b. A 1300 INC $D020 xhange border color

JMP $FF33 :return from interrupt

3. $FFFC RESET ;processor RESET vector

The processor RESET vector is activated whenever the system RESET signal is
low. It is low at power-up, and is pulled low by pressing the RESET button. This
signal effects not only the processor but most of the I/O devices found in the
system. In fact, RESET is the one processor control signal that is shared between
the two processors (8502 and Z80) of the C128. The Z80 gains initial (default)
control of the system while the 8502 is held in a waiting state. When the 8502
finally starts after a reset, the Kernal initialization routine START always receives
control and immediately performs the following actions:

1. Brings the system map into context.
2. Disables IRQ's.
3. Resets the processor stack pointer.
4. Clears decimal mode.
5. Initializes the MMU.
6. INSTALLS the Kernal RAM code.

THE COMMODORE 128 OPERATING SYSTEM 409

Up to this point there is no provision for user code. The next two routines in the
initialization path actually look for installed user code:

7. SECURE: Check and initialize the SYSTEM vector,
8. POLL: Check for a ROM cartridge.

POLL first scans for any installed C64 cartridges. They are recognized by
either the GAME or EXROM signal being pulled low. If so, GO64 is executed
(see the Kernal jump entry for details). Polling for C64 cartridges is actually
redundant at this point since the Z80 processor, which powers up initially, did this
already. POLL then scans for installed C128 cartridges and function ROM's. They
are recognized by the existence of the C= key in any of the four function ROM
slots (two internal, two external) and are polled in the order external low (16 or
32KB), external high (16KB), internal low (16 or 32KB), internal high (16KB).
The entire format is:

$x000 -» cold start entry
$x003 —> warm start entry (unused)
$x006 -» ID. ($01-$FF)
$x007 -> "CBM" key string
where x = $8— or $C—.

The ID of any C128 cartridge found is entered into the Physical Address Table
(PAT) located at SAC1-SAC4. ID's must be non-zero. Cartridges may recognize
each other by examining the PAT for particular ID's. An ID of 1 indicates an
auto-start cartridge, and its cold start entry will be called immediately. All others
will be called later (see PHOENIX jump), as will any auto-starters that RTS is to
POLL. A cartridge can determine where it is installed by examining CURBNK,
located at $ACO. Because it is possible for a cartridge to be called with interrupts
enabled, the following diversion from the above format is recommended (the warm
start entry is never called by the system):

$x000 SEI
$x001 JMP STARTUP
$x004 NOP
$x005 NOP

The balance of the C128 initialization is:

9. IOINIT: Initialize I/O devices.
10. Check for STOP AND C= keys.
11. RAMTAS: Initialize system RAM.
12. RESTOR: Initialize system indirects.
13. CINT: Initialize video displays.
14. Enable IRQ's (except foreign systems).
15. Dispatch.

IOINIT is perhaps the major function of the Reset handler. It initializes both CIA's
(timers, keyboard, serial port, user port, cassette) and the 8502 port (keyboard,

cassette, VIC bank). It distinguishes a PAL system from an NTSC one and sets
PALCNT ($A03) if PAL. The VIC, SID and 8563 devices are initialized, including
the downloading of character definitions to 8563 display RAM (if necessary). The
system 60Hz IRQ source (the VIC raster) is started. IOINIT is callable by the user
via the jump table.

During initialization, the user may press certain keys as a means of selecting
an operating mode. One key checked is the Commodore key C= , indicating C64
mode is desired. While this key was scanned much earlier by the Z80 to speed
the switchover to C64 mode, there is a redundant check for it here. The only other
key scanned at this time is the S T O P key, which signals a request by the user
to power up into the Monitor utility. Note that control does not pass from the
initialization process at this point; the Kernal needs to know if RAMTAS should be
skipped. Only if the S T O P key is depressed and this was a "warm" reset
(vs. "cold" power-up) can RAMTAS be skipped.

RAMTAS clears all page-zero RAM, allocates the cassette and RS-232
buffers, sets pointers to the top and bottom of system RAM (RAM-0), and
installs the SYSTEM_VECTOR (discussed earlier under NMI) that points to BA-
SIC cold start. Lastly it sets a flag, DEJAVU ($A02), to indicate to other routines
that system RAM has been initialized. This is the difference between a "cold"
and a "warm" system. If DEJAVU contains $A5, the system is "warm" and
SYSTEM__VECTOR is valid. Many programmers debugging code need to recover
from a system hang or crash via R E S E T but do not want RAM cleared. This
is why the S T O P key is scanned, RAMTAS is skipped, and the Monitor
(rather than BASIC) is selected. RAMTAS is callable by the user via the jump
table.

RESTOR initializes the Kernal indirect vectors. This must be done before
many system routines will function. Applications that complement the operating
system via "wedges" must install them after they are initialized. RESTOR is user
callable from the jump table (see also the VECTOR call).

CINT is the Editor's initialization routine. Both 40- and 80-column display
modes are prepared, editor indirect vectors installed, programmable key definitions
assigned, and the 40/80 key scnaned for default display determination. CINT is also
a jump table entry.

Finally, the IRQ's are enabled and control is passed to either BASIC
initialization, GO64 code, or the ML Monitor. BASIC will call the Kernal
PHOENIX routine upon the conclusion of its initialization, which will call any
installed C128 cartridges (any ID) and attempt to auto-boot an application from
disk.

An initialization status byte, INIT_STATUS ($A04), marks the progress of
the initialization process. It is cleared automatically at the beginning of the Reset
code, and as specific stages are completed, a particular bit is set. The layout is:

B7 —» 8563 characters installed
B6 -» CINT performed
BO -> BASIC initialized

THE COMMODORE 128 OPERATING SYSTEM 4i I

Any IOINIT calls, including Reset, will not result in 8563 character RAM initial-
ization if B7 is set. Similarly, CINT will not initialize the keyboard matrix lookup
tables and the programmable key definitions if B6 is set. This is how NMI's, for
example, can call IOINIT and CINT without destroying users' setups. Finally,
BASIC initialization must be complete before BO is set. This determines whether
the IRQ handler, for example, should call the BASIC IRQ routines. Note that the
following sequence of events should be performed for a BASIC programmer to
recover from a crash via R E S E T :

1. Hold down S T O P key to enter Monitor.
2. Press and release R E S E T button.
3. Release S T O P key.
4. Enter: >A04 Cl :re-enable BASIC IRQ.
5. Enter: X :exit Monitor to BASIC.

This sequence is necessary because INIT_STATUS was cleared by the reset, and
the BASIC initialization was skipped, leaving BO reset. If BO had not been set,
BASIC IRQ routines such as SOUND, PLAY, and SPRITE handlers would not
have functioned, usually resulting in an apparent "hang."

4. $FFFE IRQ ;processor IRQ/BRK vector

This hardware vector is taken whenever the IRQ pin of the processor is pulled low,
or the processor executes a BRK instruction. For proper operation an IRQ must
occur sixty times every second [NTSC (60Hz) presents no problems, but adjust-
ments have to be made for PAL (50Hz) systems]. The usual source of IRQ's in the
C128 is the VIC raster, which is unleashed during system initialization by IOINIT.
In the event of an IRQ or BRK, the operating system saves the registers and current
memory configuration on the stack and brings the system bank (ROM's, I/O,
RAMO) into context. The processor status at the time of interruption is then read
from the system stack to determine if the interrupt was an IRQ or a BRK. The C128
uses the following code to accomplish this;

TSX ;get stack pointer
LDA $105,X ;retrieve processor status
AND #$10 ;examine BRK flag

If the BRK flag is set, control passes to the ML Monitor through the BRK
indirect vector at $316, which usually points to the Monitor BREAK entry. Here
the program counter (PC), processor status, registers, memory configuration and
stack pointer are retrieved and displayed.

If the BRK flag is 0, an IRQ is assumed and control passes through the IRQ
indirect vector at $314, normally to the system IRQ handler. The following processes
are then performed in the order shown:

1. IRQ's disabled.
2. Editor: split screen handler.
3. Editor: clear VIC raster IRQ.
4. IRQ's enabled.
5. Editor: keyboard scan.
6. Editor: VIC cursor blink.
7. Kernal: "jiffie" clock.
8. Kernal: cassette switches.
9. Kernal: clear CIA-1 ICR.

10. BASIC: sprites, sounds, etc.
11. Return from interrupt.

As indicated in the preceding description, the C128 operating system uses the
IRQ heavily. In particular, the Editor split screen handler has rather strict require-
ments that programmers must recognize and accommodate. An all-text screen or a
fully bit mapped screen presents no particular problem, but a split text and bit map
screen requires twice the IRQ frequency (two every sixtieth of a second). Thus, the
Editor (and consequently, IRQ-dependent applications) must distinguish between
the "main" 60Hz IRQ and the "middle" IRQ. Only during the main IRQ will all
the actions listed above be performed; the middle IRQ is only used by the Editor to
split the screen. The Editor IRQ routine sets the carry flag to designate a main IRQ.
Moreover, there is no margin in the timing requirements of a split screen. Program-
mers should note the way the Editor uses the VIC during IRQ's and avoid direct VIC
I/O if the Editor screen operations are enabled. There is a flag byte called GRAPHM,
located at $D8, which can be set to $FF to disable the Editor's use of the VIC.

The Editor is also responsible for scanning the C128 keyboard. Programmers
should note that SCNKEY has two indirect jumps, KEYLOG and KEYPUT, it
takes during its execution. The keyboard is controlled via CIA-1 PRA, PRB, VIC
register #47 (extended key matrix), and the 8502 port (bit 6 = CAPS LOCK). The
SCNKEY routine is callable from the jump table.

The balance of the IRQ routines up to calling BASIC are self-explanatory.
The Kernal software clock is maintained by UDTIM, which is in the jump table.
The IRQ processing makes one last call to BASIC-IRQ ($4006), but only if
INIT_STATUS bit 0 is set indicating BASIC is ready to handle IRQs (this was
discussed earlier in the RESET section). BASIC_IRQ is a heavy user of the VIC
and SID, and the same precautions should be taken regarding direct VIC and SID
I/O as with the Editor. BASIC-IRQ also utilizes a hold-off byte called IRQ-WRAP
—FLAG. It is normally used by the system to block IRQ-ed IRQ calls, but can be
set by the user with the effect of disabling the BASIC-IRQ handler. Alternatively
you could clear bit 0 of the INIT_STATUS byte as mentioned above and achieve
the same result.

The use of the IRQ indirect ($314) by an application usually requires more
care than most other wedges for several reasons. The likelihood of an IRQ occur-
ring while the wedge is being installed is greater, there exists the possibility that the
user or some other software has already wedged the vector, and usually it is

THE COMMODORE 128 OPERATING SYSTEM 413

desirable for the system IRQ functions to continue normally (e.g., keyscan) as
opposed to replacing them totally with our own (as we did with the NMI examples).
The following examples accomplish these objectives as well as masking out all but
the main IRQ. First we must install our IRQ handler. This example converts the
4 0 / 8 0 key into a SLOW/FAST key:

A 1302 BIT
BPL
LDA
ORA
STA
LDA
AND
LDX
BIT
BPL
ORA
DEX

131E STX
STA

1324 JMP

$D011
$1324
$D505
#$80
$D505
$D011
#$6F
#$01
$D505
$131E
#$10

$D030
$D011
($1300)

;test VIC reg 17
;branch if wrong IRQ
preparation
;b7 of MMU MCR
;set for input
;assume FAST setup
;blank VIC(RC8 = 0)
;2MHz
;test 4 0 / 8 0 key
;branch if down (FAST)
;unblank VIC
;lMHz
;set speed
;set blank bit
;continue system IRQ

Now we need a small routine to actually wedge our code into the system IRQ. The
following code saves the current IRQ vector for our handler above to exit through
and substitutes a pointer to our code:

A 1400 SEI ;prevent interruptions
LDA $314 ;get current IRQ lsb
STA $1300 ;and save it
LDA $315 ;get current IRQ msb
STA $1301 ;and save it
LDA #$02 ;get our IRQ lsb
STA $314 ;and substitute it
LDA #$13 ;get our IRQ msb
STA $315 ;and substitute it
CLI ;re-enable IRQ processing
RTS

Enable the wedge by typing J 1400, that's all there is to it. Depressing the
Locking 4 0 / 8 0 key now puts you in FAST mode; releasing it SLOWS you
down, and the keyscan, etc., continues to function. Note, however, that on this

split screen our code throws off the timing, making for an unattractive display.
There are really only three things to watch out for when toying with the C128
system IRQ: First, be sure to keep the raster compare value on-screen to keep the
IRQ's happening (the best way is to keep RC8 zero as in example above); second,
never attempt to access the 8563 during an IRQ if there is any chance that it is in
use; finally, be sure the source of the IRQ is being cleared.

CBM STANDARD KERNAL CALLS

The following system calls make up the set of standard CBM system calls for the
Commodore 128 Personal Computer. Several of the calls, however, function somewhat
differently or may require slightly different setups than C64 mode. This was necessary
to accommodate specific features of the system, notably the 40/80 column windowing
Editor and banked memory facilities. As with all Kernal calls, the system configuration
(high ROM, RAM-0 and I/O) must be in context at the time of the call.

1. $FF81 CINT initialize screen editor and devices

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:

Flags:

EXAMPLE:

SEI
JSR $FF81
CLI

none
system map
none
none

.A used
,X used
.Y used
init Editor RAM
init Editor I/O
none

initialize screen

CINT is the Editor's initialization routine. Both 40- and 80-column display
modes are prepared, editor indirect vectors installed, programmable key definitions
assigned, and the 4 0 / 8 0 key scanned for default display determination. CINT
sets the VIC bank and VIC nybble bank, enables the character ROM, resets SID
volume, places both 40- and 80-column screens and clears them. The only thing it

THE COMMODORE 128 OPERATING SYSTEM 415

does not do that pertains to the Editor is I/O initialization, which is needed for IRQ's
(keyscan, VIC cursor blink, split screen modes), key lines, screen background
colors, etc. (see IOINIT). Because CINT updates Editor indirect vectors that are
used during IRQ processing, you should disable IRQ's prior to calling it. CINT
utilizes the status byte INIT_STATUS ($A04) as follows:

$A04 bit 6 = 0 -»• Full initialization.
(set INIT_STATUS bit 6)

1 —* Partial initialization.
(not key matrix pointers)
(not program key definitions)

CINT is also an Editor jump table entry ($C000),

2, $FF84 IOINIT ;init I/O devices
PREPARATION:

Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

SEI
JSR $FF84
CLI

none
system map
none
none

.A used

.X used

.Y used
initialize I/O
none

;initialize syi

IOINIT is perhaps the major function of the Reset handler. It initializes both
CIA's (timers, keyboard, serial port, user port, cassette) and the 8502 port (key-
board, cassette, VIC bank). It distinguishes a PAL system from an NTSC one and
sets PALCNT ($A03) if PAL. The VIC, SID and 8563 devices are initialized,
including the downloading of character definitions to 8563 display RAM (if neces-
sary). The system 60Hz IRQ source, the VIC raster, is started (pending IRQs are
cleared). IOINIT utilizes the status byte INIT_STATUS ($A04) as follows:

$A04 bit 7 = 0 —* Full initialization.
(set INIT_STATUS bit 7)

= 1 —» Partial initialization.
(not 8563 character definitions)

You should be sure IRQ's are disabled before calling IOINIT to avoid interrupts
while the various I/O devices are being initialized.

3. $FF87 RAMTAS ;init RAM and buffers

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FF87

none
system map
none
none

.A used

.X used

.Y used
initializes RAM
none

initialize svster

RAMTAS clears all page-zero RAM, allocates the cassette and RS-232
buffers, sets pointers to the top and bottom of system RAM (RAM 0) and points
the SYSTEM_VECTOR ($A00) to BASIC cold start ($4000). Finally, it sets a
flag, DEJAVU ($A02), to indicate to other routines that system RAM has been
initialized and that the SYSTEMLVECTOR is valid. It should be noted that the
C128 RAMTAS routine does not in any way test RAM.

4. $FF8A RESTOR ;init Kernal indirects

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flaes:

none
system map
none
none

.A used

.X used

.Y used
Kernal indirects restored
none

THE COMMODORE 128 OPERATING SYSTEM 417

EXAMPLE:

SEI
JSR $FF8A
CLI

;restore Kernal indirects

RESTOR restores the default values of all the Kernal indirect vectors from
the Kernal ROM list. It does not affect any other vectors, such as those used by the
Editor (see CINT) and BASIC. Because it is possible for an interrupt (IRQ or NMI)
to occur during the updating of the interrupt indirect vectors, you should disable
interrupts prior to calling RESTOR. See also the VECTOR call.

5. $FF8D VECTOR ;init or copy indirects

PREPARATION:
Registers:

Memory:
Flags:

Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

LDX #save_lo
LDY #save_hi
SEC
JSR $FF87

.X = adr (low) of user list

.Y = adr (high) of user list
system map
.C = 0 —» load Kernal vectors
.C = 1 —> copy Kernal vectors
none

.A used

.Y used
as per call
none

;copv indirects to "save"

VECTOR reads or writes the Kernal RAM indirect vectors. Calling VEC-
TOR with the carry status set stores the current contents of the indirect vectors to
the RAM address passed in the .X and .Y registers (to the current RAM bank).
Calling VECTOR with the carry status clear updates the Kernal indirect vectors
from the user list passed in the .X and .Y registers (from the current RAM bank).
Interrupts (IRQ and NMI) should be disabled when updating the indirects. See also
the RESTOR call.

6. $FF90 SETMSG ;Kernal messages on/off

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA#0
JSR $FF90

.A = message control
system map
none
none

none
MSGFLG ($9D) updated
none

:turn OFF all Kernal mes

SETMSG updates the Kemal message flag byte MSGFLG ($9D) that deter-
mines whether system error and/or control messages will be displayed. BASIC
normally disables error messages always and disables control messages in Run
mode. Note that the Kernal error messages are not the verbose ones printed by
BASIC, but simply the I/O ERROR # message that you see when in the Monitor,
for example. Examples of Kernal control messages are LOADING, FOUND, and
PRESS PLAY ON TAPE. The MSGFLG control bits are:

MSGFLG bit 7 = 1 -» enable CONTROL messages
bit 6 = 1 —> enable ERROR messages

7. $FF93 SECND ;serial: send SA after LISTN

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA#8
JSR $FF81
LDA #15
JSR $FF93

.A = SA (secondary address)
system map
none
LISTN

.A used
STATUS ($90)
none

;LISTN device 8

;pass it SA #15

THE COMMODORE 128 OPERATING SYSTEM 419

SECND is a low-level serial routine used to send a secondary address (SA) to
a LISTNing device (see LISTN Kernal call). An SA is usually used to provide setup
information to a device before the actual data I/O operation begins. Attention is
released after a call to SECND. SECND is not used to send an SA to a TALKing
device (see TKSA). (Most applications should use the higher level I/O routines: see
OPEN and CKOUT).

8. $FF96 TKSA ;serial: send SA after TALK

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA #8
JSR $FFB4
LDA #15
JSR $FF93

.A = SA (secondary address)
system map
none
TALK

.A used
STATUS ($90)
none

;TALK device 8

;pass it SA #15

TKSA is a low-level serial routine used to send a secondary address (SA) to a
device commanded to TALK (see TALK Kernal call). An SA is usually used to
provide setup information to a device before the actual data I/O operation
begins. (Most applications should use the higher-level I/O routines; see OPEN and
CHKIN).

9. $FF99 MEMTOP ;set/read top of system RAM

PREPARATION:
Registers:

Memory:
Flags:

Calls:

.X = lsb of MEMSIZ

.Y = msb of MEMSIZ
system map
.C = 0 —* set top of memory
.C = 1 —* read top of memory
none

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

SEC
JSR $FF99
DEY
CLC
JSR $FF99

.X = lsb of MEMSIZ
,Y = msb of MEMSIZ
MEMSIZ ($A07)
none

;get top of user RAMO

;lower it 1 block

MEMTOP is used to read or set the top of system RAM, pointed to by
MEMSIZ ($A07). This call is included in the C128 for completeness, but neither the
Kernal nor BASIC utilizes MEMTOP since it has little meaning in the banked
memory environment of the C128 (even the RS-232 buffers are permanently
allocated). Nonetheless, set the carry status to load MEMSIZ into .X and .Y, and
clear it to update the pointer from .X and .Y. Note that MEMSIZ references only
system RAM (RAMO). The Kernal initially sets MEMSIZ to $FF00 (MMU and
Kernal RAM code start here).

10. $FF9C MEMBOT ;set/read bottom of system RAM

PREPARATION:
Registers:

Memory:
Flags:

Calls:

RESULTS:
Registers:

Memory:
Flags:

.X = lsb of MEMSTR

.Y = msb of MEMSTR
system map
.C = 0 —* set bot of memory
.C = 1 -* read bot of memory
none

.X = lsb of MEMSTR

.Y = msb of MEMSTR
MEMSTR ($A05)
none

EXAMPLE:

SEC
JSR $FF9C ;get bottom of user RAMO
INY
CLC
JSR $FF9C ;raise it 1 block

THE COMMODORE 128 OPERATING SYSTEM 421

MEMBOT is used to read or set the bottom of system RAM, pointed to by
MEMSTR ($A05). This call is included in the C128 for completeness, but neither
the Kernal nor BASIC utilizes MEMBOT since it has little meaning in the banked
memory environment of the C128. Nonetheless, set the carry status to load MEMSTR
into .X and .Y, and clear it to update the pointer from .X and .Y. Note that
MEMSTR references only system RAM (RAMO). The Kernal initially sets MEMSTR
to $1000 (BASIC text starts here).

11. $FF9F KEY ;scan keyboard

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:

Flags:

EXAMPLE:

JSR $FF9F

none
system map
none
none

none
keyboard buffer
keyboard flags
none

;scan the keyboard

KEY is an Editor routine that scans the entire C128 keyboard (except the
4 0 / 8 0 key). It distinguishes between ASCII keys, control keys, and program-
mable keys, setting keyboard status bytes and managing the keyboard buffer. After
decoding the key, KEY will manage such features as toggling cases, pauses or
delays, and key repeats. It is normally called by the operating system during the
60Hz IRQ processing. Upon conclusion, KEY leaves the keyboard hardware driv-
ing the keyline on which the S T O P key is located.

There are two indirect RAM jumps encountered during a keyscan: KEYVEC
($33A) and KEYCHK ($33C). KEYVEC (alias KEYLOG) is taken whenever a key
depression is discovered, before the key in .A has been decoded. KEYCHK is taken
after the key has been decoded, just before putting it into the key buffer. KEYCHK
carries the ASCII character in .A, the keycode in .Y, and the shiftkey status in .X.

The keyboard decode matrices are addressed via indirect RAM vectors as
well, located at DECODE ($33E). The following table describes them:

$33E
$340
$342
$344
$346
$348

Mode
Mode
Mode
Mode
Mode
Mode

1 ->
2 ->
3 -»
4 ->
5 -*
6 ->

normal keys
SHIFT keys
O keys
C O N T R O L
CAPS LOG
ALT keys

keys
K keys

The following list briefly describes some of the more vital variables utilized
or maintained by KEY:

> I/O port outputting keys
* I/O port driving C64 keys
* I/O port driving new keys
» I/O port sensing CAPS key
* keyboard buffer index
> keyboard buffer
* keyboard buffer size
* shift key status
> repeat key enables
> pause, mode disables

KEY is also found in the Editor jump table as SCNKEY at $C012.

ROWS
COLM
VIC #47
8502 P6
NDX
KEYD
XMAX
SHFLAG
RPTFLG
LOCKS

$DC01
$DC00
$D02F
$0001
$D0
$34A
$A20
$D3
$A22
$F7

12. $FFA2 SETTMO preserved)

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA #value
JSR $FFA2

none
system map
none
none

none
TIMOUT ($A0E)
none

:uodate TIMOUT

SETTMO is not used in the C128 but is included for compatibility and
completeness. It is used in the C64 by the IEEE communication cartridge to disable
I/O timeouts.

13. $FFA5 ACPTR ;serial:byte input

PREPARATION:
Registers:
Memory:
Flags:
Calls:

none
system map
none
TALK
TKSA (if necessary)

THE COMMODORE 128 OPERATING SYSTEM 423

RESULTS:
Registers: .A = data byte
Memory: STATUS ($90)
Flags: none

EXAMPLE:

JSR $FFA5 ;input a byte from serial bus
STA data

ACPTR is a low-level serial I/O utility to accept a single byte from the
current serial bus TALKer using full handshaking. To prepare for this routine,
a device must first have been established as a TALKer (see TALK) and passed
a secondary address if necessary (see TKSA). The byte is returned in .A.
(Most applications should use the higher-level I/O routines; see BASIN and
GETIN).

14. $FFA8 CIOUT ;serial: byte output

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA data
JSR $FFA8

.A = data byte
system map
none
LISTN
SECND (if necessary)

.A used
STATUS ($90)
none

;send a bvte via serial

CIOUT is a low-level serial I/O utility to transmit a single byte to the current
serial bus LISTNer using full handshaking. To prepare for this routine, a device
must first have been established as a LISTNer (see LISTN) and passed a secondary
address if necessary (see SECND). The byte is passed in .A. Serial output data is
buffered by one character, with the last character being transmitted with EOI after a
call to UNLSN. (Most applications should use the higher level I/O routines; see
BSOUT.)

15. $FFAB UNTLK ;serial: send untalk

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

JSR $FFAB

none
system map
none
none

.A used
STATUS ($90)
none

:UNTALK seri

UNTLK is a low-level Kernal serial bus routine that sends an UNTALK
command to all serial bus devices. It commands all TALKing devices to stop
sending data. (Most applications should use the higher-level I/O routines; see
CLRCH.)

16. $FFAE UNLSN ;serial: send unlisten

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

JSR SFFAE

none
system map
none
none

.A used
STATUS ($90)
none

;UNLISTEN se

UNLSN is a low-level Kernal serial bus routine that sends an UNLISTEN
command to all serial bus devices. It commands all LISTENing devices to stop
reading data. (Most applications should use the higher-level I/O routines; see
ICLRCH.)

THE COMMODORE 128 OPERATING SYSTEM 425

17. $FFB1 LISTN ;serial: send listen command

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

JSR $FFB1

.A = device (0-31)
system map
none
none

.A used
STATUS ($90)
none

xommand device to

LISTN is a low-level Kernal serial bus routine that sends a LISTEN
command to the serial bus device in .A. It commands the device to start read-
ing data. (Most applications should use the higher-level I/O routines; see
ICKOUT.)

18. $FFB4 TALK ;serial: send talk

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

JSR $FFB4

.A = device (0-31)
system map
none
none

.A used
STATUS ($90)
none

xommand device to

TALK is a low-level Kernal serial bus routine that sends a TALK command
to the serial bus device in .A. It commands the device to start sending data. (Most
applications should use the higher-level I/O routines; see ICHKIN.)

19. $FFB7 READSS ;read I/O status byte

PREPARATION:
Registers: none
Memory: system map
Flags: none
Calls: none

RESULTS:
Registers: .A = STATUS ($90 or $A14)
Memory: STATUS cleared if RS-232
Flags: none

EXAMPLE:

JSR $FFB7 ;STATUS for last I/O

READSS (alias READST) returns the status byte associated with the last I/O
operation (serial, cassette or RS-232) performed. Serial and cassette tape operations
update STATUS ($90) and RS-232 I/O updates RSSTAT ($A14). Note that to
simulate an ACIA, RSSTAT is cleared after it is read via READSS. The last I/O
operation is determined by the contents of FA ($BA); thus applications that drive
I/O devices using the lower-level Kernal calls should not use READSS.

20. $FFBA SETLFS ;set channel LA, FA, SA

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

See OPEN

.A = LA (logical #)

.X = FA (device #)

.Y = SA (secondary adr)
system map
none
none

none
LA, FA, SA updated
none

SETLFS sets the logical file number (LA, $B8), device number (FA, $BA)
and secondary address (SA, $B9) for the higher-level Kernal I/O routines. The LA
must be unique among OPENed files and is used to identify specific files for I/O

THE COMMODORE 128 OPERATING SYSTEM 427

operations. The device number range is 0 to 31 and is used to target I/O. The SA is
a command to be sent to the indicated device, usually to place it in a particular
mode. If the SA is not needed, the .Y register should pass $FF. SETLFS is often
used along with SETNAM and SETBNK calls prior to OPENs. See the Kernal
OPEN, LOAD and SAVE calls for examples.

21. $FFBD SETNAM ;set filename pointers

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

See OPEN

.A = string length

.X = string adr low

.Y = string adr high
system map
none
SETBNK

none
FNLEN, FNADR updated
none

SETNAM sets up the filename or command string for higher-level Kernal I/O
calls such as OPEN, LOAD and SAVE. The string (filename or command) length is
passed in .A and updates FNLEN ($B7). The address of the string is passed in ,X
(low) and .Y (high). See the companion call, SETBNK, which specifies in which
RAM bank the string is found. If there is no string, SETNAM should still be called
and a null ($00) length specified (the address does not matter). SETNAM is often
used along with SETBNK and SETLFS calls prior to OPENs. See the Kernal
OPEN, LOAD and SAVE calls for examples.

22. $FFC0 OPEN ;open logical file

PREPARATION:
Registers:
Memory:
Flags:
Calls:

none
system map
none
SETLFS, SETNAM, SETBNK

RESULTS:
Registers:

Memory:

Flags:

EXAMPLE:

LDA #length
LDX #< filename
LDY #>filename
JSR $FFBD

LDX #0
JSR $FF68

LDA #1
LDX #8
LDY #15
JSR $FFBA

JSR $FFCO

BCS error

filename .BYTE '10'
length = 2

.A = error code (if any)

.X used

.Y used
setup for I/O
STATUS, RSSTAT updated
.C = 1 —> error

OPEN 1,8,15,"10"

;fnlen
;fnadr (command)

;SETNAM

;fnbank (RamO)
;SETBNK

;la
;fa
;sa
;SETLFS

;OPEN

OPEN prepares a logical file for I/O operations. It creates a unique entry in
the Kernal logical file tables LAT ($362), FAT ($36C) and SAT ($376) using its
index LDTND ($98) and data supplied by the user via SETLFS. There can be up to
ten logical files OPENed simultaneously. OPEN performs device-specific opening
tasks for serial, cassette and RS-232 devices, including clearing the previous status and
transmitting any given filename or command string supplied by the user via SETNAM
and SETBNK. The I/O status is updated appropriately and can be read via READSS.

The path to OPEN is through an indirect RAM vector at $31 A. Applications
may therefore provide their own OPEN procedures or supplement the system's by
redirecting this vector to their own routine.

23. $FFC3 CLOSE ;close logical file

PREPARATION:
Registers:
Memory:
Flags:
Calls:

.A = LA (logical #)
system map
.C (see text below)
none

THE COMMODORE 128 OPERATING SYSTEM 429

RESULTS:
Registers:

Memory:

Flags:

EXAMPLE:

LDA #1
JSR $FFC3
BCS error

.A = error code (if any)

.X used

.Y used
logical tables updated
STATUS, RSSTAT updated
.C = 1 —* error

;la
;CLOSE
;(tape files only)

CLOSE removes the logical file (LA) passed in .A from the logical file tables
and performs device-specific closing tasks. Keyboard, screen and any unOPENed
files pass through. Cassette files opened for output are closed by writing the last
buffer and (optionally) an EOT mark. RS-232 I/O devices are reset, losing any
buffered data. Serial files are closed by transmitting a CLOSE command (if an SA
was given when it was opened), sending any buffered character, and UNLSTNing
the bus.

There is a special provision incorporated into the CLOSE routine of systems
featuring a BASIC DOS command. If the following conditions are all true, a full
CLOSE is not performed; the table entry is removed but a CLOSE command is not
transmitted to the device. This allows the disk command channel to be properly
OPENed and CLOSEd without the disk operating system closing all files on its
end:

C = 1 -» indicates special CLOSE
FA > = 8 —> device is a disk
SA = 15 —• command channel

The path to CLOSE is through an indirect RAM vector at $31C. Applications
may therefore provide their own CLOSE procedures or supplement the system's by
redirecting this vector to their own routine.

24. $FFC6 CHKIN ;set input channel

PREPARATION:
Registers:
Memory:
Flags:
Calls:

.X = LA (logical #)
system map
none
OPEN

RESULTS:
Registers:

Memory:

Flags:

EXAMPLE:

LDX #1
JSR $FFC6
BCS error

.A = error code (if any)

.X used

.Y used
LA, FA, SA, DFLTN
STATUS, RSSTAT updated
.C = 1 —> error

;la
;CHKIN

CHKIN establishes an input channel to the device associated with the logical
address (LA) passed in .X, in preparation for a call to BASIN or GETIN. The
Kernal variable DFLTN ($99) is updated to indicate the current input device and the
variables LA, FA and SA are updated with the file's parameters from its entry in
the logical file tables (put there by OPEN). CHKIN performs certain device specific
tasks: screen and keyboard channels pass through, cassette files are confirmed for
input, and serial channels are sent a TALK command and the SA transmitted (if
necessary). Call CLRCH to restore normal I/O channels.

CHKIN is required for all input except the keyboard. If keyboard input is
desired and no other input channel is established, you do not need to call CHKIN or
OPEN. The keyboard is the default input device for BASIN and GETIN.

The path to CHKIN is through an indirect RAM vector at $3IE. Applications
may therefore provide their own CHKIN procedures or supplement the system's by
redirecting this vector to their own routine.

25. $FFC9 CKOUT ;set output channel

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:

Flags:

.X = LA (logical #)
system map
none
OPEN

.A = error code (if any)

.X used
,Y used
LA, FA, SA, DFLTO
STATUS, RSSTAT updated
,C = 1 —» error

THE COMMODORE 128 OPERATING SYSTEM 431

EXAMPLE:

LDX #1 ;la
JSR $FFC9 ;CKOUT
BCS error

CKOUT establishes an output channel to the device associated with the
logical address (LA) passed in .X, in preparation for a call to BSOUT. The Kernal
variable DFLTO ($9A) is updated to indicate the current output device and the
variables LA, FA and SA are updated with the file's parameters from its entry in
the logical file tables (put there by OPEN). CKOUT performs certain device
specific tasks: keyboard channels are illegal, screen channels pass through, cassette
files are confirmed for output, and serial channels are sent a LISTN command and
the SA transmitted (if necessary). Call CLRCH to restore normal I/O channels.

CKOUT is required for all output except the screen. If screen output is
desired and no other output channel is established, you do not need to call CKOUT
or OPEN. The screen is the default output device for BSOUT.

The path to CKOUT is through an indirect RAM vector at $320. Applications
may therefore provide their own CKOUT procedures or supplement the system's by
redirecting this vector to their own routine.

26. $FFCC CLRCH ;restore default channels

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FFCC

none
system map
none
none

.A used

.X used
DFLTI, DFLTO updated
none

;restore default I/O

CLRCH (alias CLRCHN) is used to clear all open channels and restore the
system default I/O channels after other channels have been established via CHKIN
and/or CHKOUT. The keyboard is the default input device and the screen is the
default output device. If the input channel was to a serial device, CLRCH first
UNTLKs it. If the output channel was to a serial device, it is UNLSNed first.

The path to CLRCH is through an indirect RAM vector at $322. Applications
may therefore provide their own CLRCH procedures or supplement the system's by
redirecting this vector to their own routine.

27. $FFCF BASIN ;input from channel

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDY #0
MORE JSR $FFCF

STA data,Y
INY
CMP #$0D
BNE MORE

none
system map
none
CHKIN (if necessary)

.A = character (or error code)
STATUS, RSSTAT updated
,C = 1 if error

;index
;input a character
;buffer it

;carriage return?

BASIN (alias CHRIN) reads a character from the current input device (DFLTN
$99) and returns it in .A. Input from devices other than the keyboard (the default
input device) must be OPENed and CHKINed. The character is read from the input
buffer associated with the current input channel:

a. Cassette data is returned a character at a time from the cassette buffer at $B00,
with additional tape blocks being read when necessary.

b. RS-232 data is returned a character at a time from the RS-232 input buffer at $C00,
waiting until a character is received if necessary. If RSSTAT ($A14) is bad from
a prior operation, input is skipped and null input (carriage return) is substituted.

c. Serial data is returned a character at a time directly from the serial bus, waiting
until a character is sent if necessary. If STATUS ($90) is bad from a prior
operation, input is skipped and null input (carriage return) is substituted.

d. Screen data is read from screen RAM starting at the current cursor position and
ending with a pseudo carriage return at the end of the logical screen line. The
way the BASIN routine is written, the end of line (EOL) is not recog-
nized. Users must therefore count characters themselves or otherwise detect
when the logical EOL has been reached.

THE COMMODORE 128 OPERATING SYSTEM 433

e. Keyboard data is input by turning on the cursor, reading characters from the
keyboard buffer, and echoing them on the screen until a carriage return is
encountered. Characters are then returned one at a time from the screen until
all characters input have been passed, including the carriage return. Any calls
after the EOL will start the process over again.

The path to BASIN is through an indirect RAM vector at $324. Applications
may therefore provide their own BASIN procedures or supplement the system's by
redirecting this vector to their own routine.

28. $FFD2 BSOUT ;output to channel

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA #character
JSR $FFD2

.A = character
system map
none
CKOUT (if necessary)

.A = error code (if any)
STATUS, RSSTAT updated
.C = 1 if error

;output a character

BSOUT (alias CHROUT) writes the character in .A to the current output
device (DFLTO $9A). Output to devices other than the screen (the default output
device) must be OPENed and CKOUTed. The character is written to the output
buffer associated with the current output channel:

a. Cassette data is put a character at a time into the cassette buffer at $B00, with
tape blocks being written when necessary.

b. RS-232 data is put a character at a time into the RS-232 output buffer at $D00,
waiting until there is room if necessary.

c. Serial data is passed to CIOUT, which buffers one character and sends the
previous character.

d. Screen data is put into screen RAM at the current cursor position.
e. Keyboard output is illegal.

The path to BSOUT is through an indirect RAM vector at $326. Applications
may therefore provide their own BSOUT procedures or supplement the system's by
redirecting this vector to their own routine.

29. $FFD5 LOAD ;load from file

PREPARATION:
Registers: .A = 0 -» LOAD

.A > 0 -* VERIFY

.X = loadadrlo(if SA = 0)

.Y = load adrhi(if SA = 0)
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:

Flags:

EXAMPLE:

LDA #length
LDX #<filename
LDY #>filename
JSR $FFBD

LDA #0
LDX #0
JSR $FF68

LDA #0
LDX #8
LDY #$FF
JSR $FFBA

system map
none
SETLFS, SETNAM, SET!

.A = error code (if any)

.X = ending adr lo

.Y = ending adr hi
per command
STATUS updated
.C = 1 —> error

LOAD "program",8,l

;fnlen
;fnadr

;SETNAM

;load/verify bank (RAM 0)
;fnbank (RAM 0)
;SETBNK

;la (not used)
;fa
;sa (SA>0 normal load)
;SETLFS

LDA #0 ;load, not verify
LDX #<load adr ;(used only if SA = 0)
LDY #>load adr ;(used only if SA = 0)
JSR $FFD5 ;LOAD
BCS error
STX end lo
STY end hi

filename .BYTE
length = 7

program

This routine LOADs data from an input device into C128 memory. It can also
be used to VERIFY that data in memory matches that in a file. LOAD performs

THE COMMODORE 128 OPERATING SYSTEM 43S

device-specific tasks for serial and cassette LOADs. You cannot LOAD from
RS-232 devices, the screen or the keyboard. While LOAD performs all the tasks of
an OPEN, it does not create any logical files as an OPEN does. Also note that LOAD
cannot "wrap" memory banks. As with any I/O, the I/O status is updated appropriately
and can be read via READSS. LOAD has two options that the user must select:

a. LOAD vs. VERIFY: The contents of .A passed at the call to LOAD deter-
mines which mode is in effect. If .A is zero, a LOAD operation will be
performed and memory will be overwritten. If .A is nonzero, a VERIFY
operation will be performed and the result passed via the error mechanism.

b. LOAD ADDRESS: the secondary address (SA) setup by the call to SETLFS
determines where the LOAD starting address comes from. If the SA is zero,
the user wants the address in .X and . Y at the time of the call to be used. If the
SA is nonzero, the LOAD starting address is read from the file header itself
and the file is loaded into the same place from which it was SAVEd.

The C128 serial LOAD routine automatically attempts to BURST load a file,
and resorts to the normal load mechanism (but still using the FAST serial routines)
if the BURST handshake is not returned.

The path to LOAD is through an indirect RAM vector at $330. Applications
may therefore provide their own LOAD procedures or supplement the system
procedures by redirecting this vector to their own routine.

30. $FFD8 SAVE ;save to file

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

LDA #length
LDX #<filename
LDY #>filename
JSR SFFBD

.A = pointer to start adr

.X = end adr lo
,Y = end adr hi
system map
none
SETLFS, SETNAM, SETBNK

.A = error code (if any)

.X = used

.Y = used
STATUS updated
.C = 1 —» error

SAVE "program",8

;fnlen
;fnadr

:SETNAM

LDA #0 ;save from bank (RAM 0)
LDX #0 ;fnbank (RAM 0)
JSR $FF68 ;SETBNK

LDA #0 ;la (not used)
LDX #8 ;fa
LDY #0 ;sa (cassette only)
JSR $FFBA ;SETLFS

LDA #start ;pointer to start address
LDX end ;ending address lo
LDY end + 1 ;ending adr hi
JSR $FFD8 ;SAVE
BCS error

filename .BYTE "program"
length = 7
start .WORD address 1 ;page-0
end .WORD address2

This routine SAVEs data from C128 memory to an output device. SAVE per-
forms device-specific tasks for serial and cassette SAVEs. You cannot SAVE from
RS-232 devices, the screen or the keyboard. While SAVE performs all the tasks of an
OPEN, it does not create any logical files as an OPEN does. The starting address of
the area to be SAVEd must be placed in a zero-page vector and the address of this
vector passed to SAVE in .A at the time of the call. The address of the last byte
to be SAVEd PLUS ONE is passed in .X and .Y at the same time. Cassette SAVEs
utilize the secondary address (SA) to specify the type of tape header(s) to be generated:

SA

SA

(bit

(bit

0)

1)

= 0-»
= 1 —»
= 0 ->

relocatable
absolute
normal end
write EOT

(blf)
(plf)

header

file
file

at end

There is no BURST save; the normal FAST serial routines are used. As with
any I/O, the I/O status will be updated appropriately and can be read via READSS.

The path to SAVE is through an indirect RAM vector at $332. Applications
may therefore provide their own SAVE procedures or supplement the system's by
redirecting this vector to their own routine.

31. $FFDB SETTIM ;set internal clock

PREPARATION:
Registers:

Memory:
Flags:
Calls:

.A = low byte

.X = middle byte

.Y = high byte
system map
none
none

THE COMMODORE 128 OPERATING SYSTEM 437

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA #0
TAX
TAY
JSR $FFDB

none
TIME (SAO) updated
none

;reset clock

:SETTIM

SETTIM sets the system software (jiffie) clock, which counts sixtieths (1/60)
of a second. The timer is incremented during system IRQ processing (see UDTIM),
and reset at the 24-hour point. SETTIM disables IRQ's, updates the three-byte timer
with the contents of .A, .X and .Y, and re-enables IRQ's.

32. $FFDE RDTIM ;read internal clock

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR SFFDE

none
system map
none
none

.A = low byte

.X = middle byte

.Y = high byte
none
none

;RDTIM

RDTIM reads the system software (jiffie) clock, which counts sixtieths (1/60)
of a second. The timer is incremented during system IRQ processing (see UDTIM),
and reset at the 24-hour point. RDTIM disables IRQ's, loads .A, .X and . Y with the
contents of the 3-byte timer, and re-enables IRQ's.

33. $FFE1 STOP ;scan STOP key

PREPARATION:
Registers:
Memory:
Flags:
Calls:

none
system map
none
none

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FFE1
BEQ stop

.A = last keyboard row

.X = used (if STOP key)
none
status valid

;scan STOP key
;branch if down

STOP checks a Kernal variable STKEY ($91), which is updated by UDTIM
during normal IRQ processing and contains the last scan of keyboard column C7.
The STOP key is bit 7, which will be 0 if the key is down. If it is, default I/O
channels are restored via CLRCH and the keyboard queue is flushed by resetting
NDX ($D0). The keys on keyboard line C7 are:

Bit: 7 6 5 4 3 2 1 0
Key: STOP Q O SPACE 2 CTRL <- 1

The path to STOP is through an indirect RAM vector at $328. Applications
may therefore provide their own STOP procedures or supplement the system's by
redirecting this vector to their own routine.

34. $FFE4 GETIN ;read buffered data

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

wait JSR $FFE4
BEQ wait
STA character

none
system map
none
CHKIN (if necessary)

.A = character (or error code)

.X used

.Y used
STATUS, RSSTAT updated
.C = 1 if error

;get any key

GETIN reads a character from the current input device (DFLTN ($99)) buffer
and returns it in .A. Input from devices other than the keyboard (the default input
device) must be OPENed and CHKINed. The character is read from the input buffer
associated with the current input channel:

THE COMMODORE 128 OPERATING SYSTEM 439

a. Keyboard input: A character is removed from the keyboard buffer and passed
in .A. If the buffer is empty, a null ($00) is returned.

b. RS-232 input: A character is removed from the RS-232 input buffer at $C00
and passed in .A. If the buffer is empty, a null ($00) is returned (use READSS
to check validity).

c. Serial input: GETIN automatically jumps to BASIN. See BASIN serial I/O.
d. Cassette input: GETIN automatically jumps to BASIN. See BASIN cassette

I/O.
e. Screen input: GETIN automatically jumps to BASIN. See BASIN serial I/O.

The path to GETIN is through an indirect RAM vector at $32A. Applications
may therefore provide their own GETIN procedures or supplement the system's by
redirecting this vector to their own routine.

35. $FFE7 CLALL ;close all files and channels

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FFE7

none
system map
none
none

.A used

.X used
LDTND, DFLTN, DFLTO updated
none

xlose files

CLALL deletes all logical file table entries by resetting the table index,
LDTND ($98). It clears current serial channels (if any) and restores the default I/O
channels via CLRCH.

The path to CLALL is through an indirect RAM vector at $32C. Applications
may therefore provide their own CLALL procedures or supplement the system's by
redirecting this vector to their own routine.

36. $FFEA UDTIM ;increment internal clock

PREPARATION:
Registers:
Memory:
Flags:
Calls:

none
system map
none
none

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

SEI
JSR $FFEA
CLI

.A used

.X used
TIME, TIMER, STKEY updated
none

;UDTIM

UDTIM increments the system software (jiffie) clock, which counts sixtieths
(1/60) of a second when called by the system 60Hz IRQ. TIME, a 3-byte counter
located at $A0, is reset at the 24-hour point. UDTIM also decrements TIMER, also
a 3-byte counter, located at $A1D (BASIC uses this for the SLEEP command, for
example). You should be sure IRQ's are disabled before calling UDTIM to prevent
system calls to UDTIM while you are modifying TIME and TIMER.

UDTIM also scans key line C7, on which the STOP key lies, and stores the
result in STKEY ($91). The Keraal routine STOP utilizes this variable.

37. $FFED SCRORG ;get current screen window size

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FFED

none
system map
none
none

.A = screen width

.X = window width

.Y = window height
none
none

iSCRORG

SCRORG is an Editor routine that has been slightly changed from previous
CBM systems. Instead of returning the maximum SCREEN dimensions in .X and
.Y, the C128 SCRORG returns the current WINDOW dimensions. It does return
the maximum SCREEN width in .A. These changes make it possible for applica-
tions to "fit" themselves on the current screen window. SCRORG is also an Editor
jump table entry ($C00F).

THE COMMODORE 128 OPERATING SYSTEM 441

38. $FFF0 PLOT ;read/set cursor position

PREPARATION:
Registers:

Memory:
Flags:

Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

SEC
JSR SFFFO
INX
INY
CLC
JSR $FFF0
BCS error

,X = cursor line
.Y = cursor column
system map
.C = 0 —» set cursor position
.C = 1 —» get cursor position
none

.X = cursor line

.Y = cursor column
TBLX, PNTR updated
.C = 1 —•» error

;read current position
;move down one line
;move right one space

;set cursor position
:new Dosition outside window

PLOT is an Editor routine that has been slightly changed from previous CBM
systems. Instead of using absolute coordinates when referencing the cursor position,
PLOT now uses relative coordinates, based upon the current screen window. The
following local Editor variables are useful:

SCBOT
SCTOP
SCLF
SCRT
TBLX
PNTR
LINES
COLUMNS

$E4 -
$E5 -
$E6 -
$E7 -
$EB -
$EC -
$ED -
SEE -

•> window bottom
-» window top
-* window left side
-* window right side
•» cursor line
•» cursor column
-> maximum screen height
•> maximum screen width

When called with the carry status set, PLOT returns the current cursor
position relative to the current window origin (not screen origin). When called with
the carry status clear, PLOT attempts to move the cursor to the indicated line and
column relative to the current window origin (not screen origin). PLOT will return a
clear carry status if the cursor was moved, and a set carry status if the requested
position was outside the current window (no change has been made).

39. $FFF3 IOBASE ;read base address of I/O block

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FFF3

none
system map
none
none

.X = lsb of I/O block

.Y = msbof I/O block
none
none

;find the I/O block

IOBASE is not used in the C128 but is included for compatibility and complete-
ness. It returns the address of the I/O block in .X and . Y.

NEW CI28 KERNAL CALLS

The following system calls are a set of extensions to the standard CBM jump table.
They are specifically for the C128 and as such should not be considered as permanent
additions to the standard jump table. With the exception of C64 MODE, they are all true
subroutines and will terminate via an RTS. As with all Kernal calls, the system
configuration (high ROM, RAM-0 and I/O) must be in context at the time of the
call.

1. $FF47 SPIN SPOUT ;setup fast serial ports for I/O

PREPARATION:
Registers:
Memory:
Flags:

Calls:

RESULTS:
Registers:
Memory:
Flags:

none
system map
.C = 0 -> select SPINP
.C = 1 -» select SPOUT
none

.A used
CIA-1, MMU
none

THE COMMODORE 128 OPERATING SYSTEM 443

EXAMPLE:

CLC
JSR $FF47 ;setup for fast serial input

The C128/1571 fast serial protocol utilizes CIA 1 (6526 at $DC00) and a
special driver circuit controlled in part by the MMU (at $D500). SPINP and
SPOUT are routines used by the system to set up the CIA and fast serial driver
circuit for input or output. SPINP sets up CRA (CIA 1 register 14) and clears the
FSDIR bit (MMU register 5) for input. SPOUT sets up CRA, ICR (CIA 1 register
13), timer A (CIA 1 registers 4 and 5), and sets the FSDIR bit for output. Note the
state of the TODIN bit of CRA is always preserved, but the state of the GAME,
EXROM and SENSE40 outputs of the MMU are not (reading these ports return the
state of the port and not the register values—consequently they cannot be pre-
served). These routines are required only by applications driving the fast serial bus
themselves from the lowest level.

2. $FF4A CLOSE ALL ;close all files on a device

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

LDA #$08
JSR $FF4A

.A -> device # (FA: 0-31)
system map
none
none

.A used

.X used

.Y used
none
none

xlose all files on device 8

The FAT is searched for the given FA. A proper CLOSE is performed for all
matches. If one of the CLOSEd channels is the current I/O channel, then the default
channel is restored.

This call is utilized, for example, by the BASIC command DCLOSE. It is
also called by the Kernal BOOT routine.

3. $FF4D C64MODE ;reconfigure system as a C64

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

JMP $FF4D

none
system map
none
none

none
none
none

:switch to C

There is no return from this routine. The 8502 DDR and port are initialized,
and the VIC is set to 1MHz (slow) mode. Control is passed to code in common
(shared) RAM, which sets the MMU mode register (#5) to C64 mode. From this
point on, the MMU and C128 ROMs are not accessible. The routine exits via an
indirect jump through the C64 RESET vector.

Since C64 operation does not allow for MMU access, all MMU registers must
be configured for proper operation before the C64 mode bit is set. Similarly,
because the start-up of the C64 operating system is not from a true hardware reset,
there is the possibility that unusual I/O states in effect prior to C64MODE calls can
cause unpredictable and presumably undesirable situations once in C64 mode.

There is no way to switch from C64 mode back to C128 mode; only a
hardware reset or power off/on will restore the C128 mode of operation. A reset
will always initiate C128 mode, although altering the SYSTEM vector beforehand
is one way to automatically "throw" a system back to C64 mode.

4. $FF50 DMA CALL ;send command to DMA device

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

.X = bank (0-15)

.Y = DMA controller command
DMA registers set up system map
none
none

.A used

.X used
changed as per command
none

THE COMMODORE 128 OPERATING SYSTEM 445

EXAMPLE:

LDA #$00 ;setup C128 base address
STA $DF02 ;low
LDA #$20
STA $DF03 ;high

LDA #$00 ;setup expansion RAM address
STA $DF04 ;low
STA $DF05 ;high
STA $DF06 ;bank (0-n, where n = 3 if 256K)

LDA #$40 ;setup number of bytes
STA $DF07 ;low
LDA #$1F
STA $DF08 ;high

LDX #$00 ;C128 bank
LDY #$84 ;DMA command to "STASH"
JSR $FF50 ;execute DMA command

DMA CALL is designed to communicate with an external expansion car-
tridge capable of DMA and mapped into system memory at IO2 ($DFxx). The
DMA CALL converts the logical C128 bank parameter to MMU configuration via
GETCFG, OR's in the I/O enable bit, and transfers control to RAM code at $3F0.
Here the C128 bank specified is brought into context, and the user's command is
issued to the DMA controller. The actual DMA transfer is performed at this point,
with the 8502 kept off the bus in a wait state. As soon as the DMA controller
releases the processor, memory is reconfigured to the state it was in at the time of
the call and control is returned to the caller. The user must analyze the completion
status by reading the DMA status register at $DF00.

Care should be taken in the utilization of the C128 RAM expansion product
by any application using the built-in Kernal interface. This includes especially the
use of the C128 BASIC commands FETCH, STASH and SWAP. In the routine that
prepares a DMA request for the user, the Kernal forces the I/O block to be always
in context. Consequently, data from the DMA device is likely to corrupt sensitive
I/O devices. Users should either bypass the Kernal DMA routine by providing
their own interface, or limit the DMA data transfers to the areas above and below the
I/O block. Only strict observance of the latter will guarantee proper utilization of
the BASIC commands. The following code, used instead of the DMA CALL in the
above example, illustrates a work-around:

LDX #$00 ;C128 bank
LDY #$84 ;DMA command to 'STASH'
JSR $FF6B ;GETCFG
TAX
JSR $3F0 ;execute DMA command

5. $FF53 BOOT CALL ;boot load program from disk

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

LDA #$30
LDX #$08
JSR $FF53
BCS 10 ERROR
BCC NO BOOT

.A = drive number (ASCII)

.X = device number (0-31)
system map
none
none

.A used

.X used

.Y used
changed as per command
.C -> 1 if I/O error

;drive 0
;device 8
;BOOT

SECTOR

BOOT attempts to load and execute the boot sector from an auto-boot disk in
the given drive and device. The BOOT protocol is as follows:

a. Close all open files on boot device.
b. Read track 1 sector 0 into TBUFFR ($B00).
c. Check for auto-boot header, RTS if not.
d. If (blk# > 0), BLOCK READ sequential sectors into RAM at given (adrl,

adrh, bank) location.
e. If LEN(filename) > 0, LOAD file into RAM-0 (normal load).
f. JSR to user code at location C above.

On any error, the BOOT operation is aborted and the UI command is issued
to the disk. A return may or may not be made to the caller depending upon the
completion status and the BOOTed code. The BOOT sector has the following
layout:

$00 $01 $02 $03 $04 $05 $06 A B C
C B M adrl adrh bank blk# title 0 file 0 code

where: A= $07 + LEN(title)
B= A + LEN(filename)
C= B + 1

THE COMMODORE 128 OPERATING SYSTEM 447

The following examples illustrate the flexibility of this layout. This loads and runs a
BASIC program:

$00 ->
$03 -»
$07 -»
$0C -»
$0D ->

$14 ->
$20 -*

CBM
$00,$00,$00,$00
NAME,$00
$00
$A2,$13,$A0,$0B
$4C,$A5,$AF
RUN "PROGRAM"
$00

:key
:no other BOOT sector
:message "NAME"
:no filename
:code

:data (BASIC stmt)

This results in the message Booting NAME... being displayed and, utilizing a
C128 BASIC jump table entry that finds and executes a BASIC statement, loads
and runs the BASIC program named "PROGRAM." The same header can be used
to load and execute a binary (machine code) program by simply changing RUN to
BOOT. (While the file auto-load feature of the boot header could be used to load
binary files simply by furnishing a filename, to execute it you must know the
starting address and JMP to it. BASIC'S BOOT command does that, and allows a
more generic mechanism.) In the next example, a menu is displayed and you are
asked to select the operating mode. Nothing else is loaded in this "configure"-type
header:

$00 -» CBM :key
$03 -» $00,$00,$00,$00 :no other BOOT sector
$07 —> $00 :no message
$0C -> $00 :no filename
$0D -» $20,$7D,$FF,$0D, $53, $45,$4C, $45

$43, $54, $20,$4D, $4F, $44, $45,$3A
$0D,$0D, $20, $31,$2E, $20, $43, $36
$34, $20, $20, $42, $41, $53, $49, $43
$0D,$20,$32,$2E,$20, $43, $31, $32
$38, $20, $42, $41, $53, $49, $43,$0D
$20, $33,$2E, $20, $43, $31, $32, $38
$20,$4D,$4F,$4E,$49, $54, $4F, $52
$0D,$0D, $00, $20,$E4,$FF,$C9, $31
$D0, $03,$4C,$4D,$FF,$C9, $32,$D0
$03,$4C, $03, $40,$C9, $33,$D0, $E3
$4C, $00,$B0

The loading of sequential sectors is designed primarily for specialized applications
(such as CP/M or games) that do not need a disk directory entry.

6. $FF56 PHOENIX ;init function cartridges

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FF56

none
cartridge map
none
none

.A used

.X used

.Y used
changed as per command
none

:PHOENIX

The C128 Kernal initialization routine POLL creates a Physical Address
Table (PAT) containing the ID's of all installed function ROM cartridges. PHOENIX
calls each logged cartridge's cold-start entry in the order: external low/high, and
internal low/high. After calling the cartridges (if any), PHOENIX calls the Kernal
BOOT routine to look for an auto-boot disk in drive 0 of device 8 (see BOOT CALL).
Control may or may not be returned to the user. PHOENIX is called by BASIC at
the conclusion of its cold initialization.

7. $FF59 LKUPLA ;search tables for given LA

8. $FF5C LKUPSA ;search tables for given SA

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

.A =

.Y =

LA (logical file number)
if LKUPLA
SA (secondary address)
if LKUPSA

system map
none
none

.A =

.Y =
none
.C =

LA (only if found)
FA (only if found)
SA (only if found)

0 if found
1 if not found

THE COMMODORE 128 OPERATING SYSTEM 449

EXAMPLE:

LDY #$60 ;find an available SA
AGAIN INY

CPY #$6F
BCS TOO MANY ;too many files open
JSR SFF5C ;LKUPSA
BCC AGAIN ;get another if in use

LKUPLA and LKUPSA are Kernal routines used primarily by BASIC DOS
commands to work around a user's open disk channels. The Kernal requires unique
logical device numbers (LA's), and the disk requires unique secondary addresses
(SA's); therefore BASIC must find alternative unused values whenever it needs to
establish a disk channel.

9. $FF5F SWAPPER ;switch between 40 and 80 columns

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

LDA $D7
BMI is_80
JSR $FF5F

none
system map
none
none

.A used

.X used

.Y used
local variables swapped
none

;check display mode
;branch if 80-column
;switch from 40 to 80

SWAPPER is an Editor utility used to switch between the 40-column VIC
(composite) video display and the 80-column 8563 (RGBI) video display. The
routine simply swaps local (associated with a particular screen) variables, TAB
tables and line wrap maps with those describing the other screen. The MSB of
MODE, location $D7, is toggled by SWAPPER to indicate the current display
mode: $80= 80-column, $00= 40-column.

10. $FF62 DLCHR ;init 80-col character RAM

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

JSR $FF62

none
system map
none
none

.A used

.X used

.Y used
8563 character RAM initialized
none

unitialize 8563 char, defns.

DLCHR (alias INIT80) is an Editor utility to copy the VIC character
definitions from ROM ($D000-$DFFF, bank 14) to 8563 display RAM ($2000-
$3FFF, local to 8563-not in processor address space). The 8 by 8 VIC character
cells are padded with nulls ($00) to fill out the 8 by 16 8563 character cells.
Refer to Chapter 10, Programming the 80-Column (8563) Chip for details concerning
the 8563 font layout.

11. $FF65 PFKEY ;program a function key

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

.A = pointer to string adr
(lo/hi/bank)

.Y = string length

.X = key number (1-10)
system map
none
none

.A used

.X used

.Y used
PKYBUF, PKYDEF tables updated
.C = 0 if successful
.C = 1 if no room available

THE COMMODORE 128 OPERATING SYSTEM 451

EXAMPLE:

LDA #$FA ;pointer to string address
LDY #$06 ;length
LDX #$0A ;key # (HELP key)
JSR $FF65 ;install new key def n
BCS NO ROOM

>000FA 00 13 00 :ptr to $1300 bank 0
>01300 53 54 52 49 4E 47 :"string"

PFKEY (alias KEYSET) is an Editor utility to replace a C128 function key
string with a user's string. Keys 1-8 are F1-F8, 9 is the S H I F T RUN string,
and 10 is the HELP string. The example above replaces the "help" R E T U R N
string assigned at system initialization to the HELP key with the string "string."
Both the key length table, PKYBUF ($1000-$ 1009), and the definition area,
PKYDEF ($100A-$10FF) are compressed and updated. The maximum length of all
ten strings is 246 characters. No change is made if there is insufficient room for a
new definition.

12. $FF68 SETBNK ;set bank for I/O operations

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

See OPEN

.A = BA, memory bank (0-15)

.X = FNBANK, filename bank
system map
none
SETNAM

none
BA, FNBANK updated
none

SETBNK is a prerequisite for any memory I/O operations, and must be used
along with SETLFS and SETNAM prior to OPENing files, etc. BA ($C6) sets the
current 64KB memory bank for LOAD/SAVE/VERIFY operations. FNBANK ($C7)
indicates the bank in which the filename string is found. The Kernal routine
GETCFG is used to translate the given logical bank numbers (0-15). SETBNK is
often used along with SETNAM and SETLFS calls prior to OPEN's. See the Kernal
OPEN, LOAD and SAVE calls for examples.

13. SFF6B GETCFG ;lookup MMU data for given bank

PREPARATION:
Registers:
Memory:
Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDX #$00
JSR $FF6B
STA $FF01

.X = logical bank # (0-15)
system map
none
none

.A = MMU configuration data
none
none

;logical bank 0 (RAM 0)
;GETCFG
;setup MMU pre-config # 1

GETCFG allows a universal, logical approach to physical bank numbers by
providing a simple lookup conversion for obtaining the actual MMU configuration
data. In all cases where a bank number 0-15 is required, you can expect GETCFG
to be called to convert that number accordingly. There is no error checking; if the
given logical bank number is out of range the result is invalid. Refer to the Memory
Management Unit in the Commodore 128 section later in this chapter for details concern-
ing memory configuration. The C128 Kernal memory banks are assigned as follows:

0.
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

%00111111
%01111111
%10111111
%11111111
%00010110
%01010110
%10010110
%11010110
%00101010
%01101010
%10101010
%11101010
%00000110
%00001010
%00000001
%00000000

:RAM 0 only
:RAM 1 only
:RAM 2 only
:RAM 3 only
:INTROM, RAM
:INTROM, RAM
:INTROM, RAM
:INTROM, RAM
:EXT ROM, RAM
:EXT ROM, RAM
:EXT ROM, RAM
:EXT ROM, RAM

0, I/O
1, I/O
2, I/O
3, I/O
0, I/O
1, I/O
2, I/O
3, I/O

:KERNAL, INT LO, RAM
:KERNAL, EXT LO, RAM
:KERNAL, BASIC
:KERNAL, BASIC

, RAM
, RAM

0, I/O
0, I/O
0, CHAR ROM
0, I/O

THE COMMODORE 128 OPERATING SYSTEM 453

14. $FF6E JSRFAR ;gosub in another bank

15. $FF71 JMPFAR ;goto another bank

PREPARATION:
Registers:
Memory:

Flags:
Calls:

RESULTS:
Registers:
Memory:

none
system
$02-^
$ 0 3 ^
$ 0 4 ^
$05-*
$06-*
$07 -*
$08-^
none
none

none
as per
$05 -»
$06-*
$07-*
$08 ->

map, also:
• bank (0-15)
• PC high

PC low
• .S (status)
• .A
• .X
• . Y

call, also:
• .S (status)
• .A

.X

.Y
Flags: none

The two routines, JSRFAR and JMPFAR, enable code executing in the
system bank of memory to call (or JMP to) a routine in any other bank. In the case
of JSRFAR, a return will be made to the caller's bank. It should be noted that
JSRFAR calls JMPFAR, which calls GETCFG. When calling a non-system bank,
the user should take necessary precautions to ensure that interrupts (IRQ's and NMI's)
will be handled properly (or disabled beforehand). Both JSRFAR and JMPFAR are
RAM-based routines located in common (shared) RAM at $2CD and $2E3
respectively.

The following code illustrates how to call a subroutine in the second RAM
bank from the system bank. Note that we need not worry about IRQ's and NMI's in
this case because the system will handle them properly in any configuration that has
the Kernal ROM or any valid RAM bank in context at the top page of memory.

STY $08
STX $07
STA $06
PHP
PLA
STA $05

;assumes registers and status
;already setup for call

LDA # 1 ;want to call $2000 in bank 1
LDY #$20
LDX #$00
STA $02
STY $03
STX $04

JSR $FF6E ;JSRFAR

LDA $05 ;restore status and registers
PHA
LDA $06
LDX $07
LDY $08
PLP

16. $FF74 INDFET ;LDA (fetvec),Y from any bank

PREPARATION:
Registers:

Memory:
Flags:
Calls:

RESULTS:
Registers:

Memory:
Flags:

EXAMPLE:

LDA #$00
STA $FA
LDA #$20
STA $FB
LDA #$FA
LDX #$01
LDY #$00
JSR $FF74
BEQ etc

.A = pointer to address

.X = bank (0-15)

.Y = index
setup indirect vector
none
none

.A = data

.X used
none
status valid

;setup to read $2000

;in bank 1

;LDA ($FA,RAM 1),Y

INDFET enables applications to read data from any other bank. It sets up
FETVEC ($2AA), calls GETCFG to convert the bank number, and JMPs to code in

THE COMMODORE 128 OPERATING SYSTEM 4S5

common (shared) RAM at $2A2 which switches banks, loads the data, restores the
user's bank, and returns. When calling a non-system bank, the user should take
necessary precautions to ensure that interrupts (IRQ's and NMI's) will be handled
properly (or disabled beforehand).

17. $FF77 INDSTA ;STA (stavec),Y to any bank

PREPARATION:
Registers:

Memory:

Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA #$00
STA $FA
LDA #$20
STA $FB
LDA #$FA
STA $2B9
LDA data
LDX #$01
LDY #$00
JSR $FF77

.A = data

.X = bank (0-15)
,Y = index
setup indirect vector
setup STAVEC ($2B9) pointer
none
none

.X used
changed per call
status invalid

;setup write to $2000

;in bank 1

;STA ($FA,RAM 1),Y

INDSTA enables applications to write data to any other bank. After you set
up STAVEC ($2B9), it calls GETCFG to convert the bank number and JMPs to
code in common (shared) RAM at $2AF which switches banks, stores the data,
restores your bank, and returns. When calling a nonsystem bank, the user should
take necessary precautions to ensure that interrupts (IRQ's and NMI's) will be
handled properly (or disabled beforehand).

18. $FF7A INDCMP ;CMP (cmpvec),Y to any bank

PREPARATION:
Registers:

Memory:

Flags:
Calls:

RESULTS:
Registers:
Memory:
Flags:

EXAMPLE:

LDA #$00
STA $FA
LDA #$20
STA $FB
LDA #$FA
STA $2C3
LDA data
LDX #$01
LDY #$00
JSR $FF7A
BEQ same

.A = data

.X = bank (0-15)

.Y = index
setup indirect vector
setup CMPVEC ($2C8) pointer
none
none

.X used
none
status valid

;setup to verify $2000

;in bank 1

;CMP ($FA,RAM 1),Y

CMPSTA enables applications to compare data to any other bank. After you
set up CMPVEC ($2C8), it calls GETCFG to convert the bank number and JMP's to
code in common (shared) RAM at $2BE which switches banks, compares the data,
restores your bank, and returns. When calling a nonsystem bank, the user should
take necessary precautions to ensure that interrupts (IRQ's and NMI's) will be
handled properly (or disabled beforehand).

19. $FF7D PRIMM ;print immediate utility

PREPARATION:
Registers:
Memory:
Flags:
Calls:

none
none
none
none

THE COMMODORE 128 OPERATING SYSTEM 457

RESULTS:
Registers: none
Memory: none
Flags: none

EXAMPLE:

JSR $FF7D ;display following text

.BYTE "message"

.BYTE $00 ;terminator

JMP continue ;execution resumes here

PRIMM is a Kernal utility used to print (to the default output device) an
ASCII string which immediately follows the call. The string must be no longer than
255 characters and is terminated by a null ($00) character. It cannot contain any
embedded null characters. Because PRIMM uses the system stack to find the string
and a return address, you must not JMP to PRIMM. There must be a valid address
on the stack.

CI28 DEVICE NUMBERS

The following are the device numbers for the Commodore 128:

0 - *
1 -»
2 - *
3 ->
4 - >

Keyboard
Cassette
RS-232
Screen (current)
Serial bus device:
4—7 usually printers
8-30 usually disks

Device number 31 should not be used. While it is specified to be a valid serial bus
address, when it is ORed with certain serial commands it results in a bad command,
hanging the bus and the serial drivers.

MEMORY MANAGEMENT IN
THE COMMODORE 128

COMMODORE S28 MODE

In Commodore 128 mode, all memory management organization depends on the cur-
rently selected memory configuration. In C128 BASIC and the Machine Language
Monitor, the memory is organized into sixteen default memory configurations. Different
portions of memory are present depending on the memory configuration. Figure 13-3
lists the default memory configurations of the C128 on system power-up.

BANK CONFIGURATION

0 RAM(O) only
1 RAM(l) only
2 RAM(2) only (same as 0)
3 RAM(3) only (same as 1)
4 Internal ROM,RAM(0),I/O
5 Internal ROM,RAM(1),I/O
6 Internal ROM,RAM(2),I/O (same as 4)
7 Internal ROM,RAM(3),I/O (same as 5)
8 External ROM,RAM(0),I/O
9 External ROM,RAM(1),I/O

10 External ROM,RAM(2),I/O (same as 8)
11 External ROM,RAM(3),I/O (same as 9)
12 Kernal and Internal ROM (LOW), RAM(0),I/O
13 Kernal and External ROM (LOW), RAM(0),I/O
14 Kernal and BASIC ROM, RAM (0), Character ROM
15 Kernal and BASIC ROM, RAM(O), I/O

Figure 13-3. Memory Configuration (Bank) Table

THE MEMORY MANAGEMENT
UNIT (MMU)

In Commodore 128 mode, all memory management is controlled through a series of
I/O registers called the Memory Management Unit (MMU). The Memory Manage-
ment Unit consists of memory locations that reside between $D500 and $D50B and
SFFOO and $FF04. The configuration register appears twice, once at $D500 and again at
$FF00. This is done in case I/O is switched out of the $D000-$DFFF memory range,
which makes the MMU registers from $D5OO-$D5OB inaccessible.

THE COMMODORE 128 OPERATING SYSTEM 459

When this occurs, some features of the MMU are no longer available to the
programmer. So before switching out I/O in the $D000-$DFFF range, make sure you
have made all the manipulations you need on the MMU (particularly, preselecting the
preconfiguration register values for the load configuration registers). See Figure 13-4 for
a graphic depiction of the way the MMU registers map into memory.

Figure 13-4. MMU Register Map

HOW TO SWITCH BANKS
In BASIC, type the BANK command to switch from one bank to another as follows:

BANKn

where n is a digit between 0 and 15. When your application program needs to access a
bank in which the microprocessor is not in context (for SYS, PEEK, POKE, and WAIT
commands) use the BANK command to reach layers of the computer's memory that are
not accessible in the current bank. For instance, suppose you want to access the VIC
chip when you are doing graphics in the first part of your program. The next segment

of your program needs to access the character ROM, which is only visible to the 8502 in
bank 14. Change to bank 14; then read the character ROM data, which makes up the
images of the characters in the character sets. While the microprocessor is "looking" in
bank 14, the VIC chip is not available to the microprocessor, so you must issue another
BANK command in order to return to (a configuration containing I/O and) processing
VIC video information.

In machine language, switching banks is a little more difficult. You must change
the value of the registers [in particular the Configuration Register (CR), Load Config-
uration Register (LCR) and Preconfiguration Register (PCR)], either directly or
indirectly. The Kernal routine GETCFG allows you to change configurations and
maintains the same ones used by BASIC and the Monitor as they appear in Figure 13-3.
There are four PCR's and four LCR's (as shown in Figure 13-4). Each PCR corresponds
directly to a LCR. PCR A pertains to LCR A, PCR B corresponds to LCR B, and so on.

To change the value of the Configuration Register directly, perform a write
operation (STA, STX, STY) to the Configuration Register.

To change the value of the Configuration Register indirectly, write a value
specifying a memory configuration to the Preconfiguration Register. When a subsequent
store instruction is performed to the corresponding Load Configuration Register, the
value previously stored in the corresponding PCR is loaded into the CR. When a store
instruction is executed on an LCR, the value in the corresponding PCR is loaded into the
CR and the memory management organization conforms to the values associated with
that memory management scheme. The value written to the LCR is of no consequence;
any value triggers the preconfiguration mechanism.

NOTE: Basic expects the LCR's and PCR's to be left alone. If you use
them to manage memory in your application, do not plan on using BASIC.

THE CONFIGURATION REGISTER
The Configuration Register (CR) is the most important register in the MMU. It specifies
and organizes the ROM, RAM and input/output configurations for the entire Commo-
dore 128 memory in C128 mode. (The MMU is not present at all in the C64 memory
map.) The CR is located at address $D500 when I/O is available and at address $FF00 at
all times. When I/O functions are disabled, the MMU memory disappears between
$D500 and $D50B. The MMU memory is always present between $FF00 and $FF04,
Each of the eight bits in the CR controls a separate memory function.

Bit 0 (zero) in the Configuration Register specifies whether I/O Registers are
available, or whether ROM (High) is present in the memory range $D000 through
$DFFF. The I/O Registers consist of the registers of the VIC chip, SID chip, MMU
(from $D500 through $D50B); CIA number 1, which controls the joystick port; and CIA
number 2, which controls the serial bus and user port. If bit 0 is high (equal to 1), ROM
or RAM is present in the range $D000 through $DFFF, depending upon the values of
the ROM HIGH bits (4 and 5) in this register. If bit 0 is low (equal to 0), I/O is present
in this range. The value of bit 0 on power-up is 0.

THE COMMODORE 128 OPERATING SYSTEM 461

When I/O is switched out of (not present in) this range, the registers in the MMU
disappear from the memory map in the range $D500 through $D50B. The memory manage-
ment is then controlled through the MMU registers at locations $FF00 through $FF04. Any
write operation to an LCR ($FF01-$FF04) loads the corresponding PCR value (currently-
invisible to the 8502) into the CR. Reading an LCR returns the value stored in the
currently inaccessible PCR. The MMU registers ranging from $FF00 through $FF04 are
always present in the Commodore 128 memory, regardless of the memory configuration.

Bit 1 in the CR specifies how the microprocessor accesses the address range $4000
through $7FFF, called ROM LOW memory. If bit 1 is high, the microprocessor
accesses RAM in this range. If bit 1 is low (equal to 0), the microprocessor maps in the
BASIC LOW ROM in that range. Upon power-up or reset, this bit is set low, so
BASIC is available to the user as soon as the computer is turned on.

Bits 2 and 3 determine the type of memory that resides in the midrange of memory,
the address range $8000 through $BFFF. If both bits 2 and 3 are set high, RAM is
placed in this range. If bit 2 is high and 3 is low, INTERNAL FUNCTION ROM is
placed here. If bit 2 is low and 3 is high, EXTERNAL FUNCTION ROM appears. If
bits 2 and 3 are low, the BASIC HIGH ROM is placed here. Upon power-up or reset,
the MMU sets both bits 2 and 3 low, so BASIC is available to the user immediately.

Bits 4 and 5 work similarly to bits 2 and 3 and specify memory in the range $C000
through $FFFF, referred to as HIGH memory. If bits 4 and 5 are set high, RAM is
placed in this range. If bit 4 is high and 5 is low, INTERNAL FUNCTION ROM is
placed. If bit 4 is low and 5 is high, EXTERNAL FUNCTION ROM appears. If bits 4
and 5 are low, the Kernal and character ROMs are placed here. Upon power-up or reset,
bits 4 and 5 are set low, so the Kernal and character ROM are available to the user at once.

Note that bit 0 in the Configuration Register, the bit that switches in and out I/O in
address range $D000 through $DFFF, overrides the memory organization for bits 4 and 5.
If bit 0 is set high (1), the I/O Registers are not in place in the address range $D000
through $DFFF. Either the character ROM, internal or external function ROM or RAM
is located in this range, depending on the value of bits 4 and 5 of the configuration
register. If bit 0 in the Configuration Register is set low (0), the Input/Output registers
are present between $D000 through $DFFF, regardless of the value of bits 4 and 5 of the
configuration register. This means no matter what memory configuration is chosen
between $C000 and $FFFF with bits 4 and 5, if bit 0 is set low (0), the character ROM
(or whatever was originally in this address range) is overlaid by the I/O registers and
becomes unavailable to the microprocessor. This is why the character ROM and the I/O
registers are never available at the same time.

Finally, the last two bits of the MMU, 6 and 7, determine the RAM BANK
selection. For the base system of 128K, only bit 6 is significant; bit 7 is not imple-
mented. When bit 6 is high (1), RAM bank 1 is selected. When bit 6 is low (0), RAM
bank 0 is selected.

The 128K of RAM is organized into two 64K RAM banks. The microprocessor
only addresses 64K at a time, but since the two 64K RAM banks can be switched in and
out so quickly, the computer acts as though it addresses 128K at the same time. When
one RAM bank is being addressed by the microprocessor, the other bank stores
information to be processed once it is banked in. Portions of both banks can be shared in
memory at the same time. This is called Common RAM, and is discussed in the section

The RAM Configuration Register. RAM bank 0 is used typically for BASIC text area,
while RAM bank 1 is used for BASIC arrays and variable storage.

As indicated above, the MMU has a feature that allows a portion of RAM to be
common for the two RAM banks. The RAM Configuration Register controls the amount
of common RAM. This is discussed in detail later in this section under the description of
the RAM Configuration Register.

Figure 13-5 is a diagram of the Configuration Register, showing how the bits
control each memory organization.

00 = RAM BANK 0
01= RAM BANK 1
10 = EXPANSION BANK 2
11 = EXPANSION BANK 3

00 = KERNAL ROM
01 = INT. FUNCTION ROM
10 = EXT. FUNCTION ROM
11 = RAM

00 = BASIC ROM HI 0 = BASIC 0 = I/O
01= INT. FUNCTION ROM ROM LO REGISTERS
10= EXT. FUNCTION ROM 1=RAM 1= RAM/ROM
11 = RAM

Figure 13-5. Configuration Register

PRECONFIGURING COMMODORE 128 MEMORY

As noted, the Configuration Register in the MMU is the means by which the Commo-
dore 128 organizes the memory layout. Commodore 128 memory management has a
mechanism that allows the programmer to set up four predefined memory configura-
tions besides the one already operating. The four Preconfiguration Registers (PCR)
and the four Load Configuration Registers (LCR) are designed to provide this feature.
When a different memory management structure is desired, a previously defined
configuration in one of the Preconfiguration Registers can be chosen easily and
instantly.

This mechanism allows the programmer to preset several memory configurations
and, with a single store instruction to an LCR, reorganize the entire memory layout
instantly. This enables the programmer to use several memory organizations inter-
changeably; thus, if one part of your program requires one memory configuration and
another part requires a different configuration, you can switch back and forth between
the two, each with a single store instruction, once you predefine the alternate memory
setup in one of the Preconfiguration Registers.

To alter memory management through this preconfiguration mechanism, you
must change the value of the Preconfiguration Register. The four PCR's and four
LCR's of the MMU are shown in the MMU Register Map in Figure 13-6. Each
PCR corresponds directly to an LCR (i.e., PCR A pertains to LCR A, PCR B

THE COMMODORE 128 OPERATING SYSTEM 463

corresponds to LCR B, and so on). The format for the Load Configuration and
Preconfiguration Registers is the same as for the Configuration Register. The four LCRs
and four PCRs are all initialized to zero.

Figure 13-6. MMU Register Map

To directly change the value of the Configuration Register (therefore bypassing
the preconfiguration mechanism), perform a write operation (STA, STX, STY) directly
to the Configuration Register at either $D500 or $FF00.

To indirectly change the value of the Configuration Register (therefore utilizing
the preconfiguration mechanism), perform a write operation (STA, STX, STY) to the
Preconfiguration Register. This loads a value into the PCR. When a subsequent store
instruction is performed to the corresponding Load Configuration Register, the value
that was previously stored in the corresponding PCR is loaded into the CR. The store
instruction acts as a triggering mechanism that passes the contents of a PCR into the CR.
When a store instruction is executed upon an LCR, the value in the corresponding PCR
is loaded into the CR and memory management organization conforms to the value
associated with that PCR.

For example, to alter the memory management organization specified on power-up,
use the following machine language segment:

PART 1 LDA #$0E Load accumulator with 14
This selects

I/O ($D0OO-$DFFF)
RAM (S4000-S7FFF,S8000-$BFFF)
Kernal and Character ROM (SCOOO-SFFFF)
RAM Bank 0

STA $D501 Store in PCR A—no immediate results

: Place interim part of the program here
PART 2 STA SFF01 Write to LCR A, selects above configuration

In this program segment, PART 1 initializes PCR A ($D501) with the value 14
($0E). which performs no immediate result. When PART 2 is encountered, the STA
instruction performs a write operation to location SFF01, which triggers the preconfiguration
mechanism and loads the value from PCR A into the Configuration Register. The store
instruction value is not significant; it must operate only on the address, and any store
instruction works. Once this instruction is executed, the memory management organiza-
tion is immediately changed according to the value in the appropriate PCR, in this case
PCR A ($D501).

The value 14 ($0E) loaded into PCR A selects the following memory organization:

TYPE ADDRESS RANGE BIT(S) AFFECTED IN CR

I/O $D000-$DFFF 0
RAM $4000-$7FFF 1
RAM $8000-$BFFF 2,3
Kernal, Char $C000-$FFFF 4,5
RAM BANK 0 6,7

14 = $0E = 0000 1110 (binary)

It is good practice to initialize the PCR's in the beginning of your program, as in
PART 1 of the above program segment. Then place the interim portion of your program
in memory. PART 2 marks the place in your program where you are actually going
to alter the memory management setup. For the utmost speed and processor efficiency,
use absolute addressing for the MMU registers, as in the above example.

As previously noted, when the Input/Output Registers are switched out, the registers
of the MMU that appear in memory range $D5OO-$D5OB are unavailable to the micro-
processor. When this occurs, a write operation to an LCR still loads the corresponding PCR
value (currently invisible to the 8502) into the CR, even though the PCR's are not acces-
sible to the microprocessor when I/O is switched out. If you switch out I/O, make sure to
set up the PCR's first, which are present when bit 0 of the Configuration Register is equal
to 0. However, the Load Configuration Registers are available at all times since they
appear in the address range $FF00~~$FF04. If I/O is switched out, the PCR's must be

THE COMMODORE 128 OPERATING SYSTEM 465

set prior to switching out I/O in order for them to be of any service. Note that BASIC uses
the PCRs; if you alter them while BASIC is resident, you may obtain unpredictable results.

The MMU registers control the memory organization for RAM, BASIC, Kernal
and character ROM, internal and external function ROM, and I/O. The MMU has
additional registers that determine the mode (C128, C64 or CP/M) in which the
Commodore 128 operates, the common RAM configurations, and the location of pages
0 and 1. The registers in the MMU that control these operations are the Mode
Configuration Register (MCR), the RAM Configuration Register (RCR), and the
Page Pointers respectively. The following sections explain how these additional regis-
ters of the Memory Management Unit operate.

THE MODE CONFIGURATION REGISTER
The Mode Configuration Register (MCR) specifies which microprocessor is currently in
operation (8502, Z80A) and which operating system mode is currently invoked (C128 or
C64). The MCR is located at address $D5O5. As in the other registers in the MMU,
each bit in the Mode Configuration Register controls a separate and independent
operation.

Bit 0 determines which microprocessor is in control of the Commodore 128. Bit 0 is
powered-up low so the Z80 microprocessor initiates control of the computer. The Z80
performs a small start-up procedure, then bit 0 is set to a 1 and the 8502 takes over
if no CP/M system disk is present in the disk drive.

When the Commodore 128 is first powered-up or reset and the disk drive detects
the CP/M operating system diskette in the drive, the Z80A microprocessor BOOTs the
CP/M operating system from disk. The value of bit 0 in the Mode Configuration
Register in this case is 0. When the Z80A takes control of the Commodore 128, all
memory references from $0000 through $0FFF are translated to $D000 through $DFFF,
where the CP/M BIOS exists in ROM. For memory accesses in the range $0000 through
$0FFF in the Z80 BIOS, the memory status lines MS0 and MSI are brought low to
reflect ROM; otherwise they are high. Note that C64 mode and Z80A mode is an
undefined configuration.

Bits 1 and 2 are not used. They are reserved for future expansion. IF0, bit 3 sets
an input for FAST serial. It is not used as an input port at all.

Bit 3 is the fast serial (FSDIR) disk drive control bit. It acts like a bit in a
bidirectional 6529 port, which means it acts differently depending upon whether the bit
is used for input or output operation. As an output signal, bit 3 controls the direction of
the data in the disk drive data buffer. The MMU pin FSDIR reflects the status of bit 3,
which is reset to zero upon power-up. If bit 3 is equal to 1, an output operation occurs;
selecting a data direction for the data in the serial bus buffer. If zero, bit 3 sets
an input for FAST serial. It is not used as an input port at all.

Bits 4 and 5 are the /GAME and /EXROM sense bits respectively. These cartridge
control lines initiate Commodore 64 mode and act as the /GAME and /EXROM
hardware lines as in the Commodore 64. When these control lines detect a cartridge in
the Commodore 128 expansion port, C64 mode is instantly enabled, the computer acts
as a Commodore 64 and takes its instructions from the software built into the cartridge.
Upon power-up, /GAME and /EXROM are pulled as inputs. If either one is low, C64

mode is selected. Thus, a C128 cartridge should not pull these lines low on power-up.
In C128 mode, these lines are active as I/O lines (latched) to the expansion port. These
can be used as input or output lines, but make sure they are not brought low upon
power-up in C128 mode.

Bit 6 selects the operating system that takes over the Commodore 128. Upon
power-up or reset, this bit is cleared (0) to enable all of the MMU registers and
Commodore 128 mode features. Setting this bit high (1) initiates C64 mode.

Bit 7, a read-only bit, indicates whether the 4 0 / 8 0 D I S P L A Y key is in
the up (40-column) or down (80-column) position. The value of bit 7 is high (1) if
the 4 0 / 8 0 key is in the up position. The value of bit 7 is low (0) if the 4 0 / 8 0
D I S P L A Y key is in the down position.

This is useful in certain application programs that utilize both the 40- and
80-column displays. For instance, check the value of this bit to see if the user is viewing
the VIC screen. If so, carry on with the program; otherwise display a message telling the
user to switch from the 80-column screen to the VIC (40-column) screen in order to
display a VIC bit map. This may be invalid if the user typed < E S O X to switch
screens. See the SCORG Kernal routine.

See Figure 13-7 for a summary of Mode Configuration Register activities.

$D505 7 6 5 4 3 2 1 0

Mode Configuration Register

V A L U E

BIT FUNCTION DESCRIPTION HIGH LOW

/Select microprocessor
Unused
Unused
Fast serial DD control
/GAME Access game cartridge
(C64 mode only)
/EXROM Access external
software cartridge (C64 mode
only)
Select operating system

Read 40/80
position

key

8502

Fast serial out

C64 mode
(MMU disappears
from memory map)
40/80 column
key is UP

Z80A (inverted)

Fast serial in
C64 mode set
on power up
C64 mode set
on power up

C128 mode,
assert MMU
registers
40/80 column
key is DOWN

Figure 13—7. Mode Configuration Register Summary

THE COMMODORE 128 OPERATING SYSTEM 467

THE RAM CONFIGURATION REGISTER
The RAM Configuration Register (RCR) in the MMU specifies the amount of Common
RAM shared between the two 64K RAM banks, how the RAM is shared, and which
bank is delegated for the VIC chip. The value of the bits in the RCR determine how
each RAM bank is allocated for specific purposes. The RAM Configuration Register is
located within the I/O block at address SD506.

Bits 0 and 1 determine the amount of shared RAM between banks. If both bits 0
and 1 equal 0, IK of RAM becomes common. If bit 0 is equal to 1 (high) and bit 1 is
low (0), then 4K of common RAM is shared between banks. If bit 0 is low (0) and bit 1
is high (1), then 8K is common, and if both bits 2 and 3 are high (1), then 16K of RAM
becomes common. (These bits have no effect in Commodore 64 mode). The reset values
of these bits are both 0. See Figure 13-8 to understand how the two RAM banks share
common RAM.

BANKO BANK1

$FOOO -

SCOFF

Hi Common RAM

Low Common RAM

BANKO BANK1

SOFFF

Hi Common RAM

Low Common RAM

1KCOMMON RAM 4KCOMMON RAM

BANKO BANK1 BANKO BANK1

$E000 -

$03FF

Hi Common
RAM

Low Common
RAM

scooo -

SOFFF -

Hi
Common

RAM

Low
Common

RAM

8K COMMON RAM

Figure 13-8. Common RAM

16K COMMON RAM

Bits 2 and 3 specify which portions of the two RAM banks are common, if at all. If
both bits are low (0), no RAM sharing occurs. If bit 2 is set high (1) and bit 3 is low (0),

THE COMMODORE 128 OPERATING SYSTEM 469

a section of the bottom of RAM bank 0 replaces the corresponding section of RAM bank
1 for all RAM address accesses. If bit 3 is set high (1) and bit 2 is set low (0), a section
of the top RAM bank 0 replaces the corresponding section of RAM bank 1 for all RAM
address accesses. If both bits 2 and 3 equal 1 (high), RAM is common to both the top
and bottom of the RAM banks. Upon power-up or reset, bits 2 and 3 are set to 0, and no
RAM is shared between banks. From a hardware standpoint, the 128K MMU selects the
common RAM by forcing the CASO enable line low and CAS1 enable line high for all
common memory accesses.

Bits 4 and 5 have no assigned function. They are reserved for future expansion.
Bits 6 and 7 in the RCR operate as a RAM bank pointer to tell the VIC chip which

portion of RAM to use. At the present time, bit 7 is ignored. It too is reserved for
future RAM expansion. When bit 6 is low (0) (driving CASO low), the VIC chip is told
to look in RAM bank 0. When bit 6 is set high (1) (driving CAS1 low), the VIC chip is
steered into RAM bank 1. Either setup allows the VIC chip RAM bank to be selected
from the microprocessor RAM bank independently.

When the microprocessor speed is increased to 2MHz, the VIC chip is disabled
and the 80-column (8563) chip takes over the video processing. The VIC chip is
affected by holding the AEC hardware line high. The disabling of the VIC chip is not
directly affected by the actions of the MMU.

Figure 13-9 summarizes the RAM Configuration Register activities.

7 6 5 4 3 2 1 0$D506 ->

RAM Configuration Register

BITS FUNCTIONAL DESCRIPTION

1 0 - Determine amount of shared RAM between RAM banks

0 0 = IK common RAM
0 1 = 4K common RAM
1 0 = 8K common RAM
I 1 = 16K common RAM

3 2 - Determine which portions of RAM are shared

0 0 = No common RAM
0 1 = Bottom of RAM bank 0 is common
10 = Top of RAM bank 0 is common
II = Both top and bottom of RAM bank 0 are common

5 4 - Not implemented; reserved for future expansion

7 6 - Selects RAM bank for the VIC chip (Bit 7 is ignored)

X 0 = Select Bank 0 for VIC chip
X 1 = Select Bank 1 for VIC chip

Note: X = not implemented

Figure 13-9. RAM Configuration Register Summary

THE PAGE POINTERS

The Commodore 128 has a feature that allows you to relocate page 0 ($00-$FF) and
page 1 ($100-$IFF) of memory. Certain applications may require you to keep page 0
intact while running BASIC, switch out the BASIC ROM, resume processing within the
control of your machine language program, and then switch 0 page and the BASIC
ROM back in. Instead of transferring 0 page with the machine language monitor, the
page pointers make it easy to relocate pages 0 and 1. Four registers within the MMU,
called the page pointers, allow you to do this. The page pointers are located within the
I/O block in the range $D507 through $D50A. The page pointers follow the standard
8502 low-byte/high-byte format. Here are the actual addresses of the high and low bytes
of the page pointers:

$D507 Page 0 Pointer (low)
$D508 Page 0 Pointer (high)
$D509 Page 1 Pointer (low)
$D50A Page 1 Pointer (high)

Bit 0 of the high byte page pointers corresponds to the RAM bank number
for any page 0 address access. Bit 0 controls the generation of the CASO hardware
control line if it is low and the CAS1 line if it is high, and bits 1 and 3 are
ignored.

To relocate page 0, perform a write operation on the high-byte 0 page pointer.
This is stored in the high-byte page pointer location and has no direct result until a write
operation is performed on the low-byte 0 page pointer. When this occurs, bits 0 through
7 of the low-byte page pointer correspond to the Translated Address lines TA8 through
TA15 for any 0 page address reference, which relocates the 0 page. Any subsequent 0
page address is relayed to the new page zero.

The page 1 pointer works the same way. Both pairs of pointers are initialized to 0
upon power-up, placing pages 0 and 1 in actual page 0 and page 1 locations.

It is important to note that memory addresses 0 and 1 are always available at those
absolute address references, regardless of whether pages zero or one are relocated.

The page zero low-byte pointer directly replaces the high-order address of zero
page (normally 00). When pages zero and one are directed to locations in RAM memory
above page one, the MMU translates the addresses back to the normal locations of pages
zero and one, effectively swapping those two pages of memory. This address translation
applies only to RAM; ROM and I/O registers are not back-translated. VIC chip
addresses are not translated back to their original memory locations, so you must ensure
that you do not place page zero or one in the address of the VIC chip. The ROM
appearing in these address ranges still overlays the RAM regardless of whether the RAM
is zero page, page one or any other page of RAM memory. If you need to use the
Kernal, the necessary variables required for the Kernal routine must be placed in
memory where the Kernal is in context, Machine Language Monitor bank 15 ($0F) for
example.

THE COMMODORE 128 OPERATING SYSTEM 471

Bit 0 of both high-byte page pointers (0 and 1) corresponds to the RAM bank
number for any address access in page zero or one. The page zero high byte (bit 0)
normally overrides the RAM bank set by the configuration register. However, if
common RAM (at the bottom of RAM bank 0) is specified, the high-byte pointer for
pages zero and one is ignored and pages zero and one appear in common RAM. Other-
wise, if common RAM is not allocated, pages zero and one appear where you specify
according to the contents of the page pointers. In other words, common RAM takes priority
over the page pointers, if common RAM is allocated by the RAM configuration register.

This feature of relocatable page zero and page one provides many benefits to the
programmer. This allows machine language programs to create several pages of zero
page variables or several different stacks. When you need to access the additional zero
page variables or extra 256 bytes of the stack, simply change the pointer to look at the
next page. This provides additional speed in your programs since you may use zero page
addressing for subsequent zero pages. You can even place zero page in screen memory
for extra fast writing to the screen. In addition, it gives you a way to implement deeper
levels of subroutines since you have a larger stack area. Remember, though, to leave
three bytes on the top of the stack for interrupt requests and servicing.

THE SYSTEM VERSION REGISTER
The System Version Register, located in address $D50B, contains a value that tells the
user which version of the MMU is inside the C128 and how large the memory is. Bits 0
through 3 contain the MMU version number. Bits 4 through 7 contain a value (in
memory blocks) pertaining to the size of the C128 memory. This allows the programmer
to check the version of the C128 and the memory size, and make it compatible with
systems that will be expanded in the future. The current version of the C128 contains the
value $20, signifying two 64K blocks.

AUTO STARTING A ROM
APPLICATION CARTRIDGE

Many of you may want to place your application program in a cartridge which plugs into
the expansion port. In order to automatically start the program as soon as you turn on
the computer, you must place a particular coded sequence in the first 6 bytes where the
external (or internal) ROM cartridge maps into memory. Here's the auto start sequence
in both C128 and C64 modes.

COMMODORE 128 MODE
Any C64 cartridge is asserted automatically if the system recognizes the /GAME or
/EXROM as being pulled low.

If any C128 cartridges are installed into the expansion port;

1. Log the cartridge I.D. into the Physical Address Table (PAT).
2. If the I.D. equals 1, call the cold start vector (which may RTS).

The first 9 bytes of the Commodore 128 auto start sequence are:

BYTE

$X000 Cold Start Vector
$X003 Warm Start Vector (not used but must be specified)
$X006 Cartridge I.D. (The I.D. = 1 for an auto start card)
$X007 The ASCII Character "C" with the high bit set
$X008 The ASCII Character "B" with the high bit set
$X009 The ASCII Character "M" with the high bit set

where X is the hexadecimal digit " 8 " for $8000 or " C " for $C000.
There are four slots where cartridges (ROM's) may plug in (two internal, two

external). They must follow the sequence described above, whether they are internal or
external.

COMMODORE 64 MODE
The first 10 bytes of the Commodore 64 auto start sequence are:

BYTE

$X000 Cold Start Vector
$X003 Warm Start Vector
$X006 The ASCII Character "C" with the high bit set
$X007 The ASCII Character "B" with the high bit set
$X008 The ASCII Character "M" with the high bit set
$X009 The ASCII Character "8" with the high bit set
$X00A The ASCII Character "0" with the high bit set

where X is the hexadecimal digit " 8 " for $8000 or " C " for $C000.
The recommended cartridge header for both operational modes is as follows:

SEI
JMP START
NOP
NOP

This header is recommended so that the interrupt disable status bit is set when
control is passed to the software in the cartridge ROM.

THE COMMODORE 128 OPERATING SYSTEM 473

THE COMMODORE 128
SCREEN EDITOR

The Commodore screen editor is among the easiest to use of all screen editors. As soon
as you turn on the computer, the screen editor is available to you. You don't have to call
any additional text editors. Using the keys for manipulating text, the screen editor gives
you more freedom than most other editors.

CI28 EDITOR ESCAPE CODES

To use the following ESCAPE functions, press the E S C A P E key and then press
the key for the function you want.

KEY FUNCTION

A Enable auto-insert mode
B Set bottom right of screen window at cursor position
C Disable auto-insert mode
D Delete current line
E Set cursor to nonflashing mode
F Set cursor to flashing mode
G Enable bell (control-G)
H Disable bell
I Insert line
J Move to start of current line
K Move to end of current line
L Enable scrolling
M Disable scrolling
N Return screen to normal (nonreverse video) state (80-column screen only)
O Cancel insert, quote, underline, flash and reverse modes
P Erase to start of current line
Q Erase to end of current line
R Set screen to reverse video (80-column screen only)
S Change to block cursor (80-column screen only)
T Set top left of screen window at cursor position
U Change to underline cursor (80-column screen only)
V Scroll up
W Scroll down
X Swap 40/80-column display output device
Y Set default tab stops (8 spaces)
Z Clear all tab stops
@ Clear to end of screen

CI28 EDITOR CONTROL CODES
The following control characters in the CBM ASCII table have been added or changed
from those found in the C64. Codes not shown in this table have the same function as
found in the C64.

CHR$ KEYBOARD

VALUE CONTROL CHARACTER FUNCTION

Underline ON (80-column screen only)
Produces bell tone
Tab character
Line feed character
Disable shift Commodore key (formerly code 9)
Enable shift Commodore key (formerly code 8)
Turn ON flash on (80-column screen only)
Tab set/clear
Escape character
Underline OFF (80-column screen only)
Turn flash OFF (80-column screen only)

2
7
9

10
11
12
15
24
27

130
143

B
G
I
J
K
L
O
X
[

CI28 EDITOR JUMP TABLE
The editor calls listed below are a set of extensions to the standard CBM jump table.
They are specifically for the C128 and should not be considered as permanent additions
to the standard jump table. They are all true subroutines and terminate with the RTS
instruction. As with all Kernal calls, the system configuration (high ROM, RAM-0 and
I/O) must be in context at the time of the call.

THE COMMODORE 128 OPERATING SYSTEM 475

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

$C000
$C003
$C006
$C009
$C00C
$C00F
$C012
$C015
$C018
$C018
$C01E
$C021
$C024
$C027
$C02A
$C02D
$C033
$C04C
$334
$336
$338
$33A
$33C
$33E

CINT
DISPLY
LP2
LOOP5
PRINT
SCRORG
SCNKEY
REPEAT
PLOT
CURSOR
ESCAPE
KEYSET
IRQ
INIT80
SWAPPER
WINDOW
LDTB2
LDTB1
CONTRL
SHIFTD
ESCAPE
KEYVEC
KEYCHK
DECODE

initialize editor and screen
;display .A = char, .X = color
;get a key from irq buffer in .A
;get a chr from screen line in .A
;print character in .A
;get size of current window
;scan keyboard subroutine
;repeat key logic and CKIT2
;read or set cursor position
;move 8563 cursor subroutine
;execute escape function
;redefine a programmable key
;irq entry

initialize 80-column char set
;40/80 mode change
;set UL or BR of window
;screen lines low byte table
;screen lines high byte table
;print C T R L indirect
;print S H F T indirect
;print E S C indirect
;keyscan logic indirect
;keyscan store indirect
;keyboard decode table vectors

Entries 17, 18, and 24 are table pointers, and are not callable routines. Entries 19-23
are considered indirect vectors, not true entry points.

This chapter has presented the Commodore 128 operating system. Chapter 16
provides information on CP/M on the Commodore 128 and Commodore 64 memory
maps.

14
CP/M 3.0
ON THE
COMMODORE 128

CP/M® is a microprocessor operating system produced by Digital Research, Inc. (DRI).
The version of CP/M used on the Commodore 128 is CP/M Plus® Version 3.0. In this
chapter, CP/M is generally referred to as CP/M 3.0, or simply CP/M.

This chapter summarizes the non-C128-dependent aspects of CP/M on the Commodore
128. For detailed information on C128-dependent CP/M 3.0, see Appendix K of this
guide. For detailed information on non-C128-dependent CP/M 3.0, see the Commodore-
produced volume that includes DRI's CP/M Plus User's Guide, Programmer's Guide,
and System Guide.

REQUIREMENTS FOR A CP/M 3.0 SYSTEM

The general requirements for CP/M 3.0 are:

a A computer containing a Z80 microprocessor.
a A console consisting of a keyboard and a display screen.
• At least one floppy disk drive.
a CP/M system software on disk.

CP/M 3.0 on the Commodore 128 Personal Computer normally consists of the
following elements:

• A built-in Z80 microprocessor.
• A console consisting of the full Commodore 128 keyboard and an 80-column

monitor.
a The Commodore 1571 fast disk drive.
• The CP/M system disk, which includes the CP/M 3.0 system, an extensive

HELP utility program and a number of other utility programs.

NOTE: CP/M can also be used with a 40-column monitor. To view all
80 columns of display, you must scroll the screen horizontally by press-
ing the C O N T R O L key and the appropriate C U R S O R key
(left or right).

CP/M 3.0 can also be used with the 1541 disk drive. In this case, only single-
sided GCR disks can be used, and the speed of operation will be approximately
one-tenth the speed achieved using the 1571 disk drive. (See the discussion of disk
formats later in this chapter for more details.)

CP/M 3.0 ON THE COMMODORE 128 479

COMMODORE ENHANCEMENTS
TO CP/M 3.0

Commodore has added a number of enhancements to CP/M 3.0. These enhancements
tailor the capabilities of the Commodore 128 to those of CP/M 3.0. They include such
things as a selectively displayed disk status line, a virtual disk drive, local/remote
handling of keyboard codes, programmable function keys (strings) and a number of
additional functions/characters that are assigned to various keys. These enhancements
are described at appropriate points in this chapter.

CP/M FILES

There are two types of CP/M files:

• PROGRAM or COMMAND files, consisting of a series of instructions that
the computer follows to achieve a specified result.

• DATA files, consisting usually of a collection of related information (e.g., a
list of customer names and addresses; inventory records; accounting records; the
text of a document).

FILE SPECIFICATION
A CP/M file is identified by a file specification that can consist of up to four individual
elements, as follows:

• Drive Specifier (optional), consisting of a single letter, followed by a colon.
Each disk drive is assigned a letter, in the range A through E. (E denotes a
virtual drive, as explained later in this chapter.)

• Filename (mandatory), which can be from one to eight characters long. (Note
that this is the only mandatory element of the file specification.)

• Filetype (optional), consisting of one to three characters. It must be separated
from the filename by a period.

• Password (optional), which can be from one to eight characters. Must be
separated from the filetype (or filename, if no filetype is included) by a
semicolon.

EXAMPLE:

The following file specification contains all four possible elements, all separated by the
appropriate symbols:

A:DOCUMENT.LAW;FIREBIRD

USER NUMBER
CP/M 3.0 further identifies all files by assigning each one a user number, which can
range from 0 to 15. CP/M 3.0 assigns the user number to a file when the file is created.
User numbers allow you to separate your files into sixteen file groups.

Any user number other than 0 must precede the drive specifier. User 0, which is
the default user number, is not displayed in the prompt.

If a file resides in user 0 and is marked with a system file attributs, that file can
be accessed from any user number. Otherwise, a command can access only those files
that have the current user number.

CREATING A FILE
There are several ways to create a CP/M file, including:

• Using the CP/M text editor (ED).
• Using the PIP command to copy and rename a file.
• Using a program such as MAC (a CP/M machine language assembler program),

which creates output files as it processes input files.

USING WILDCARD CHARACTERS TO
ACCESS MORE THAN ONE FILE
A wildcard is a character that can be used in a filename or filetype in place of some other
characters. CP/M 3.0 uses the question mark (?) and asterisk (*) as wildcards. A ? stands
for any character that may be encountered in that position. An * tells CP/M to fill the
filename with question mark characters as indicated. A file specification containing a wild-
card can refer to more than one file and is therefore called an ambiguous file specification.

RESERVED CHARACTERS
The characters in Table 14—1 are reserved characters in CP/M 3.0. Use only as indicated.

CHARACTER MEANING

< $, »l> [] |
TAB, SPACE, \File specification delimiters
CARRIAGE RETURN]
: Drive delimiter in file specification

Filetype delimiter in file specification
; Password delimiter in file specification
; Comment delimiter at the beginning of a command line
* ? Wildcard characters in an ambiguous file specification
< > & ! I \ H— Option list delimiters
[] Option list delimiters for global and local options
() Delimiters for multiple modifiers inside square

brackets for options that have modifiers
/ $ Option delimiters in a command line

Table 14-1. CP/M 3.0 Reserved Characters

CP/M 3.0 ON THE COMMODORE 128 481

RESERVED FILETYPES
The filetypes defined in Table 14-2 are reserved for system use.

FILETYPE MEANING

ASM Assembler source file
BAS BASIC source program
COM Z80 or equivalent machine language program
HEX Output file from MAC (used by HEXCOM)
HLP HELP message file
$$$ Temporary file
PRN Print file from MAC or RMAC
REL Output file from RMAC (used by LINK)
SUB List of commands to be executed by SUBMIT
SYM Symbol file from MAC, RMAC or LINK
SYS System file
RSX Resident System Extension (a file automatically loaded by a command

file when needed)

Table 14-2. CP/M 3.0 Reserved Filetypes

CP/M COMMANDS

There are two types of commands in CP/M 3.0:

• Built-in commands, which identify programs in memory.
• Transient utility commands, which identify program files.

CP/M 3.0 has six built-in commands and over twenty transient utility commands.
Utilities can be added by purchasing CP/M 3.0-compatible application programs. In
addition, experienced programmers can write utilities that operate with CP/M 3.0.

BUILT-IN COMMANDS
Built-in commands are entered in the computer's memory when CP/M 3.0 is loaded,
and are always available for use, regardless of which disk is in which drive. Table 14—3
lists the Commodore 128 CP/M 3.0 built-in commands.

Some built-in commands have options that require support from a related transient
utility. The related transient utility command has the same name as the built-in com-
mand and has a filetype of COM.

COMMAND FUNCTION

DIR Displays filenames of all files in the directory except those marked with
the SYS attribute.

DIRSYS Displays filenames of files marked with the SYS (system) attribute in the
directory.

ERASE Erases a filename from the disk directory and releases the storage space
occupied by the file.

RENAME Renames a disk file.

TYPE Displays contents of an ASCII (TEXT) file at your screen.

USER Changes to a different user number.

Table 14-3. Built-in Commands

TRANSIENT UTILITY COMMANDS
The CP/M 3.0 transient utility commands are listed in Table 14-4. When a command key-
word identifying a transient utility is entered, CP/M 3.0 loads the program file from the
disk and passes that file any filenames, data or parameters specified in the command tail.

USING CONTROL CHARACTERS
FOR LINE EDITING

Table 14-5 lists the line-editing control characters for CP/M 3.0 on the Commodore 128.

HOW TO MAKE COPIES OF
CP/M 3.0 DISKS AND FILES

NOTE: The Digital Research Inc. COPYSYS command, used in many
CP/M systems in formatting a disk, is not implemented on the Commo-
dore 128 computer. Instead, the Commodore 128 uses a special FORMAT
command.

To make backups of the CP/M system disks, use the FORMAT and PIP utility
programs. FORMAT formats the disk as either a C128 single-sided or C128 double-sided
diskette.

CP/M 3.0 ON THE COMMODORE 128 483

NAME FUNCTION

DATE Sets or displays the date and time.

DEVICE Assigns logical CP/M devices to one or more physical devices, changes
device driver protocol and baud rates, or sets console screen size.

DIR Displays directory with files and their characteristics.

DUMP Displays a file in ASCII and hexadecimal format.

ED Creates and alters ASCII files.

ERASE Used for wildcard erase.

GENCOM Creates a special COM file with attached RSX file.

GET Temporarily gets console input from a disk file rather than the

keyboard.

FORMAT Initializes disk in GCR format for CP/M use.

HELP Displays information on how to use CP/M 3.0 commands.

INITDIR Initializes a disk directory to allow time and date stamping.

KEYFIG Allows redefinition of keys.

PATCH Displays or installs patches to CP/M system.

PIP Copies files and combines files.

PUT Temporarily directs printer or console output to a disk file.

RENAME Changes the name of a file, or a group of files, using wildcard characters.

SAVE Saves a program in memory to disk.

SET Sets file options including disk labels, file attributes, type of time and

date stamping and password protection.

SETDEF Sets system options including the drive search chain.

SHOW Displays disk and drive statistics.

SUBMIT Automatically executes multiple commands.

TYPE Displays contents of text file (or group of files, if wildcard characters are
used) on screen (and printer if desired).

Table 14—4. Transient Utility Commands

CHARACTER MEANING

CTRL-A or
SHIFT-LEFT CURSOR

CTRL-B

Moves the cursor one character to the left.

Moves the cursor to the beginning of the command line without
having any effect on the contents of the line. If the cursor is
at the beginning, CTRL-B moves it to the end of the line.
Forces a physical carriage return but does not send the
command line to CP/M 3.0. Moves the cursor to the begin-
ning of the next line without erasing the previous input.

Moves the cursor one character to the right.

Deletes the character at current cursor position. The cursor
does not move. Characters to the right of the cursor shift
left one place.
Deletes the character to the left of the cursor and moves
the cursor left one character position. Characters to the right
of the cursor shift left one place.
Moves the cursor to the next tab stop. Tab stops are auto-
matically set at each eighth column. Has the same effect
as pressing the T A B key.
Sends the command line to CP/M 3.0 and returns the cursor
to the beginning of a new line. Has the same effect as a
R E T U R N or a CTRL-M keystroke.
Deletes to the end of the line from the cursor.
Sends the command line to CP/M 3.0 and returns the cursor
to the beginning of a new line. Has the same effect as a
R E T U R N or a CTRL-J keystroke.
Retypes the command line. Places a # character at the
current cursor location, moves the cursor to the next line,
and retypes any partial command you typed so far.
Discards all the characters in the command line, places a
character at the current cursor position, and moves the
cursor to the next line. However, you can use a CTRL-W to
recall any characters that were to the left of the cursor
when you pressed CTRL-U.
Recalls and displays previously entered command line both
at the operating system level and within executing programs,
if the CTRL-W is the first character entered after the
prompt. CTRL-J, CTRL-M, CTRL-U and RETURN define
the command line you can recall. If the command line
contains characters, CTRL-W moves the cursor to the end
of the command line. If you press R E T U R N , CP/M
3.0 executes the recalled command.

Discards all the characters left of the cursor and moves the
cursor to the beginning of the current line. CTRL-X saves
any characters to the right of the cursor.

Table 14-5. CP/M 3.0 Line-Editing Control Characters

CTRL-E

CTRL-F or
RIGHT CURSOR
CTRL-G

CTRL-H

CTRL-I

CTRL-J

CTRL-K
CTRL-M

CTRL-R

CTRL-U

CTRL-W or | CRSR |

CTRL-X

CP/M 3.0 ON THE COMMODORE 128 485

MAKING COPIES WITH A
SINGLE DISK DRIVE

You can copy the contents of a disk with a single Commodore disk drive (1541 or
1571). For example, use the following sequence of commands to create a bootable
CP/M system disk. First type:

A>FORMAT

and follow the instructions given on the screen. When the copy disk is formatted,
type:

A>PIPE: = A:CPM + .SYS

When the CPM + SYS file is copied, you type:

A>PIPE:=A:CCP.COM

To copy everything on a disk, use the following command sequence:

A>FORMAT
A>PIPE:=A:*.*

The system prompts the user to change disks as required.
Use drive A as the source drive and drive E as the destination drive. Drive E is

referred to as a virtual drive; that is, it does not exist as an actual piece of hardware—it is
strictly a logical drive.

MAKING COPIES WITH TWO DISK DRIVES

You can back up disks in CP/M by using two drives: drive A and drive B. The drives
can be named with other letters from A through D. To make a copy of your CP/M 3.0
system disk, first use the FORMAT utility to copy the operating system loader. Make
sure that the CP/M system disk is in drive A, the default drive, and the blank disk is in
drive B. Then enter the following command at the system prompt:

A>PIPB: =A:CPM+.SYS

When you have copied the CPM+ .SYS file, use the PIP command to copy the
CCP.COM file. This provides a copy of the operating system only. To copy all of
the files from the system disk, enter the following PIP command:

A>PIPB: = A:*.*

This PIP command copies all the files on the disk in drive A to the disk in drive B. PIP
displays the message COPYING, followed by each filename as the copy operation
proceeds. When PIP finishes copying, the system prompt (A>) is displayed.

GENERAL CP/M 3.0 SYSTEM LAYOUT

The Commodore 128 computer is a two-processor system, with the 8502 as the primary
processor and the Z80 as the secondary processor. The 8502 has the same instruction set
as the 6502. The Z80's primary function is to run CP/M 3.0. This section describes the
general requirements and methods for implementing CP/M 3.0 on the C128.

When CP/M is running, the normal functions of the C128 are not supported
(CP/M and BASIC cannot run at the same time). Also, CP/M does not directly support
all the display modes of the VIC chip. (An application could be written to run under
CP/M that could use additional graphics capabilities, but the application would have to
keep track of all the details, such as memory maps).

CP/M 3.0 OPERATING SYSTEM
COMPONENTS
The CP/M 3.0 operating system consists of the following three modules: the Console
Command Processor (CCP), the BASIC Disk Operating System (BDOS), and the Basic
Input Output System (BIOS).

The CCP is a program that provides the basic user interface to the facilities of the
operating system. The CCP supplies the six built-in commands: DIR, DIRS, ERASE,
RENAME, TYPE, and USER. The CCP executes in the Transient Program Area
(TPA), the region of memory where all application programs execute. The CCP contains
the Program Loader Module, which loads transient (applications) programs from disk
into the TPA for execution. On the Commodore 128, a 58K to 59K TPA area is provided
for CP/M.

The BDOS is the logical nucleus and file system of CP/M 3.0. The BDOS
provides the interface between the application program and the physical input/output
routines of the BIOS.

The BIOS is a hardware-dependent module that interfaces the BDOS to a particu-
lar hardware environment. The BIOS performs all physical I/O in the system. The BIOS
consists of a number of routines that are configured to support the specific hardware of
the target computer system (in this case, the Commodore 128).

The BDOS and the BIOS modules cooperate to provide the CCP and other
transient programs with hardware-independent access to CP/M 3.0 facilities. Because
the BIOS can be configured for different hardware environments and the BDOS remains
constant, you can transfer programs that run under CP/M 3.0 to systems with different
hardware configurations.

COMMUNICATION BETWEEN MODULES
The BIOS loads the CCP into the TPA at system cold and warm starts. The CCP moves
the Program Loader Module to the top of the TPA and uses the Program Loader Module
to load transient programs.

CP/M 3.0 ON THE COMMODORE 128 487

The BDOS contains a set of functions that the CCP and applications programs call
to perform disk and character input and output operations.

The BIOS contains a Jump Table with a set of thirty-three entry points that the
BDOS calls to perform hardware-dependent primitive functions, such as peripheral
device I/O. For example, CONIN is an entry point of the BIOS called by the BDOS to
read the next console input character.

Similarities exist between the BDOS functions and BIOS functions, particularly
for simple device I/O. For example, when a transient program makes a console output
function call to the BDOS, the BDOS makes a console output call to the BIOS. In the
case of disk I/O, however, this relationship is more complex. The BDOS file may make
many BIOS function calls to perform a single BDOS file I/O function. BDOS disk I/O is
in terms of 128-byte logical records. BIOS disk I/O is in terms of physical sectors and
tracks.

The System Control Block (SCB) is a 100-byte (decimal) CP/M 3.0 data structure
that resides in the BDOS system component. The BDOS and the BIOS communicate
through fields in the SCB. The SCB contains BDOS flags and data, CCP flags and data,
and other system information, such as console characteristics and the current date and
time. You can access some of the System Control Block fields from the BIOS.

Note that the SCB contains critical system parameters that reflect the current state
of the operating system. If a program modifies these parameters, the operating system
can crash. See Section 3 of the DRI CP/M Plus System Guide and the description of
BDOS Function 49 in the DRI CP/M Plus Programmer's Guide for more information on
the System Control Block.

Page zero is a region of memory that acts as an interface between transient
programs and the operating system. Page zero contains critical system parameters, includ-
ing the entry to the BDOS and entry to the BIOS Warm BOOT routine. At system
start-up, the BIOS initializes these two entry points in page zero. All linkage between
transient programs and the BDOS is restricted to the indirect linkage through page zero

CP/M 3.0 BIOS OVERVIEW

This section describes the organization of the CP/M 3.0 BIOS and the BIOS jump
vector. It provides an overview of the System Control Block, followed by a discussion
of system initialization procedures, character I/O, clock support, disk I/O, and memory
selects and moves.

ORGANIZATION OF THE BIOS
The BIOS is the CP/M 3.0 module that contains all hardware-dependent input and
output routines. To configure CP/M 3.0 for a particular hardware environment, the
sample BIOS supplied with the CP/M Plus System Guide must be adapted to the specific
hardware of the target system (the Commodore 128).

The BIOS essentially is a set of routines that performs system initialization,

character-oriented I/O to the console and printer devices, and physical sector I/O to disk
devices. The BIOS also contains routines that manage block moves and memory selects
for bank-switched memory. The BIOS supplies tables that define the layout of the disk
devices and allocate buffer space that the BDOS uses to perform record blocking and
deblocking. The BIOS can maintain the system time and date in the System Control Block.

Table 14-6 describes the entry points into the BIOS from the Cold Start Loader
and the BDOS. Entry to the BIOS is through a set of jump vectors. The jump table is
a set of thirty-three jump instructions that pass program control to the individual BIOS
subroutines.

NO. INSTRUCTION

0 JMP
1
2
3
4
5
6
7

JMP
JMP
JMP
JMP
JMP
JMP
JMP

8 JMP
9 JMP

10 JMP
11 JMP
12 JMP
13 JMP
14 JMP
15 JMP
16 JMP
17 JMP
18 JMP
19 JMP
20 JMP
21 JMP
22 JMP
23 JMP

24 JMP
25 JMP
26 JMP
27 JMP
28 JMP
29 JMP
30 JMP
31 JMP
32 JMP

BOOT
WBOOT
CONST
CONIN
CONOUT
LIST
AUXOUT
AUXIN
HOME
SELDSK
SETTRK
SETSEC
SETDMA
READ
WRITE
LISTST
SECTRN
CONOST
AUXIST
AUXOST
DEVTBL
DEVINI
DRVTBL
MULTIO

FLUSH
MOVE
TIME
SELMEM
SETBNK
XMOVE
USERF
RESERV1
RESERV2

DESCRIPTION

Perform cold start initialization.
Perform warm start initialization.
Check for console input character ready.
Read console character in.
Write console character out.
Write list character out.
Write auxiliary output character.
Read auxiliary input character.
Move to Track 00 on selected disk.
Select disk drive.
Set track number.
Set sector number.
Set DMA address.
Read specified sector.
Write specified sector.
Return list status.
Translate logical to physical sector.
Return output status of console.
Return input status of aux. port.
Return output status of aux. port.
Return address of char. I/O table.
Initialize char. I/O devices.
Return address of disk drive table.
Set number of logically consecutive sectors to be read or

written.
Force physical buffer flushing for user-supported deblocking.
Memory to memory move.
Time set/get signal.
Select bank of memory.
Specify banks for inter-bank MOVE.
Set banks for an inter-bank MOVE.
Commodore CP/M system functions.
Reserved for future use.
Reserved for future use.

Table 14-6. CP/M 3.0 BIOS Jump Vectors

CP/M 3.0 ON THE COMMODORE 128 489

All the entry points in the BIOS jump vector are included in the C128 CP/M 3.0
BIOS.

Each jump address in Table 14-6 corresponds to a particular subroutine that
performs a specific system operation. Note that two entry points are reserved for future
versions of CP/M, and one entry point is provided for the Commodore system functions.

Table 14-7 shows the five categories of system operations and the function calls
that accomplish these operations.

OPERATION FUNCTION

System BOOT, WBOOT, DEVTBL, DEVINI, DRVTBL
Initialization

Character I/O CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN, LISTST,
CONOST, AUXIST, AUXOST

Disk I/O HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE,
SECTRN, MULTIO, FLUSH

Memory Selects MOVE, SELMEM, SETBNK, XMOVE
and Moves

Clock Support TIME

Table 14-7. CP/M 3 BIOS Functions

Appendix K illustrates how to call a Commodore CP/M system function in Z80
machine language.

SYSTEM MEMORY
ORGANIZATION

Figure 14-1 shows the general memory organization of CP/M 3.0.

Figure 14-1. CP/M 3.0 General Memory Organization

CP/M 3.0 ON THE COMMODORE 128 491

The memory map is limited to 64K at any one point in time. However, the RAM
bank can be selected and then different ROM areas can overlay the RAM (with
bleed-through on write operations). The actual memory map is controlled by the MMU. The
MMU can be accessed in the I/O area (only when I/O is enabled in Z80 space) or
through the Load Configuration Register located at FF00 through FF04.

If the Load Configuration Registers are read, then the current value is read. A
write to FF00 changes the configuration after completing the current instruction. A
write to FF01 to FF04 updates the current configuration to the value stored in the
Preconfiguration Registers (the data written is not used). The MMU page pointers have
both a low (page) and a high (page) pointer. The high is written first and latched in the
MMU; the high value is updated from the latch when the low byte is written. The MMU
Control Registers are listed in Chapter 13.

DISK ORGANIZATION

CP/M 3.0 supports a number of different disk formats, including three Commodore
formats and a number of MFM formats. (MFM is the industry standard format.) The
first Commodore format is single-sided Commodore GCR, which is compatible with the
CP/M 2.2 that runs on the Commodore 64. With this format, the File Control Block
(FCB) is set up as 32 tracks of 17 sectors each and a track offset of 2. The BIOS routine
adds a 1 to tracks greater than 18 (this is the C64 directory track).

The second format, known as the C128 CP/M Plus disk format, is new and is also
single-sided. This format, which is also a GCR format, takes advantage of the full disk
capacity by setting up the FCB with 638 tracks of 1 sector each and a track offset of 0.
This has the effect of having CP/M set the track to the block number relative to
the beginning of the disk, with the sector always set to 0. The following algorithm is
used to convert the requested TRACK to a real track and sector number.

REQUESTED TRACK

000
355
487
595
680

> = TRACK
> = TRACK
> = TRACK
> = TRACK
> = TRACK

>
>
>
>
>

355
487
595
680
1360

ACTUAL TRACK

((TRACK
((TRACK -
((TRACK -
((TRACK -
SET SIDE

+ 2)/21) +
-,354)/19) +
- 487)/18) +
- 595)/17) +
2 TRACK =

1
18
25
31

= TRACK - 680

The effective sector is then translated to provide a skew that speeds up operations.
The skew is used only with the new larger format. A different skew table is used for
each region of the disk.

The third Commodore format is a GCR double-sided format. The disk is treated as
1276 sectors of data with a track offset of 0. Side 1 is used first; then side 2 is used.

NOTE: This is not the usual way to handle a two-sided disk; however,
allocating the disk in this manner, the user with a 1541 may still be able
to read data written at the start of a two-sided disk.

The third Commodore format and all MFM formats require that the user have the
new 1571 disk drive. This disk drive supports both single- and double-sided diskettes
and both the Commodore GCR and industry standard MFM data coding formats.

The following table summarizes 1541/1571 disk drive capabilities with regard to
the various disk formats.

DISK FORMAT

C64 GCR
single-sided

C128 GCR
single-sided

C128 GCR
double-sided

MFM
format

1541 DRIVE

v'

v'

1571 DRIVE

V

C64 CP/M DISK FORMAT
(SINGLE-SIDED)
This format, shown in Figure 14—2, is provided to allow the user to read/write files
created using the C64 CP/M 2.2 cartridge. (However, do not use the CP/M 2.2 cartridge
with the C128.) Notice the unused space in this format.

CP/M 3.0 ON THE COMMODORE 128 493

. Used by CP/M, reg. = region (1-4).
B Boot Sector (System).
D Director) Sector (Disk DOS).
x Not used by CP/M.

SKEW TABLE

1
2
3
4

0

00
00
00
00

1

17
04
11
07

2

13
08
04
14

3

09
12
IS
04

4

05
16
08
11

5

01
01
01
01

6

18
05
12
08

7

14
09
05
15

8

10
13
16
05

9

06
17
09
12

10

02
02
02
02

11

19
06
13
09

12

15
10
06
16

13

11
14
17
06

14

07
18
10
13

15

03
03
03
03

16

20
07
14
10

17

16
11
07

18

12
15

19

08

20

04

Figure 14-3. CI28 CP/M Plus Disk Format

CP/M 3.0 ON THE COMMODORE 128 495

NOTE: This format is duplicated on the second side of a two-sided disk
(with the exception of B, which is unused and therefore becomes X).

MFM DISK FORMATS
A number of MFM disk formats are built into CP/M on the C128. These formats, which
can be selected at the time a program is to be run, include Osborne, Kaypro, Epson and
IBM CP/M-86. The IBM CP/M-86 capability is provided so that data can be transferred
between machines. However CP/M-86 programs cannot be run on the C128, since on
the C128, CP/M Plus runs on a Z80, not an 8088,

When used with the 1571 Disk Drive, the Commodore 128 supports a variety
of double-density MFM disk formats (for reading and/or writing), including:

Epson QX10 (512 byte sectors, double-sided, 10 sectors per track)

IBM-8 SS (CP/M 86) (512 byte sectors, single-sided, 8 sectors per track)

IBM-8 DS (CP/M 86) (512 byte sectors, double-sided, 8 sectors per track)

Kay Pro II (512 byte sectors, single-sided, 10 sectors per track)

KayPro IV (512 byte sectors, double-sided, 10 sectors per track)

Osborne DD (1024 byte sectors, single-sided, 5 sectors per track)

When you insert one of these disks into the disk drive and try to access it, the system
senses the type of disk with respect to the number of bytes per sector and the number of
sectors per track. If the disk format is not unique, a box is displayed near the bottom-left
corner of the screen, showing which disk type you are accessing. The system requires
you to select the specific disk type by scrolling through the choices given in this
window.

NOTE: The choices are given one at a time; scroll through using the
right and left arrow keys. Press R E T U R N when the disk type that
you know is in the disk drive is displayed. Press C O N T R O L
R E T U R N to lock this disk format so that you will not need to
select the disk type each time you access the disk drive.

KEYBOARD SCANNING

The keyboard scan routine that is called to get a keyboard character returns the key code
of the pressed key, or a code indicating that no key is currently being pressed. The
keyboard scan code is also responsible for handling programmable keys, programmable
function keys, setting character and background colors, selecting MFM disk formats and
selecting current screen emulation type.

Any key on the keyboard can be defined to generate a code or function except the
following keys:

LEFT SHIFT
RIGHT SHIFT
SHIFT LOCK
G
CONTROL
RESTORE (8502 NMI)
40/80 DISPLAY
CAPS LOCK KEY

The keyboard recognizes the following special functions:

Cursor left key-Used to define a key

Cursor right key-Used to define a string
(points to function keys)

ALT key-Used as toggle key filter

To indicate these functions, hold down the C O N T R O L key and the
R I G H T S H I F T key and simultaneously press the desired function key.

DEFINING A KEY
The KEYFIG utility program allows the user to define the code that a key can produce.
Each key has four modes of use for this function:

• Normal
• Alpha shift
• Shift
a Control

The alpha shift mode is toggled on/off by pressing the Commodore (C=) key. When
this mode is turned on, a small white box appears on the bottom of the screen. The first
key that is pressed thereafter is the key to be defined. The current hex value assigned to
this key is displayed, and the user can then type the new hex code for the key, or abort
by typing a non-hex key. The following is a definition of the codes that can be assigned
to a key. See KEYFIG HELP for more information.

CP/M 3.0 ON THE COMMODORE 128 497

CODE

00h
Olh
80h
AOh
BOh
COh
DOh
EOh
FOh
Flh
F2h
F3h
F4h
F5h

to
to
to
to
to
to
to

to

7Fh
9Fh
AFh
BFh
CFh
DFh
EFh

FFh

FUNCTION

Null (same as not pressing a key)
Normal ASCII codes
String assigned
80-column character color
80-column background color
40-column character color
40-column background color
40-column border color
Toggle disk status on/off
System Pause
(Undefined)
40-column screen window right
40-column screen window left
(Undefined)

DEFINING A STRING
The DEFINE STRING function allows the user to assign more than one key code to a
single key. Any key that is typed in this mode is placed in the string. The user can see
the results of typing in a long box at the bottom of the screen. Note, however, that some
keys may not display what they are.

To allow the user control of entering data, five special edit functions are provided.
To access any of these functions, you first press the C O N T R O L and RIGHT
S H I F T keys. (This allows the user to enter any key into the buffer.)

The functions assigned to the five string edit keys are as follows:

KEY FUNCTION

R E T U R N End string definition.

+ symbol* Insert space in string.

— symbol* Delete cursor character.

Right Cursor Move cursor to right.

Left Cursor Move cursor to left.

*On main keyboard only.

ALT MODE
This function is a toggle (on/off) and is provided to allow the user to send 8-bit
codes to an application without the keyboard driver "eating" the code from 80h to
FFh.

UPDATING THE
40/80 COLUMN DISPLAY

As noted elsewhere in this book, there are two different display systems within
the C128. The first, which is controlled by the VIC chip, produces a 25-line by
40-column display, has many graphics modes of operation, and can be used with a
standard color (or black-and-white) television or color monitor. (See Chapters 8 and 9
for details.) The only VIC-controlled display mode used by CP/M is standard character
mode, with each character and screen background having up to sixteen colors.

The second display system available in C128 CP/M is controlled by the 8563
display controller. The display format of this controller is 25 lines by 80 columns, with
character color attributes. The VIC chip is a memory-mapped display, and the 8563 is
I/O-controlled. The two display subsystems are treated as two separate displays. CP/M
3.0 can assign one or both to the console output device.

Both displays are controlled by a common terminal emulation package, a Lear
Siegler ADM-31 (ADM-3A is a subset of this) driver. The terminal driver is divided
into two parts: terminal emulation and terminal functions. Terminal emulation is
handled by the Z80 BIOS, and the terminal function is handled primarily in the
Z80 ROM.

The following section shows the various terminal emulation protocols supported
by Commodore 128 CP/M.

TERMINAL EMULATION PROTOCOLS

FUNCTION

Position Cursor
Cursor Left
Cursor Right
Cursor Down
Cursor Up
Home and Clear Screen
Carriage Return
Escape
Bel!

NOTE: Display is 24 (1-24)

CHARACTER SEQUENCE

ESC (row# + 32) (col# + 32)
Control H
Control L
Control J
Control K
Control Z
Control M
Control [
Control G

by 80 (1-80); cursor origin is always

HEX CHAR CODE

IB 3D 20+ 20 +
08
OC
0A
0B
1A
0D
IB
07

1/1.

Figure 14-4. Lear Siegler ADM-3A Protocol

CP/M 3.0 ON THE COMMODORE 128 499

NOTE: The following have been added to allow the system to emulate
the KayPro II display more closely.

FUNCTION

Home Cursor
CEL (Clear to End of Line)
CES (Clear to End of Screen)

CHARACTER

SEQUENCE

Control t
Control-X
Control-W

Clear to end of line

Clear to end of screen

Home cursor and clear screen

Half intensity on
Half intensity off
Reverse video on
Blinking on
Underline on *
Select alternate character set*
Reverse video and blinking off
Insert line
Insert character
Delete line
Delete character
Set screen colors*

CHARACTER i

ESC T
ESC t
ESC Y
ESCy
ESC :
ESC *
ESC)
ESC(
ESC G4
ESCG2
ESCG3
ESCG1
ESC GO
ESC E
ESC Q
ESC R
ESC W

SEQUENCE HEX CHARACTER CODES

IB 54
IB 74
IB 59
IB 79
1B3A
1B2A
IB 29
IB 28
IB 47 34
IB 47 32
IB 47 33
IB 47 31
IB 47 30
IB 45
IB 51
IB 52
IB 57

ESC ESC ESC color #
where color

•Indicates this is not a normal ADM31 sequence.

= 20h to 2Fh—character color
30h to 3Fh—background color
40h to 4Fh—border color (40

columns only)
50h to 50Fh—character color
60h to 60Fh—background color
70h to 70Fh—border color (40

columns only)

Note: Display is 24 (1-24) by 80 (1-80); cursor origin is always 1/1.

Physical
Colors

Logical
Colors

Figure 14-5. Lear Siegler ADM-31 Protocol

SYSTEM OPERATIONS

SETTING SYSTEM TIME
The time of day is set with this function. The time of day is stored in packed BCD
format in the System Control Block (SCB) in three locations (hours, minutes, seconds).
This routine reads the SCB time and writes that time to the time of day clock within the
6526. This time is updated on the chip and is used by CP/M. The Z80 is able to
read/write the 6526 directly.

UPDATING SYSTEM TIME
The SCB time is updated from the time of day clock on the 6526 by doing a system call.

8502 BIOS ORGANIZATION

The 8502 is responsible for most of the low-level I/O functions. The request for these
functions is made through a set of mailboxes. Once the mailboxes are set up, the Z80
shuts down and the 8502 starts up (BIOS85). The 8502 looks at the command in the
mailbox and performs the required task, sets the command status and shuts down. The
Z80 is re-enabled; it then looks at the command status and takes the appropriate actions.

The 8502 BIOS commands are defined in Appendix K.

This concludes the summary explanation of the Commodore 128 CP/M system.
However, the Commodore 128 CP/M System includes many additional Commodore
128-dependent routines and functions that are performed by the Z80 microprocessor.
Since most of these routines, system calls and functions are tabular information, they are
covered in Appendix K. For information on any of the following topics, refer to
Appendix K.

8502 BIOS commands
All Commodore 128 Z80 system-dependent user functions
Calling a CP/M BIOS, 8502 BIOS and CP/M User system functions in Z80 machine
language
More information on MFM disk formats
Commodore 128 CP/M (Z80) Memory Map

For more information on the general (non-Commodore 128-dependent) CP/M 3.0
system, see the offer in section 15 of the C128 System Guide for the Digital Research
CP/M Plus User's Guide, Programmer's Guide and System Guide.

15
THE
COMMODORE 128
AND
COMMODORE 64
MEMORY MAPS

This chapter provides the memory maps for both C128 and C64 modes. A memory map
tells you exactly how memory is laid out internally in both RAM and ROM. It tells you
exactly what resides in each memory location. The memory map directs you in finding
address vectors for routines and entry points and provides information about the general
layout of the computer. The memory map is probably the most vital programming tool.
Refer to the memory map whenever you need directions throughout the memory of your
Commodore 128. Addresses listed with more than one address label are used for more
than one purpose. To BASIC, the variable has one purpose; to the Machine Language
Monitor, it may have another.

The conventions used for the memory maps are as follows:

Column 1

MEMORY
ADDRESS
LABEL

Column 2 Column 3 Column 4

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

See Appendix K for the Z80 memory map for CP/M on the Commodore 128.

CI28 MEMORY MAP

MEMORY
ADDRESS
LABEL

D6510
R6510
BANK

PC_HI

PC_LO

S_REG
A_REG
X_REG
Y_REG
STKPTR

HEXADECIMAL
ADDRESS

0000
0001
0002

0003

0004

0005
0006
0007
0008
0009

DECIMAL
ADDRESS

0
1
2

3

4

5
6
7
8
9

DESCRIPTION

6510 DATA DIRECTION REGISTER
6510 DATA REGISTER
TOKEN 'SEARCH' LOOKS FOR, OR
BANK#
ADDRESS FOR BASIC SYS
COMMAND OR MONITOR AND
LONG CALL/JUMP ROUTINES
ADDRESS, STATUS, A-REG, X-REG,
Y-REG
STATUS REG TEMP
.A REG TEMP
.X REG TEMP
.Y REG TEMP
STACK POINTER TEMP

INTEGR
CHARAC
ENDCHR

TRMPOS
VERCK

BASIC ZERO PAGE STORAGE

0009 9

000A

000B
000C

SEARCH CHARACTER
10 FLAG: SCAN FOR QUOTE AT END

OF STRING
11 SCREEN COLUMN FROM LAST TAB
12 FLAG: 0 = LOAD, 1 = VERIFY

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 503

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL
ADDRESS

DECIMAL
ADDRESS DESCRIPTION

C O U N T
D I M F L G
V A L T Y P

000D
OOOE
OOOF

13
14
15

I N T F L G 0010 16

G A R B F L

D O R E S
SUBFLG

I N P F L G

D O M A S K
TANSGN

C H A N N L
P O K E R
L I N N U M
TEMPPT
LASTPT
TEMPST
INDEX
INDEX1
INDEX2
RESHO
RESMOH
ADDEND
RESMO
RESLO
TXTTAB
VARTAB

ARYTAB
STREND

FRETOP

FRESPC
MAX_MEM_1

CURLIN
TXTPTR

FORM
FNDPNT

0011

0012

0013

0014

0015
0016

0018
0019
001B
0024

0026
0028
0029
002A

002B
002D
002F

0031
0033

0035

0037
0039

003B
003D

003F

17

18

19

20

21
22

24
25
27
36

38
40
41
42

43
45
47

49
51

53

55
57

59
61

63

INPUT BUF.PTR / # OF SUBSCRIPTS
FLAG: DEFAULT ARRAY DIMENSION
DATA TYPE: $FF = STRING,
$00 = NUMERIC
DATA TYPE: $00 = FLOAT.PT,
$80 = INTEGER
FLAG: DATA SCAN / LIST QUOTE /
GARBAGE COLLECTION

FLAG: SUBSCRIPT REF. / USER
FUNC. CALL
FLAG: $00 = INPUT, $40 = GET,
$98 = READ

FLAG: TAN SIGN / COMPARISON
RESULT

TEMP INTEGER VALUE
POINTER: TEMP STRING STACK
LAST TEMP STRING ADDRESS
STACK FOR TEMP STRINGS
UTILITY POINTER AREA

FLOAT.PT. PRODUCT OF MULTIPLY

POINTER: START OF BASIC TEXT
POINTER: START OF BASIC
VARIABLES
POINTER: START OF BASIC ARRAYS
POINTER: END OF BASIC ARRAYS
+ 1
POINTER: BOTTOM OF STRING
STORAGE
UTILITY STRING POINTER
TOP OF STRING/VARIABLE BANK
(BANK 1)
CURRENT BASIC LINE NUMBER
POINTER TO BASIC TEXT USED BY
CHRGET,ETC.
USED BY PRINT USING
POINTER TO ITEM FOUND BY
SEARCH

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

BASIC ZERO PAGE STORAGE

DATLIN
DATPTR
INPPTR
VARNAM
FDECPT
VARPNT

LSTPNT
FORPNT

ANDMSK
EORMSK
VARTXT
OPPTR
OPMASK
GRBPNT
TEMPF3
DEFPNT
DSCPNT

HELPER
JMPER

OLDOV
TEMPF1
PTARG1
PTARG2
STR1
STR2
POSITN
MATCH
ARYPNT
HIGHDS
HIGHTR
TEMPF2
DECCNT

TENEXP
TO

GRBTOP
DPTFLG
LOWTR
EXPSGN
FAC

0041
0043
0045
0047
0049

004B

004C
004D

004F
0050

0052
0054
0055
0056
0057
0058
0059

005B
005D
0060
0063
0064
005A

005C
005E
005F

0060

0061

0062
0063

65
67
69
71
73

75

76
77

79
80

82
84
85
86
87
88
89

91
93
96
99

100
90

92
94
95

96

97

98
99

CURRENT DATA LINE NUMBER
CURRENT DATA ITEM ADDRESS
VECTOR: INPUT ROUTINE
CURRENT BASIC VARIABLE NAME

POINTER: CURRENT BASIC
VARIABLE DATA

POINTER: INDEX VARIABLE FOR
FOR/NEXT

FLAGS 'HELP' OR 'LIST'

MULTIPLY DEFINED FOR INSTR

NUMBER OF DIGITS AFTER THE
DECIMAL POINT

ML MONITOR Z.P. STORAGE IN
FAC

DECIMAL POINT FLAG

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 505

MEMORY
ADDRESS
LABEL

DSCTMP
LEFT_FLAG
FACEXP
Tl
RIGHT_FLAG
FACHO
FACMOH
INDICE
FACMO
T2
FACLO
FACSGN
DEGREE
SGNFLG
ARGEXP
ARGHO
ARGMOH
INIT_AS_0
ARGMO
ARGLO
ARGSGN
STRNG1
ARISGN

FACOV
STRNG2
POLYPT
CURTOL
FBUFPT
AUTINC
MVDFLG
Z_P_TEMP_1

HEXADECIMAL DECIMAL
ADDRESS

BASIC

0064

0065
0066

0067
0068
0069

006A
006B
006C

006D
006E
006F
0070

0071
0072

0074
0076
0077

ADDRESS

ZERO PAGE

100

101
102

103
104
105

106
107
108

109
110
111
112

113
114

116
118
119

DESCRIPTION

STORAGE

PAINT-LEFT FLAG
FAC#1 EXPONENT
MONITOR Z.P. STORAGE IN FAC
PAINT-RIGHT FLAG
FAC#1 MANTISSA

MONITOR Z.P. STORAGE IN FAC

FAC#1 SIGN

POINTER: SERIES-EVAL. CONSTANT
FAC#2 EXPONENT
FAC#2 MANTISSA

JUST A COUNT FOR INIT

FAC#2 SIGN

SIGN COMPARISON RESULT:
FAC#1 VS #2
FAC#1 LOW-ORDER (ROUNDING)

POINTER: CASSETTE BUFFER
INC. VAL FOR AUTO (0 = OFF)
FLAG IF 10K HIRES ALLOCATED
PRINT USING'S LEADING ZERO

HULP
KEYSIZ
SYNTMP

DSDESC
TXTPTR
TOS
RUNMOD
PARSTS
POINT

0078

0079

007A

007D
007F
0080

120

121

122

125
127
128

COUNTER
MOVSPR & SPRITE TEMPORARY
MID$ TEMPORARY
COUNTER

USED AS TEMP FOR INDIRECT
LOADS
DESCRIPTOR FOR DS$
MONITOR Z.P. STORAGE
TOP OF RUN TIME STACK
FLAGS RUN/DIRECT MODE
DOS PARSER STATUS WORD
USING'S POINTER TO DEC.PT

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

PARSTX
OLDSTK

BASIC ZERO PAGE STORAGE

0081 129
0082 130

BASIC Z-P STORAGE FOR GRAPHIC COMMANDS

COLSEL
MULTICOLOR_1
MULTICOLORS
FOREGROUND
SCALE_X
SCALE_Y
STOPNB

GRAPNT
VTEMP1
VTEMP2

0083
0084
0085
0086
0087
0089
008B

008C
008E
008F

131
132
133
134
135
137
139

140
142
143

CURRENT COLOR SELECTED

SCALE FACTOR IN X
SCALE FACTOR IN Y
STOP PAINT IF NOT BACKGROUND/
NOT SAME COLOR

KERNAL/EDITOR STORAGE

STATUS
STKEY
SVXT
VERCK
C3P0
BSOUR
SYNO
XSAV
LDTND
DFLTN
DFLTO
PRTY
DPSW
MSGFLG
PTR1
Tl
PTR2
T2
TIME
R2D2
PCNTR
BSOUR1
FIRT
COUNT
CNTDN
BUFPT

0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
009A
009B
009C
009D
009E

009F

00A0
00A3

00A4

00A5

00A6

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159

160
163

164

165

166

I/O OPERATION STATUS BYTE
STOP KEY FLAG
TAPE TEMPORARY
LOAD OR VERIFY FLAG
SERIAL BUFFERED CHAR FLAG
CHAR BUFFER FOR SERIAL
CASSETTE SYNC #
TEMP FOR BASIN
INDEX TO LOGICAL FILE
DEFAULT INPUT DEVICE #
DEFAULT OUTPUT DEVICE #
CASSETTE PARITY
CASSETTE DIPOLE SWITCH
OS MESSAGE FLAG
CASSETTE ERROR PASS1
TEMPORARY 1
CASSETTE ERROR PASS2
TEMPORARY 2
24 HOUR CLOCK IN 1/60TH SECONDS
SERIAL BUS USAGE
CASSETTE
TEMP USED BY SERIAL ROUTINE

TEMP USED BY SERIAL ROUTINE
CASSETTE SYNC COUNTDOWN
CASSETTE BUFFER POINTER

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 507

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

KERNAL/EDITOR STORAGE

INBLT
SHCNL
BITCI
RER
RINONE

REZ
RIDATA

RDFLG
RIPRTY
SHCNH
SAL

SAH
EAL

EAH
CMPO
T E M P
TAPE1
BITTS
SNSW1
NXTBIT
DIFF
RODATA

PRP
FNLEN
LA
SA
FA
FNADR
ROPRTY
O C H A R
FSBLK
DRIVE
M Y C H
CAS1

TRACK
STAL
SECTOR
STAH
MEMUSS
TMP2
DATA

00A7

00A8

00A9

00AA

00 AB

00AC

00AD
00 AE

00AF
00B0
00B1

00B2
0OB4

0OB5

00B6

00B7
00B8
00B9
00BA
OOBB
00BD

0OBE
OOBF

00C0
00C1

00C2

00C3

0OC5

167

168

169

170

171

172

173
174

175
176
177
178
180

181

182

183
184
185
186
187
189

190
191

192

193

194

195

197

RS-232 RCVR INPUT BIT STORAGE
CASSETTE SHORT COUNT
RS-232 RCVR BIT COUNT IN
CASSETTE READ ERROR
RS-232 RCVR FLAG FOR START BIT
CHECK
CASSETTE READING ZEROES
RS-232 RCVR BYTE BUFFER
CASSETTE READ MODE
RS-232 RCVR PARITY STORAGE
CASSETTE SHORT CNT
POINTER: TAPE BUFFER / SCREEN
SCROLLING

TAPE END ADDRESSES / END OF
PROGRAM

TAPE TIMING CONSTANTS

ADDRESS OF TAPE BUFFER
RS-232 TRNS BIT COUNT

RS-232 TRNS NEXT BIT TO BE SENT

RS-232 TRNS BYTE BUFFER

LENGTH CURRENT FILE N STR
CURRENT FILE LOGICAL ADDR
CURRENT FILE 2ND ADDR
CURRENT FILE PRIMARY ADDR
ADDR CURRENT FILE NAME STR
RS-232 TRNS PARITY BUFFER

CASSETTE READ BLOCK COUNT

SERIAL WORD BUFFER
CASSETTE MANUAL/CNTRLED
SWITCH (UPDATED DURING IRQ)

I/O START ADDRESS (LO)

I/O START ADDRESS (HI)
CASSETTE LOAD TEMPS (2 BYTES)

TAPE READ/WRITE DATA

C128 Memory Map (continued)

MEMORY
ADDRESS HEXADECIMAL DECIMAL
LABEL ADDRESS ADDRESS DESCRIPTION

KERNAL/EDITOR STORAGE

BANK FOR CURRENT LOAD/SAVE/
VERIFY OPERATION
BANK WHERE CURRENT FN IS
FOUND (AT 'FNADR')
RS-232 INPUT BUFFER POINTER
RS-232 OUTPUT BUFFER POINTER

KEYSCAN TABLE POINTER
PRIMM UTILITY STRING POINTER
INDEX TO KEYBOARD QUEUE
PENDING FUNCTION KEY FLAG
INDEX INTO PENDING FUNCTION
KEY STRING
KEYSCAN SHIFT KEY STATUS
KEYSCAN CURRENT KEY INDEX
KEYSCAN LAST KEY INDEX
< C R > INPUT FLAG
40/80 COLUMN MODE FLAG
TEXT/GRAPHIC MODE FLAG
RAM/ROM VIC CHARACTER FETCH
FLAG (BIT-2)

THE FOLLOWING LOCATIONS ARE SHARED BY SEVERAL EDITOR ROUTINES.

SEDSAL 00DA 218 POINTERS FOR MOVLIN
BITMSK 00DA 218 TEMPORARY FOR TAB & LINE

WRAP ROUTINES
SAVER 00DB 219 ANOTHER TEMPORARY PLACE TO

SAVE A REG.

BA

FNBANK

RIBUF
ROBUF

KEYTAB
IMPARM
NDX
KYNDX
KEYIDX

SHFLAG
SFDX
LSTX
CRSW
MODE
GRAPHM
CHAREN

00C6

00C7

00C8
00CA

GLOBAL

OOCC
00CE
00D0
00D1
00D2

00D3
00D4
00D5
00D6
00D7
00D8
00D9

198

199

200
202

SCREEN E

204
206
208
209
210

211
212
213
214
215
216
217

SEDEAL
SEDT1
SEDT2
KEYSIZ
KEYLEN
KEYNUM
KEYNXT
KEYBNK
KEYTMP

00DC
00DE
00DF
00DA
00DB
00DC
00DD
00DE
00DF

220
222
223
218
219
220
221
222
223

SAVPOS

PROGRAMMABLE KEY VARIABLES

LOCAL SCREEN EDITOR VARIABLES.
THESE ARE SWAPPED OUT TO $0A40

WHEN SCREEN (40/80) MODE CHANGES.

PNT 00E0 224 POINTER TO CURRENT LINE (TEXT)
USER 00E2 226 POINTER TO CURRENT LINE

(ATTRIBUTE)

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 509

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

LOCAL SCREEN EDITOR VARIABLES.
THESE ARE SWAPPED OUT TO $0A40

WHEN SCREEN (40/80) MODE CHANGES.

SCBOT
SCTOP
SCLF
SCRT
LSXP
LSTP
INDX
TBLX
PNTR
LINES

COLUMNS

DATAX
LSTCHR

COLOR

TCOLOR

RVS
QTSW
INSRT
INSFLG
LOCKS

SCROLL

BEEPER
FREKZP

0OE4
00E5
00E6
00E7
00E8
00E9
00EA
00EB
00EC
00ED

00EE

00EF
00F0

00F1

00F2

00F3
00F4
00F5
00F6
00F7

0OF8

00F9
00FA

228
229
230
231
232
233
234
235
236
237

238

239
240

241

242

243
244
245
246
247

248

249
250

WINDOW LOWER LIMIT
WINDOW UPPER LIMIT
WINDOW LEFT MARGIN
WINDOW RIGHT MARGIN
CURRENT INPUT COLUMN START
CURRENT INPUT LINE START
CURRENT INPUT LINE END
CURRENT CURSOR LINE
CURRENT CURSOR COLUMN
MAXIMUM NUMBER OF SCREEN
LINES
MAXIMUM NUMBER OF SCREEN
COLUMNS
CURRENT CHARACTER TO PRINT
PREVIOUS CHAR PRINTED (FOR
<ESC> TEST)
CURR ATTRIBUTE TO PRINT
(DEFAULT FGND COLOR)
SAVED ATTRIB TO PRINT ('INSERT'
& 'DELETE')
REVERSE MODE FLAG
QUOTE MODE FLAG
INSERT MODE FLAG
AUTO-INSERT MODE FLAG
DISABLES <SHIFTX><C=>,
<CTRL> S
DISABLES SCREEN SCROLL, LINE
LINKER
DISABLES < C T R L > G
FREE ZERO PAGE RESERVED FOR
APPLICATIONS SOFTWARE
($FA-$FE)

LOFBUF OOFF 255

BAD
FBUFFR

XCNT

BASIC/DOS INTERFACE VARS

0100

0110

256 TAPE READ ERRORS
AREA TO BUILD FILENAME IN
(16 BYTES)

272 DOS LOOP COUNTER

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

NF

BASIC/DOS INTERFACE VARS

DOSF1L
DOSDS1
DOSF2L
DOSDS2
DOSF2A
DOSOFL
DOSOFH
DOSLA
DOSFA
DOSSA
DOSRCL
DOSBNK
DOSDID
DIDCHK

BNR
ENR
DOLR
FLAG
SWE
USGN
UEXP
VN

CHSN
VF

0111
0112
0113
0114
0115
0117
0119
011B

one
011D
011E
011F
0120
0122

0123
0124
0125
0126
0127
0128
0129
012A

012B
012C

273
274
275
276
277
279
281
283
284
285
286
287
288
290

291
292
293
294
295
296
297
298

299
300

012D 301

POSP
FESP
ETOF
CFORM
SNO
BLFD
BEGFD
LFOR
ENDFD
SYSTK
BUF

012E
012F
0130
0131
0132
0133
0134
0135
0136
0137
0200

302
303
304
305
306
307
308
309
310
311
512

DOS FILENAME 1 LEN
DOS DISK DRIVE 1
DOS FILENAME 2 LEN
DOS DISK DRIVE 2
DOS FILENAME 2 ADDR
BLOAD/BSAVE STARTING ADDRESS
....AND ENDING ADDRESS
DOS LOGICAL ADDR
DOS PHYS ADDR
DOS SEC. ADDR
DOS RECORD LENGTH

DOS DISK ID
DOS DSK ID FLG
SPACE USED BY PRINT USING
POINTER TO BEGIN. NO.
POINTER TO END NO.
DOLLAR FLAG
COMMA FLAG
COUNTER
SIGN EXPONENT
POINTER TO EXPONENT
OF DIGITS BEFORE DECIMAL
POINT
JUSTIFY FLAG
OF POS BEFORE DECIMAL POINT
(FIELD)
OF POS AFTER DECIMAL POINT
(FIELD)
+ / -FLAG (FIELD)
EXPONENT FLAG (FIELD)
SWITCH
CHAR COUNTER (FIELD)
SIGN NO
BLANK/STAR FLAG
POINTER TO BEGIN OF FIELD
LENGTH OF FORMAT
POINTER TO END OF FIELD
SYSTEM STACK ($0137-$01FF)
INPUT BUFFER: BASIC & MONITOR
($0200-$02Al)

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS SI I

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

BASIC/DOS INTERFACE VARS

LDA(-),Y FROM ANY BANK

STA(-),Y TO ANY BANK

CMP(-),Y TO ANY BANK

JSR XXXX TO ANY BANK & RETURN
JMP XXXX TO ANY BANK

VECTOR FOR ADDITIONAL
FUNCTION ROUTINES
VECTOR FOR FUNCTION CART.
USERS
VECTOR FOR PRINT BASIC ERROR
(ERR IN .X)
VECTOR TO MAIN (SYSTEM DIRECT
LOOP)
VECTOR TO CRUNCH
(TOKENIZATION ROUTINE)
VECTOR TO LIST BASIC TEXT
(CHAR LIST)
VECTOR TO GONE (BASIC CHAR
DISPATCH)
VECTOR TO BASIC TOKEN
EVALUATION
VECTOR TO ESCAPE-TOKEN

CRUNCH,
...LIST,

...AND EXECUTE,
IRQ RAM VECTOR^

BRK INSTR RAM VECTOR ?

NMI VECTOR
KERNAL OPEN ROUTINE VECTOR
KERNAL CLOSE ROUTINE VECTOR
KERNAL CHKIN ROUTINE VECTOR
KERNAL CHKOUT ROUTINE
VECTOR
KERNAL CLRCHN ROUTINE
VECTOR

FETCH
FETVEC
STASH
STAVEC
CMPARE
CMPVEC
JSRFAR
JMPFAR

ESC_FN_VEC

BNKVEC

IERROR

IMAIN

ICRNCH

IQPLOP

IGONE

IEVAL

IESCLK

IESCPR
IESCEX
HRQ
CINV
IBRK
CBINV
INMI
IOPEN
ICLOSE
ICHKIN
ICKOUT

ICLRCH

02A2
02AA
02AF
02B9
02BE
02C8
02CD
02E3

02FC

02FE

0300

0302

0304

0306

0308

030A

030C

030E
0310
0314

0316

0318
031A
031C
031E
0320

0322

674
682
687
697
702
712
716
739

VECTORS

764

766

768

770

772

774

776

778

780

782
784
788

790

792
794
796
798
800

802

CI28 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

IBASIN
IBSOUT

ISTOP
IGETIN
ICLALL
EXMON
ILOAD
ISAVE

0324
0326

0328
032A
032C
032E
0330
0332

VECTORS

804
806

808
810
812
814
816
818

KERNAL CHRIN ROUTINE VECTOR
KERNAL CHROUT ROUTINE
VECTOR
KERNAL STOP ROUTINE VECTOR
KERNAL GETIN ROUTINE VECTOR
KERNAL CLALL ROUTINE VECTOR
MONITOR COMMAND VECTOR
KERNAL LOAD ROUTINE VECTOR
KERNAL SAVE ROUTINE VECTOR

EDITOR INDIRECT VECTORS

CTLVEC
SHFVEC
ESCVEC
KEYVEC
KEYCHK
DECODE

0334
0336
0338
033A
033C
033E

820
822
824
826
828
830

KEYD

TABMAP

BITABL

034A

0354

035E

842

852

862

LAT
FAT
SAT
CHRGET
CHRGOT
QNUM

0362
036C
0376
0380
0386
0390

866
876
886
896
902
912

EDITOR: PRINT 'CONTRL' INDIRECT
EDITOR: PRINT 'SHIFTD' INDIRECT
EDITOR: PRINT 'ESCAPE' INDIRECT
EDITOR: KEYSCAN LOGIC INDIRECT
EDITOR: STORE KEY INDIRECT
VECTORS TO KEYBOARD MATRIX
DECODE TABLES
IRQ KEYBOARD BUFFER (10 BYTES)

BITMAP OF TAB STOPS (10 BYTES,
$0354-D)
BITMAP OF LINE WRAPS
TABMAP AND BITABL GET
SWAPPED TO $0A60 WHEN SCREEN
40/80 MODE IS CHANGED.
LOGICAL FILE NUMBERS
PRIMARY DEVICE NUMBERS
SECONDARY ADDRESSES

INDIRECT LOAD SUBROUTINE AREA

INDSUB_RAM0
INDSUB_RAM1
INDIN1_RAM1
INDIN2
INDTXT

039F
03AB
03B7
03C0
03C9

927
939
950
959
968

SHARED ROM FETCH SUB
SHARED ROM FETCH SUB
INDEX1 INDIRECT FETCH
INDEX2 INDIRECT FETCH
TXTPTR

T H E COMMODORE 128 A N D C O M M O D O R E 64 MEMORY MAPS SI3

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

SAVSIZ

VICSCN

INDIRECT LOAD SUBROUTINE AREA

ZERO
CURRENT-

BANK
TMPDES
FIN_BANK

03D2
03D5

03D6
03DA

977
979

980
984

03DB 985

BITS
SPRTMP_1
SPRTMP_2
FG_BG

FG_MC1

03DF
03E0
03E1
03E2

03E3

989
990
991
992

993

NUMERIC CONSTANT FOR BASIC
CONTEXT FOR SYS,POKE,PEEK
FROM BANK CMMD
TEMP FOR INSTR
BANK POINTER FOR STRING/
NUMBER CONVERT RTN
TEMP WORK LOCATIONS FOR
SSHAPE
FAC#1 OVERFLOW DIGIT
TEMP FOR SPRSAV

PACKED FOREGROUND/
BACKGROUND COLOR NYBBLES
PACKED FOREGROUND/
MULTICOLOR 1 COLOR NYBBLES

PAGE FOUR & HIGHER DECLARATIONS

0400

0800

(BEGINNING OF BANKABLE RAM)
1024 VIDEO MATRIX # 1 : VIC 40-COLUMN

TEXT SCREEN
$0400-$07FF

2048 BASIC RUN-TIME STACK (512
BYTES)
$0800-$09FF

ABSOLUTE KERNAL VARIABLES

SYSTEM_ VECTOR

DEJAVU

PALNTS
INIT_STATUS

MEMSTR

MEMSIZ

IRQTMP

CASTON

KIKA26
STUPID
TIMOUT
ENABL

0A00

0A02

0A03
0A04

0A05

0A07

0A09

0A0B

0A0C
0A0D
0A0E
0A0F

2560

2562

2563
2564

2565

2567

2569

2571

2572
2573
2574
2575

VECTOR TO RESTART SYSTEM
(BASIC WARM)
KERNAL WARM/COLD INIT'N
STATUS BYTE
PAL/NTSC SYSTEM FLAG
FLAGS RESET VS. NMI STATUS
FOR INIT'N RTNS
PTR TO BOTTOM OF AVAIL.
MEMORY IN SYSTEM BANK
PTR TO TOP OF AVAILABLE
MEMORY IN SYSTEM BANK
TAPE HANDLER PRESERVES IRQ
INDIRECT HERE
TOD SENSE DURING TAPE
OPERATIONS
TAPE READ TEMPORARY
TAPE READ D1IRQ INDICATOR
FAST SERIAL TIMEOUT FLAG
RS-232 ENABLES

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

ABSOLUTE KERNAL VARIABLES

M51CTR
M51CDR
M51AJB
RSSTAT
BITNUM
BAUDOF

RIDBE

RIDBS

RODBS

RODBE

SERIAL

TIMER

0A10
0A11
0A12
0A14
0A15
0A16

0A18

0A19

0A1A

0A1B

0A1C

0A1D

2576
2577
2578
2580
2581
2582

2584

2585

2586

2587

2588

2589

RS-232 CONTROL REGISTER
RS-232 COMMAND REGISTER
RS-232 USER BAUD RATE
RS-232 STATUS REGISTER
RS-232 NUMBER OF BITS TO SEND
RS-232 BAUD RATE FULL BIT TIME
(CREATED BY OPEN)
RS-232 INPUT BUFFER INDEX TO
END
RS-232 INPUT BUFFER INDEX TO
START
RS-232 OUTPUT BUFFER INDEX TO
START
RS-232 OUTPUT BUFFER INDEX TO
END
FAST SERIAL INTERNAL/EXTERNAL
FLAG
DECREMENTING JIFFIE REGISTER

GLOBAL ABSOLUTE SCREEN EDITOR DECLARATIONS

XMAX
PAUSE
RPTFLG
KOUNT
DELAY

LSTSHF

BLNON

BLNSW
BLNCT
GDBLN

GDCOL
CURMOD

0A20
0A21
0A22
0A23
0A24

0A25

0A26

0A27
0A28
0A29

0A2A
0A2B

2592
2593
2594
2595
2596

2597

2598

2599
2600
2601

2602
2603

VM1 0A2C 2604

VM2
VM3
VM4
LINTMP

0A2D
0A2E
0A2F
0A30

2605
2606
2607
2608

KEYBOARD QUEUE MAXIMUM SIZE
<CTRL>S FLAG
ENABLE KEY REPEATS
DELAY BETWEEN KEY REPEATS
DELAY BEFORE A KEY STARTS
REPEATING
DELAY BETWEEN < O > < S H F T >
TOGGLES
VIC CURSOR MODE (BLINKING,
SOLID)
VIC CURSOR DISABLE
VIC CURSOR BLINK COUNTER
VIC CURSOR CHARACTER BEFORE
BLINK
VIC CURSOR COLOR BEFORE BLINK
VDC CURSOR MODE (WHEN
ENABLED)
VIC TEXT SCREEN/CHARACTER
BASE POINTER
VIC BIT-MAP BASE POINTER
VDC TEXT SCREEN BASE
VDC ATTRIBUTE BASE
TEMPORARY POINTER TO LAST
LINE FOR LOOP4

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 515

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

GLOBAL ABSOLUTE SCREEN EDITOR DECLARATIONS

TEMPORARY FOR 80-COL ROUTINES
TEMPORARY FOR 80-COL ROUTINES
VDC CURSOR COLOR BEFORE
BLINK
VIC SPLIT SCREEN RASTER VALUE
SAVE .X DURING BANK
OPERATIONS
COUNTER FOR PAL SYSTEMS
(JIFFIE ADJUSTMENT)
SAVE SYSTEM SPEED DURING TAPE
AND SERIAL OPS
SAVE SPRITE ENABLES DURING
TAPE AND SERIAL OPS
SAVE BLANKING STATUS DURING
TAPE OPS
FLAG SET BY USER TO RESRV
FULL CNTRL OF VIC
HI BYTE: SA OF VIC SCRN (USE
W/VM1 TO MOVE SCRN)
8563 BLOCK FILL
8563 BLOCK FILL
$0A40-$0A7F RESERVED SWAP
AREA FOR SCREEN VARIABLES
WHEN (40/80) MODE CHANGES
MONITOR'S DOMAIN
COMPARE BUFFER (32 BYTES)

ASM/DIS
FOR ASSEMBLER
1 BYTE TEMP USED ALL OVER
1 BYTE TEMP USED ALL OVER
1 BYTE TEMP FOR ASSEMBLER
SAVE .X HERE DURING INDIRECT
SUBROUTINE CALLS
DIRECTION INDICATOR FOR
'TRANSFER'
PARSE NUMBER CONVERSION
PARSE NUMBER CONVERSION
PARSE NUMBER CONVERSION

SAV80A
SAV80B
CURCOL

SPLIT
FNADRX

PALCNT

SPEED

SPRITES

BLANKING

HOLD_OFF

LDTBLSA

CLR_EA_LO
CLR_EA_HI

0A31
0A32
0A33

0A34
0A35

0A36

0A37

0A38

0A39

0A3A

0A3B

0A3C
0A3D
0A40

2609
2610
2611

2612
2613

2614

2615

2616

2617

2618

2619

2620
2621
2624

XCNT
HULP
FORMAT
LENGTH
MSAL
SXREG
SYREG
WRAP
XSAVE

DIRECTION

COUNT
NUMBER
SHIFT
TEMPS

0A80
0AA0
0AAA
0AAB
0AAC
0AAF
0AB0
0AB1
0AB2

0AB3

0AB4
0AB5
0AB6
0AB7

2688
2720
2730
2731
2732
2735
2736
2737
2738

2739

2740
2741
2742
2743

CURBNK

FUNCTION KEY ROM CARD TABLES

0AC0 2752 CURRENT FUNCTION KEY ROM
BANK BEING POLLED

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

FUNCTION KEY ROM CARD TABLES

PAT

DK-FLAG

TBUFFR

0AC1

0AC5

0AC6

0B00

2753

2757

2758

2810

RS232I
RS232O

PKYBUF

PKYDEF

0C00
0D00
0E00

1000

100A

3072
3328
3584

4096

4106

PHYSICAL ADDRESS TABLE(IDS OF
LOGGED-IN CARDS)
RESERVED FOR FOREIGN SCREEN
EDITORS
$0AC6-$0AFF RESERVED FOR
SYSTEM
CASSETTE BUFFER (192 BYTES)
$0B00-$0BC0, THIS PAGE ALSO
USED AS A BUFFER FOR THE DISK
AUTO-BOOT
RS-232 INPUT BUFFER
RS-232 OUTPUT BUFFER
SPRITE DEFINITION AREA (MUST
BE BELOW $1000)
$0E00-$0FFF, 512 BYTES
PROGRAMMABLE FUNCTION KEY
LENGTHS TABLE FOR 10 KEYS
(F1-F8, <SHIFT RUN>, HELP)
PROGRAMMABLE FUNCTION KEY
STRINGS

DOSSTR

VWORK
XYPOS
XPOS
YPOS
XDEST
YDEST
XYABS
XABS
YABS
XYSGN
XSGN
YSGN
FCT
ERRVAL
LESSER
GREATR

ANGSGN
SINVAL

1100

1131
1131
1131
1133
1135
1137
1139
1139
113B
113D
113D
113F
1141
1145
1147
1148

1149
114A

DOS/VSP

4352

4401
4401
4401
4403
4405
4407
4409
4409
4411
4413
4413
4415
4417
4421
4423
4424

4425
4426

AREA

DOS OUTPUT STR. BUF
48 BYTES TO BUILD DOS STRING
GRAPHICS VARS

CURRENT X POSITION
CURRENT Y POSITION
X-COORDINATE DESTINATION
Y-COORDINATE DESTINATION
LINE DRAWING VARIABLES

ANGLE ROUTINE VARIABLES
SIGN OF ANGLE
SINE OF VALUE OF ANGLE

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 517

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

DOS/VSP AREA

COSVAL 114C 4428 COSINE OF VALUE OF ANGLE
ANGCNT 114E 4430 TEMPS FOR ANGLE DISTANCE

ROUTINES

BASIC GRAPHIC VARIABLES.
THE FOLLOWING 24 BYTES ARE MULTIPLY DEFINED.

XCIRCL
YCIRCL
XRADUS
YRADUS
ROTANG
ANGBEG
ANGEND
XRCOS
YRSIN
XRSIN
YRCOS

XCENTR
YCENTR
XDIST1
YDIST1
XDIST2
YDIST2
DISEEND
COLCNT
ROWCNT
STRCNT

XCORDI
YCORD1
BOXANG
XCOUNT
YCOUNT
BXLENG
XCORD2
YCORD2

1150
1152
1154
1156
1158
115C
115E
1160
1162
1164
1166

BASIC

1150
1152
1154
1156
1158
115A
115C
115E
115F
1160

1150
1152
1154
1156
1158
115A
115C
115E

4432
4434
4436
4438
4440
4444
4446
4448
4450
4452
4454

GENERAL I

4432
4434
4436
4438
4440
4442
4444
4446
4447
4448

4432
4434
4436
4438
4440
4442
4444
4446

CIRCLE DRAWING VARIABLES
CIRCLE CENTER, X COORDINATE
CIRCLE CENTER, Y COORDINATE
X RADIUS
Y RADIUS
ROTATION ANGLE
ARC ANGLE START
ARC ANGLE END
X RADIUS * COS(ROTATION ANGLE)
Y RADIUS * SIN(ROTATION ANGLE)
X RADIUS * SIN(ROTATION ANGLE)
Y RADIUS * COS(ROTATION ANGLE)

PLACEHOLDER
CHAR'S COL. COUNTER

BOX-DRAWING VARIABLES
POINT 1 X-COORD.
POINT 1 Y-COORD.
ROTATION ANGLE

LENGTH OF A SIDE

SHAPE AND MOVE-SHAPE VARIABLES

KEYLEN
KEYNXT
STRSZ

1151
1152
1153

4433
4434
4435 STRING LEN

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

SHAPE AND MOVE-SHAPE VARIABLES

GETTYP
STRPTR
OLDBYT
NEWBYT

XSIZE
YSIZE
XSAVE
STRADR
BITIDX

1154
1155
1156
1157
1158
1159
115B
115D
115F
1161

4436
4437
4438
4439
4440
4441
4443
4445
4447
4449

REPLACE SHAPE MODE
STRING POS'N COUNTER
OLD BIT MAP BYTE
NEW STRING OR BIT MAP BYTE
PLACEHOLDER
SHAPE COLUMN LENGTH
SHAPE ROW LENGTH
TEMP FOR COLUMN LENGTH
SAVE SHAPE STRING DESCRIPTOR
BIT INDEX INTO BYTE

BASIC GRAPHIC VARIABLES

CHRPAG

BITCNT
SCALEM
WIDTH
FILFLG
BITMSK
NUMCNT
TRCFLG
RENUM_TMP_1
RENUM_TMP_2
T3
T4
VTEMP3
VTEMP4
VTEMP5
ADRAY1

ADRAY2

SPRITE.J3ATA

VIC_SAVE

1168

1169
116A
116B
116C
116D
116E
116F
1170
1172
1174
1175
1177
1178
1179
117A

117C

117E

11D6

4456

4457
4458
4459
4460
4461
4462
4463
4464
4466
4468
4469
4471
4472
4473
4474

4476

4478

4566

UPPER_LOWER 11EB

UPPER__GRAPHIC 11EC
DOSSA 11ED

4587

4588
4589

HIGH BYTE: ADDR OF CHARROM
FOR 'CHAR' CMD.
TEMP FOR GSHAPE
SCALE MODE FLAG
DOUBLE WIDTH FLAG
BOX FILL FLAG
TEMP FOR BIT MASK

FLAGS TRACE MODE
A TEMP FOR RENUMBER
A TEMP FOR RENUMBER

GRAPHIC TEMP STORAGE

PTR TO ROUTINE: CONVERT
FLOAT -> INTEGER
PTR TO ROUTINE: CONVERT
INTEGER -* FLOAT
SPRITE SPEED/DIRECTION TABLES
($117E-D5)
COPY OF VIC REG'S, USED TO
UPDATE CHIP DURING RETRACE
(21 BYTES, $11D6-EA)
POINTER TO UPPER/LOWER CHAR
SET FOR CHAR
PTR. TO UPPER/GRAPHIC CHAR. SET
TEMP STORAGE FOR FILE SA
DURING RECORD CMD

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 519

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

OLDLIN
OLDTXT

BASIC GENERAL NON-ZP STORAGE

1200
1202

4608 PREVIOUS BASIC LINE NUMBER
4610 POINTER: BASIC STATEMENT FOR

CONTINUE

PRINT USING DECLARATIONS

PUCHRS
PUFILL
PUCOMA
PUDOT
PUMONY
ERRNUM

ERRLIN

TRAPNO

TMPTRP
ERRTXT
TEXT_TOP
MAX_MEM_0

TMPTXT

TMPLIN
USRPOK
RNDX
CIRCLE_SEGMENT
DE.TAVU

1204
1204
1205
1206
1207
1208

1209

120B

120D
120E
1210
1212

1214

1216
1218
121B
1220
1221

4612
4612
4613
4614
4615
4616

4617

4619

4621
4622
4624
4626

4628

4630
4632
4635
4640
4641

PRINT USING FILL SYMBOL
PRINT USING COMMA SYMBOL
PRINT USING D.P. SYMBOL
PRINT USING MONETARY SYMBOL
USED BY ERROR TRAPPING
ROUTINE-LAST ERR NO
LINE # OF LAST ERROR—$FFFF IF
NO ERROR
LINE TO GO TO ON ERROR. $FFXX
IF NONE SET
HOLD TRAP # TEMPOR.

TOP OF TEXT POINTER
HIGHEST ADDRESS AVAILABLE
TO BASIC IN RAM 0
USED BY DO-LOOP. COULD BE
MULT. ASSIGNED

DEGREES PER CIRCLE SEGMENT
'COLD' OR 'WARM' RESET STATUS

BASIC STORAGE FOR MUSIC VECTORS

TEMPO_RATE
VOICES
NTIME
OCTAVE
SHARP
PITCH
VOICE
WAVE0
DNOTE
FLTSAV
FLTFLG
NIBBLE
TONNUM

1222
1223
1229
122B
122C
122D
122F
1230
1233
1234
1238
1239
123A

4642
4643
4649
4651
4652
4653
4655
4656
4659
4660
4664
4665
4666

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

TONVAL
PARCNT
ATKTAB
SUSTAB
WAVTAB
PULSLW
PULSHI
FILTERS

INT_TRIP_FLAG
INT_ADR_LO
INT_ADR_HI
INTVAL
COLTYP

123B
123E
123F
1249
1253
125D
1267
1271

1276
1279
127C
127F
1280

BASIC STORAGE FOR MUSIC VECTORS

4667
4668
4669
4681
4691
4701
4711
4721

INTERRUPT VECTORS

4726
4729
4732
4735
4736

BASIC SOUND COMMAND VARS

SOUND_VOICE
SOUND_TIME_LO
SOUND_TIME_HI
SOUND_MAX_LO
SOUND_MAX_HI
SOUND_MIN_LO
SOUND_MIN_HI
SOUND_DIRECTION
SOUND_STEP_LO
SOUND_STEP_HI
SOUND_FREQ_LO
SOUND_FREQ_HI
TEMP_TIME_LO
TEMP_TIME_HI
TEMP_MAX_LO
TEMP_MAX_HI
TEMP_MIN_LO
TEMP_MIN_HI
TEMP_DIRECTION
TEMP_STEP_LO
TEMP_STEP_HI
TEMP_FREQ_LO
TEMP_FREQ_HI
TEMP_PULSE_LO
TEMP_PULSE_HI
TEMP_WAVEFORM

1281
1282
1285
1288
128B
128E
1291
1294
1297
129A
129D
12A0
12A3
12A4
12A5
12A6
12A7
12A8
12A9
12AA
12AB
12AC
12AD
12AE
12AF
12B0

4737
4738
4741
4744
4747
4750
4753
4756
4759
4762
4765
4768
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 521

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

BASIC SOUND COMMAND VARS

POT_TEMP_1

POT_TEMP_2
WINDOW_TEMP
SAVRAM
DEFMOD
LINCNT
SPRITE_NUMBER
IRQ_WRAP_FLAG

RAMBOT

12B1

12B2
12B3
12B7
12FA
12FB
12FC
12FD

1300

1C00

4785

4786
4787
4791
4858
4859
4860
4861

4864

7168

1C00

2000

7168

8192

TEMPORARIES FOR 'POT'
FUNCTION

USED BY SPRDEF & SAVSPR
USED BY SPRDEF & SAVSPR
USED BY SPRDEF & SAVSPR
USED BY SPRDEF & SAVSPR
USED BY BASIC IRQ TO BLOCK
ALL BUT ONE IRQ CALL

APPLICATION PROGRAM AREA
$1300-$1BFF

START OF BASIC TEXT $lC00-
$EFFF (KERNAL SETS MEMBOT
HERE)
OR
VIDEO MATRIX #2 (1KB OF
COLORS FOR BITMAP, IF
ALLOCATED) $1COO-$1FFF

VIC BITMAP (8KB, IF ALLOCATED)
$2000-$3FFF

BEGINNING OF ROM OVER RAM

4000

8000

16384

32768

BASIC JUMP TABLE
MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS

C128 BASIC LO ROM
START OF BASIC TEXT IF BIT MAP
IS ALLOCATED (RAM)
$4000-$EFFF

C128 BASIC HI ROM (OR FUNCTION
ROM) $8000-$BFFF

DESCRIPTION

JMP HARD_RESET 4000
JMP SOFT_RESET 4003
JMP BASIC_IRQ 4006

BASIC ENTRY

16384 COLD ENTRY
16387 WARM ENTRY
16390 IRQ ENTRY

JMP AYINT
JMP GIVAYF

FORMAT CONVERSIONS

AF00 44800 CONVERT F.P. TO INTEGER
AF03 44803 CONVERT INTEGER TO F.P.

Basic Jump Table (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL
ADDRESS

DECIMAL
ADDRESS DESCRIPTION

FORMAT CONVERSIONS

JMP FOOT AF06 44806 CONVERT F.P. TO ASCII STRING
JMPVAL_1 AF09 44809 CONVERT ASCII STRING TO F.P.
JMP GETADR AFOC 44812 CONVERT F.P. TO AN ADDRESS
JMPFLOATC AFOF 44815 CONVERT ADDRESS TO F.P.

MATH FUNCTIONS

JMPFSUB AF12 44818 MEM - FACC
JMPFSUBT AF15 44821 ARG - FACC
JMP FADD AF18 44824 MEM + FACC
JMPFADDT AF1B 44827 ARG - FACC
JMP FMULT AF1E 44830 MEM * FACC
JMP FMULTT AF21 44833 ARG * FACC
JMPFDIV AF24 44836 MEM / FACC
JMPFDIVT AF27 44839 ARG / FACC
JMP LOG AF2A 44842 COMPUTE NATURAL LOG OF FACC
JMP INT AF2D 44845 PERFORM BASIC INT ON FACC
JMPSQR AF30 44848 COMPUTE SQUARE ROOT OF FACC
JMPNEGOP AF33 44851 NEGATE FACC
JMPFPWR AF36 44854 RAISE ARG TO THE MEM POWER
JMP FPWRT AF39 44857 RAISE ARG TO THE FACC POWER
JMPEXP AF3C 44860 COMPUTE EXP OF FACC
JMP COS AF3F 44863 COMPUTE COS OF FACC
JMP SIN AF42 44866 COMPUTE SIN OF FACC
JMP TAN AF45 44869 COMPUTE TAN OF FACC
JMPATN AF48 44872 COMPUTE ATN OF FACC
JMP ROUND AF4B 44875 ROUND FACC
JMPABS AF4E 44878 ABSOLUTE VALUE OF FACC
JMP SIGN AF51 44881 TEST SIGN OF FACC
JMP FCOMP AF54 44884 COMPARE FACC WITH MEM
JMP RND 0 AF57 44887 GENERATE RANDOM F.P. NUMBER

MOVEMENT

JMPCONUPK AF5A 44890 MOVE RAM MEM TO ARG
JMPROMUPK AF5D 44893 MOVE ROM MEM TO ARG
JMPMOVFRM AF60 44896 MOVE RAM MEM TO FACC
JMP MOVFM AF63 44899 MOVE ROM MEM TO FACC
JMP MOVMF AF66 44902 MOVE FACC TO MEM
JMPMOVFA AF69 44905 MOVE ARG TO FACC
JMP MOVAF AF6C 44908 MOVE FACC TO ARG

OTHER BASIC ROUTINES
JMP OPTAB AF6F 44911
JMP DRAWLN AF72 44914

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 523

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

JMP GPLOT
JMP CIRSUB
JMP RUN
JMP RUNC
JMP CLEAR
JMP NEW
JMP LNKPRG
JMP CRUNCH
JMP FNDLIN
JMP NEWSTT
JMP EVAL
JMP FRMEVL
JMP RUN_A_
PROGRAM
JMP SETEXC
JMP LINGET
JMP GARBA2
JMP EXECUTE_A_
LINE

JMP CALL
JMP BREAK
JMP MONCMD

AF75
AF78
AF7B
AF7E
AF81
AF84
AF87
AF8A
AF8D
AF90
AF93
AF96

AF99
AF9C
AF9F
AFA2

AFA5

B000
B003
B006

OTHER BASIC ROUTINES

44917
44920
44923
44926
44929
44932
44935
44938
44941
44944
44947
44950

44953
44956
44959
44962

44965

C000

MONITOR ENTRY

MONITOR CALL ENTRY
MONITOR BREAK ENTRY
MONITOR COMMAND PARSER
ENTRY
KERNAL (OR FUNCTION) ROM
$CO0O-$FFFF

45056
45059
45062

49152

EDITOR JUMP TABLE
MEMORY

ADDRESS

LABEL

JMP CINT
JMP DISPLY

JMP LP2

JMP LOOP5

JMP PRINT
JMP SCRORG

HEXADECIMAL

ADDRESS

cooo
C003

C006

C009

cooc
C00F

DECIMAL

ADDRESS

49152
49155

49158

49161

49164
49167

DESCRIPTION

INITIALIZE EDITOR & SCREEN
DISPLAY CHARAC IN .A, COLOR
IN.X
GET KEY FROM IRQ BUFFER
INTO .A
GET A CHR FROM SCRN LINE
INTO.A
PRINT CHARACTER IN .A
GET # OF SCRN ROWS, COLS
INTO X&Y

Editor Jump Table (continued)

MEMORV
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

JMP SCNKEY
JMP REPEAT

JMP PLOT

JMP CURSOR
JMP ESCAPE

JMP KEYSET

JMP IRQ
JMP INIT80

JMP SWAPPER

JMP WINDOW

C012
C015

C018

C01B
C01E

C021

C024
C027

C02A

C02D

D000

49170
49173

49176

49179
49182

49185

49188
49191

49194

49197

53248

SCAN KEYBOARD SUBROUTINE
HANDLE REPEAT KEY&STORE
DECODED KEY
READ OR SET CRSR POSITION IN
.X, .Y
MOVE 8563 CURSOR SUBROUTINE
EXECUTE ESC FUNCTION USING
CHR IN .A
REDEFINE A PROGRAMMABLE
FUNC'N KEY
IRQ ENTRY
INITIALIZE 80-COLUMN
CHARACTER SET
SWAP EDITOR LOCALS (40/80
CHANGE)
SET TOP-LEFT OR BOT-RIGHT OF
WINDOW
VIC CHARACTER ROM
($D000-$DFFF)

VIC CHIP REGISTERS

VICREGO
VICREG1
VICREG2
VICREG3
VICREG4
VICREG5
VICREG6
VICREG7
VICREG8
VICREG9
VICREG10
VICREG11
VICREG12
VICREGO
VICREG14
VICREG15
VICREG16

D000
D001
D002
D003
D004
D005
D006
D007
D008
D009
D00A
D00B
D00C
D00D
D00E
D00F
D010

53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264

SPRITE 0, X-LOCATION
SPRITE 0, Y-LOCATION
SPRITE 1, X-LOCATION
SPRITE 1, Y-LOCATION
SPRITE 2, X-LOCATION
SPRITE 2, Y-LOCATION
SPRITE 3, X-LOCATION
SPRITE 3, Y-LOCATION
SPRITE 4, X-LOCATION
SPRITE 4, Y-LOCATION
SPRITE 5, X-LOCATION
SPRITE 5, Y-LOCATION
SPRITE 6, X-LOCATION
SPRITE 6, Y-LOCATION
SPRITE 7, X-LOCATION
SPRITE 7, Y-LOCATION
MSBIT OF X-LOCATION FOR
SPRITES 0-7

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 525

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

VICREG17 D011

VIC CHIP REGISTERS

53265 VIC CONTROL REGISTER 1

7
6

5
4

3

2-0

RASTER COMPARE BIT
EXTENDED COLOR TEXT
MODE (1 = ON)
BIT MAP MODE (1 = ENABLE)
BLANK SCREEN TO BORDER
CLR(0 = BLANK)
SELECT 24/25 ROW TEXT
DISPLAY (1=25)
SMOOTH SCROLL TO Y
DOT POSITION

VICREG18

VICREG19
VICREG20
VICREG21

VICREG22

D012

D013
D014
D015

D016

53266

53267
53268
53269

53270

READ/WRITE RASTER VALUE FOR
COMPARE IRQ
LIGHT PEN LATCH X-POSITION
LIGHT PEN LATCH Y-POSITION
SPRITES 0-7 DISPLAY ENABLE
(1 = ENABLE)
VIC CONTROL REGISTER 2
BITS

VICREG23
VICREG24

D017
D018

7-6
5
4

3

2-0

UNUSED
RESET
MULTI-COLOR MODE
(1 = ENABLE)
SELECT 38/40 COLUMN
DISPLAY (1 =40 COLS)
SMOOTH SCROLL TO

A-ruMiiurN

53271 SPRITES 0-7 Y EXPAND
53272 VIC MEMORY CONTROL REGIST

BITS ($D018)

7-4

3-0

VIDEO MATRIX BASE
ADDRESS
CHARACTER DOT-DATA
BASE ADDRESS

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

VICREG25

VICREG26

D019

VIC CHIP REGISTERS

53273 VIC INTERRUPT FLAG REGISTER
(1 = IRQ OCCURRED)

D01A

VICREG27

VICREG28

VICREG29
VICREG30

VICREG31

VICREG32
VICREG33
VICREG34
VICREG35
VICREG36
VICREG37
VICREG38
VICREG39
VICREG40
VICREG41
VICREG42

D01B

D01C

D01D
D01E

D01F

D020
D021
D022
D023
D024
D025
D026
D027
D028
D029
D02A

53275

53276

53277
53278

53279

53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290

SET ON ANY ENABLED VIC
IRQ CONDITION
NOT USED
LIGHT PEN TRIGGERED
IRQ FLAG
SPRITE TO SPRITE
COLLISION IRQ FLAG
SPRITE TO BACKGROUND
COLLISION IRQ FLAG
RASTER COMPARE IRQ
FLAG

53274 IRQ ENABLE (1 = ENABLED) BITS

7-4
3
2
1
0

NOT USED
LIGHT PEN
SPRITE TO SPRITE
SPRITE TO BACKGROUND
IRQ

SPRITES 0-7 BACKGROUND
PRIORITY (1 = SPRITE)
SPRITES 0-7 MULTI-COLOR MODE
(1 = MULTI-COLOR)
SPRITES 0-7 X EXPAND
SPRITE TO SPRITE COLLISION
LATCH
SPRITE TO BACKGROUND
COLLISION LATCH
BORDER COLOR
BACKGROUND COLOR 0
BACKGROUND COLOR 1
BACKGROUND COLOR 2
BACKGROUND COLOR 3
SPRITE MULTI-COLOR REGISTER 0
SPRITE MULTI-COLOR REGISTER 1
SPRITE 0 COLOR
SPRITE 1 COLOR
SPRITE 2 COLOR
SPRITE 3 COLOR

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS S27

MEMORY
ADDRESS
LABEL

VICREG43
VICREG44
VICREG45
VICREG46
VICREG47

VICREG48

SIDREGO
SIDREG1
SIDREG2
SIDREG3
SIDREG4

SIDREG5

HEXADECIMAL DECIMAL
ADDRESS

D02B
D02C
D02D
D02E
D02F

D030

D400
D401
D402
D403
D404

D405

ADDRESS DESCRIPTION

VIC CHIP REGISTERS

53291
53292
53293
53294
53295

53296

SPRITE 4 COLOR
SPRITE 5 COLOR
SPRITE 6 COLOR
SPRITE 7 COLOR
KEYBOARD LINES
BITS

7-3
2-0

NOT USED
K2, Kl AND K0

CLOCK SPEED
BITS

7-2
1
0

NOT USED
TEST
2 MHZ

SID REGISTERS

54272
54273
54274
54275
54276

54277

VOICE 1 FREQUENCY LO
VOICE 1 FREQUENCY HI
VOICE 1 PULSE WIDTH LO
VOICE 1 PULSE WIDTH HI (0-15)
VOICE 1 CONTROL REGISTER

7
6
5
4
3

2

1

0

NOISE (1 = NOISE)
PULSE (1 = PULSE)
SAW (1 = SAWTOOTH)
TRI (1= TRIANGLE)
TEST (1 = DISABLE

OSCILLATOR)
RING (1 = RING MODULATE

OSC 1 WITH OSC
3 OUTPUT)

SYNC (1 = SYNCHRONIZE
OSC 1 WITH OSC
3 FREQ)

GATE (1 = START ATTACK/

DECAY/SUSTAIN
0 = START RELEASE)

VOICE 1 ATTACK/DECAY

7-4
3-0

ATTACK (0-15)
DECAY (0-15)

CJ28 Memory Map (continued)

MEMORY
ADDRESS
LABEL

SIDREG6

SIDREG7
SIDREG8
SIDREG9
SIDREG10
SIDREG11

SIDREG12

SIDREG13

SIDREG14
SIDREG15
SIDREG16
SIDREG17

HEXADECIMAL DECIMAL
ADDRESS

D406

D407
D408
D409
D40A
D40B

D40C

D40D

D40E
D40F
D410
D411

ADDRESS DESCRIPTION

SID REGISTERS

54278

54279
54280
54281
54282
54283

54284

54285

54286
54287
54288
54289

VOICE 1 SUSTAIN/RELEASE

7-4
3-0

SUSTAIN (0-15)
RELEASE (0-15)

VOICE 2 FREQUENCY LO
VOICE 2 FREQUENCY HI
VOICE 2 PULSE WIDTH LO
VOICE 2 PULSE WIDTH HI (0-15)
VOICE 2 CONTROL REGISTER

7
6
5
4
3

2

1

0

NOISE (1 = NOISE)
PULSE (1 = PULSE)
SAW (1 = SAWTOOTH)
TRI (1 = TRIANGLE)
TEST (1 = DISABLE

OSCILLATOR)
RING (1 = RING MODULATE

OSC 2 WITH OSC
1 OUTPUT)

SYNC (1 = SYNCHRONIZE
OSC 2 WITH OSC
1FREQ)

GATE (1 = START ATTACK/

DECAY/SUSTAIN
0 = START RELEASE)

VOICE 2 ATTACK/DECAY

7-4
3-0

ATTACK (0-15)
DECAY (0-15)

VOICE 2 SUSTAIN/RELEASE

3-0
SUSTAIN (0-15)
RELEASE (0-15)

VOICE 3 FREQUENCY LO
VOICE 3 FREQUENCY HI
VOICE 3 PULSE WIDTH LO
VOICE 3 PULSE WIDTH HI (0-15)

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 529

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

SIDREG18 D412

SID REGISTERS

54290 VOICE 3 CONTROL REGISTER

SIDREG19

SIDREG20

SIDREG21
SIDREG22
SIDREG23

D413

D414

D415
D416
D417

54291

54292

54293
54294
54295

7
6
5
4
3

2

1

0

VOICE

7-4
3-0

VOICE

7-4
3-0

NOISE (1 = NOISE)
PULSE (1 = PULSE)
SAW (1 = SAWTOOTH)
TRI (1 = TRIANGLE)
TEST (1 = DISABLE

OSCILLATOR)
RING (1= RING MODULATE

OSC 3 WITH OSC
2 OUTPUT)

SYNC (1 = SYNCHRONIZE
OSC 3 WITH OSC
2 FREQ)

GATE (1 = START ATTACK/
DECAY/SUSTAIN

0 = START RELEASE)

3 ATTACK/DECAY

ATTACK (0-15)
DECAY (0-15)

3 SUSTAIN/RELEASE

SUSTAIN (0-15)
RELEASE (0-15)

FILTER CUTOFF FREQUENCY LO
FILTER CUTOFF FREQUENCY HI
RESONANCE/FILTER

7-4
3

2

1

0

FILTER RESONANCE (0-15)
FILTER EXTERNAL INPUT
(1 = YES)
FILTER VOICE 3 OUTPUT
(1 = YES)
FILTER VOICE 2 OUTPUT
(1 = YES)
FILTER VOICE 1 OUTPUT

(1 = YES)

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL
ADDRESS

DECIMAL
ADDRESS DESCRIPTION

SIDREG24 D418

SID REGISTERS

54296 MODE/VOLUME

7

6

5

4

3-0

CUTOFF VOICE 3 OUTPUT
(1 = OFF)
SELECT HI-PASS FILTER
(1 = ON)
SELECT BAND-PASS FILTER
(1 = ON)
SELECT LO-PASS FILTER
(1 = ON)
OUTPUT VOLUME (0-15)

SIDREG25
SIDREG26
SIDREG27

SIDREG28

D419
D41A
D41B

D41C

54297
54298
54299

54300

POT X, A/D CONVERTER, PADDLE 1
POT Y, A/D CONVERTER, PADDLE 2
OSCILLATOR 3, RANDOM NUMBER
GENERATOR
ENVELOPE GENERATOR 3 OUTPUT

C128 MEMORY MANAGEMENT UNIT, PRIMARY REGISTERS
IMPLEMENTS C128, C64, & CP/M 3.0 MODES

MMUCR1
PCRA
PCRB
PCRC
PCRD

MMUMCR

D500
D501
D502
D503
D504

D505

54528
54529
54530
54531
54532

54533

CONFIGURATION REGISTER
PRECONFIGURATION REGISTER A
PRECONFIGURATION REGISTER B
PRECONFIGURATION REGISTER C
PRECONFIGURATION REGISTER D
BITS ($D500-$D504)

7-6
5-4

3-2

1
0

RAM BANK (0-3)
ROM HI (SYSTEM, INT,

EXT, RAM)
ROM MID (SYSTEM, INT,

EXT, RAM)
ROM LO (SYSTEM, RAM)
I/O (I/O BLOCK,

ELSE ROM-HI)

MODE CONFIGURATION REGISTER

7
6
5
4
3

2-1
0

40/80 KEY SENSE
OS MODE, 0 = C128/l = C64
/EXROM LINE SENSE
/GAME LINE SENSE
FSDIR
NOT USED
PROCESSOR, 0 = Z80/l = 8502

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS S31

MEMORY
ADDRESS
LABEL

HEXADECIMAL
ADDRESS

DECIMAL
ADDRESS DESCRIPTION

C128 MEMORY MANAGEMENT UNIT, PRIMARY REGISTERS
IMPLEMENTS C128, C64, & CP/M 3.0 MODES

MMURCR D506 54534 RAM CONFIGURATION REGISTER

MMUPOL

MMUPOH

MMUP1L

MMUP1H

MMUVER

D507

D508

D509

D50A

D50B

54535

54536

54537

54538

54539

7-6

5-4

3-2

1-0

VIC RAM BANK (VA17 &
VA16)
RAM BLOCK (FOR FUTURE
EXPANSION)
RAM SHARE STATUS (NONE,
BOT, TOP, BOTH)
RAM SHARE AMOUNT (IK,
4 K , StV, lt>!V>

PAGE 0
POINTER LOW
PAGEO
POINTER HIGH
PAGE 1
POINTER LOW
PAGE 1

SWAPS PAGEO
AND/OR PAGE1
WITH ANY
OTHER PAGE IN
THE 256K
ADDRESS SPACE

POINTER HIGH
BITS ($D508 & $D50A)

7-4
3-2

1-0

A19-A18 (USED IN 1MB
SYSTEM)

A17-A16 (256K SYSTEM)

BITS ($D507 & $D509)

7-0 A15-A8

MMU VERSION NUMBER

7-4
3-0

BANK VERSION
MMU VERSION

VDCADR

C128 80-COLUMN VIDEO DISPLAY CONTROLLER

D600 54784 8563 ADDRESS REGISTER

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

D600 WRITE
READ

VDCDAT

D601 DATA

ADDRESS AND DATA REGISTER BITS

7 6 5 4 3 2 1 0

— — R5 R4 R3 R2 Rl RO
STATUS LP VBLANK — — — — —

D601 54785 8563 DATA REGISTER

D7 D6 D5 D4 D3 D2 Dl DO

ADDITIONAL 8563 REGISTERS ARE NOT VISIBLE TO THE 8502

VICCOL
D700 55040 RESERVED I/O BLOCK
D800 55296 VIC COLOR MATRIX, 1 KB

($D800-$DBFF)

6526 CIA#1, COMPLEX INTERFACE ADAPTER #1
KEYBOARD, JOYSTICK, PADDLES, LIGHTPEN, FAST DISK

D1PRA

BITS ($DC00)

0
1
2
3
4
5
6
7

PRAO:
PRA1 :
PRA2 :
PRA3 :
PRA4 :
PRA5 :
PRA6 :
PRA7 :

D1PRB
BITS ($DC01)

DC00 56320 PORT A (OUTPUT KEYBOARD
COLUMNS)

KEYBD O/P CO/JOY #1 DIRECTION
KEYBD O/P Cl/JOY #1 DIRECTION
KEYBD O/P C2/JOY #1 DIRECTION/PADDLE FIRE BUTTON
KEYBD O/P C3/JOY #1 DIRECTION/PADDLE FIRE BUTTON
KEYBD O/P C4/JOY #1 FIRE BUTTON
KEYBD O/P C5/
KEYBD O/P C6/ /SELECT PORT #1 PADDLES
KEYBD O/P C7/ /SELECT PORT #2 PADDLES

DC01 56321 PORT B (INPUT KEYBOARD ROWS)

0
1
2
3
4
5
6
7

PRBO:
PRB1 :
PRB2:
PRB3 :
PRB4 :
PRB5 :
PRB6:
PRB7 :

KEYBD I/P R0/JOY #2 DIRECTION
KEYBD I/P Rl/JOY #2 DIRECTION/PADDLE FIRE BUTTON
KEYBD I/P R2/JOY #2 DIRECTION/PADDLE FIRE BUTTON
KEYBD I/P R3/JOY #2 DIRECTION/
KEYBD I/P R4/JOY #2 FIRE BUTTON
KEYBD I/P R5/
KEYBD I/P R6/TIMER B: TOGGLE /PULSE OUTPUT
KEYBD I/P R7/TIMER A: TOGGLE /PULSE OUTPUT

D1DDRA
D1DDRB
D1T1L

DC02
DC03
DC04

56322
56323
56324

DATA DIRECTION PORT A
DATA DIRECTION PORT B
TALO

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 533

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

6526 CIA#1, COMPLEX INTERFACE ADAPTER #1
KEYBOARD, JOYSTICK, PADDLES, LIGHTPEN, FAST DISK

TA HI (TIMER A)
TBLO
TB HI (TIMER B)
TOD (TENTHS)
TOD (SECONDS)
TOD (MINUTES)
TOD (HOURS)
SERIAL DATA REGISTER
INTERRUPT CONTROL REGISTER
CONTROL REGISTER A
CONTROL REGISTER B

D1T1H
D1T2L
D1T2H
D1TOD1
D1TODS
D1TODM
D1TODH
D1SDR
D1ICR
D1CRA
D1CRB

DC05
DC06
DC07
DC08
DC09
DCOA
DCOB
DCOC
DCOD
DCOE
DCOF

56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335

6526 CIA#2 COMPLEX INTERFACE ADAPTER #2
USER PORT,RS-232,SERIAL BUS,VIC MEMORY,NMI

D2PRA DD00 56576 PORT A, SERIAL BUS, RS-232, VA14
& VA15
BITS

0
1
2

3

4

5

6
7

PRAO
PRA1
PRA2
OUTP1
PRA3
OUTP!
PRA4
OUTP1
PRA5
OUTP1
PRA6
PRA7

VA14
VA15
RS232

JT
SERIAL

JT
SERIAL

JT
SERIAL

JT
SERIAL
SERIAL

DATA

ATN

CLK

DATA

CLK INPUT
DATA INPUT

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

D2PRB

D M A S T

DD01

DFOO

56577

D2DDRA
D2DDRB
D2T1L
D2T1H
D2T2L
D2T2H
D2TOD1
D2TODS
D2TODM
D2TODH
D2SDR
D2ICR

D2CRA
D2CRB

101

IO2

DD02
DD03
DD04
DD05
DD06
DD07
DD08
DD09
DDOA
DDOB
DDOC
DDOD

DDOE
DDOF

DEOO

DFOO

56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589

56590
56591

56832

57088

57088

PORT B, USER PORT, RS-232
BITS

PRBO : USER PORT / RS-232
RECEIVED DATA
PRB1 : USER PORT / RS-232
REQUEST TO SEND
PRB2 : USER PORT / RS-232
DATA TERMINAL READY
PRB3 : USER PORT / RS-232
RING INDICATOR
PRB4 : USER PORT / RS-232
CARRIER DETECT
PRB5 : USER PORT
PRB6 : USER PORT / RS-232
CLEAR TO SEND
PRB7 : USER PORT / RS-232
DATA SET READY

DATA DIRECTION PORT A
DATA DIRECTION PORT B
TALO
TA HI (TIMER A)
TBLO
TB HI (TIMER B)
TOD (TENTHS)
TOD (SECONDS)
TOD (MINUTES)
TOD (HOURS)
SERIAL DATA REGISTER
INTERRUPT CONTROL REGISTERS
(NMI'S)
CONTROL REGISTER A

CONTROL REGISTER B

EXPANSION I/O SLOT (RESERVED)

EXPANSION I/O SLOT (RESERVED)
C128 DMA CONTROLLER FOR
EXPANSION RAM ACCESS
OPTIONAL DEVICE MAPPED INTO
IO2 BLOCK VIA SYSTEM
EXPANSION PORT (PRELIMINARY)
DMA CONTROLLER STATUS
REGISTER (READ ONLY)

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 535

MEMORY
ADDRESS
LABEL

HEXADECIMAL DECIMAL
ADDRESS ADDRESS DESCRIPTION

DMA CMD DF01 57089

DMA ADL

DMA ADH

DMA LO

DMA HI

DMA BNK

DF02

DF03

DF04

DF05

DF06

57090

57091

57092

57093

57094

INTERRUPT
PENDING (1 = INT.
WAITING TO BE
SERVICED)
END OF BLOCK
(1= TRANSFER
COMPLETE)
FAULT (1 = BLOCK
VERIFY ERROR)
SIZE(0 = EXP.

MEMORY =
128K)
(1 = EXP.
MEMORY =
512K)
VERSION

DMA CONTROLLER COMMAND
REGISTER

7
6
5

4

3
2

1-0

EXECUTE
RESERVED
LOAD (1 = ENABLE
AUTO = LOAD)
$FF00 (1 = DISABLE $FF00
DECADES)
RESERVED
RESERVED
MODE (00 = TRANSFER

FROM INTERNAL TO
EXTERNAL,
01 = FROM EXT TO INT,
10 = SWAP, 11 = VERIFY)

LSB OF INTERNAL (C128) ADDRESS
TO ACCESS
MSB OF INTERNAL (C128) ADDRESS
TO ACCESS
LSB OF EXTERNAL EXPANSION
RAM TO ACCESS
MSB OF EXTERNAL EXPANSION
RAM TO ACCESS
64K EXTERNAL RAM BANK
BITS ($DF06)

C128 Memory Map (continued)

MEMORY
ADDRESS
LABEL

HEXADECIMAL
ADDRESS

DECIMAL
ADDRESS DESCRIPTION

DMA DAL
DMA DAH

DMA SUM

DF07
DF08

DF09

57095
57096

57097

7-3
2-0

NOT USED
EXPANSION BANK NUMBER

LSB OF BYTE COUNT
MSB OF BYTE COUNT (BLOCK
COUNT)
INTERRUPT MASK REGISTER

DMA VER

INTERRUPT ENABLE
(1 = INTERRUPTS ENABLED)
END OF BLOCK MASK
(1 = INTERRUPT ON END
OF BLOCK)
VERIFY ERROR
(1 = INTERRUPT ON VERIFY
ERROR)

DFOA 57098 ADDRESS CONTROL REGISTER

BITS 7 AND 6
0,0 = INCREMENT BOTH ADDRESS

(DEFAULT)
0,1 = FIX EXPANSION ADDRESS.
1.0 = FIX C128 ADDRESS.
1.1 = FIX BOTH ADDRESSES.

57344 KERNAL ROM (8K OPERATING
SYSTEM, $E00O-$FFFF)

E000

MMU SECONDARY REGISTERS

MMUCR

LCRA

LCRB

LCRC

LCRD

FF00

FF01

FF02

FF03

FF04

65280

65281

65282

65283

65284

CONFIGURATION REGISTER
(SECONDARY)
LOAD CONFIGURATION
REGISTER A
LOAD CONFIGURATION
REGISTER B
LOAD CONFIGURATION
REGISTER C
LOAD CONFIGURATION
REGISTER D
BITS ($FF0O-$FF04)

7-6
5-4

3-2

1
0

RAM BANK (0-3)
ROM HI (SYSTEM, INT,

EXT, RAM)
ROM MID (SYSTEM, INT,

EXT, RAM)
ROM LO (SYSTEM, RAM)
I/O (I/O ELSE ROM-

HI)

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS S37

KERNAL JUMP TABLE
NEW ENTRIES FOR CI28

JMP SPIN SPOUT FF47

JMP CLOSE ALL FF4A

JMP C64MODE FF4D

JMP DMA CALL FF50

JMP BOOT CALL FF53

JMP PHOENIX FF56

JMP LKUPLA

JMP LKUPSA

JMP SWAPPER

JMP DLCHR

JMP PFKEY

JMP SETBNK

JMP GETCFG

JMP JSRFAR

JMP JMPFAR
JMP INDFET

JMP INDSTA

JMP INDCMP

JMP PRIMM

FF59

FF5C

FF5F

FF62

FF65

FF68

FF6B

FF6E

FF71
FF74

FF77

FF7A

FF7D

STANDARD

FF80

65351

65354

65357

65360

65363

65366

65369

65372

65375

65378

65381

65384

65387

65390

65393
65396

65499

65402

65405

SET UP FAST SERIAL PORT
FOR I/O
CLOSE ALL LOGICAL
FILES FOR A DEVICE
RECONFIGURE SYSTEM
AS A C64 (NO RETURN)
INITIATE DMA REQUEST
TO EXTERNAL RAM
EXPANSION, SEND
COMMAND TO DMA
DEVICE
BOOT LOAD PROGRAM
FROM DISK
CALL ALL FUNCTION
CARDS' COLD START
ROUTINES, INITIALIZE
SEARCH TABLES FOR
GIVEN LA
SEARCH TABLES FOR
GIVEN SA
SWITCH BETWEEN 40 AND
80 COLUMNS (EDITOR)
INIT 80-COL CHARACTER
RAM (EDITOR)
PROGRAM FUNCTION KEY
(EDITOR)
SET BANK FOR I/O
OPERATIONS
LOOKUP MMU DATA FOR
GIVEN BANK
JSR TO ANY BANK, RTS
TO CALLING BANK
JMP TO ANY BANK
LDA (FETVEC), Y FROM
ANY BANK
STA (STAVEC), Y TO ANY
BANK
CMP (CMPVEC),Y TO ANY
BANK
PRINT IMMEDIATE UTILITY
(ALWAYS JSR TO THIS
ROUTINE)

JMP CINT FF81

KERNAL JUMP TABLE

65408 RELEASE NUMBER OF
KERNAL

65409 INIT EDITOR & DISPLAY
CHIPS (EDITOR)

C128 Memory Map (continued)
STANDARD KERNAL JUMP TABLE

JMP IOINIT

JMP RAMTAS

JMP RESTOR

JMP VECTOR

JMP SETMSG
JMP SECND
JMP TKSA
JMP MEMTOP

JMP MEMBOT

JMP KEY

JMP SETTMO

JMP ACPTR

JMP CIOUT

JMP UNTLK
JMP UNLSN

JMP LISTN
JMP TALK
JMP READSS
JMP SETLFS
JMP SETNAM

JMP (IOPEN)
JMP (ICLOSE)
JMP (ICHKIN)
JMP (ICKOUT)
JMP (ICLRCH)

JMP (IBASIN)
JMP (IBSOUT)
JMP LOADSP
JMP SAVESP
JMP SETTIM
JMP RDTIM
JMP (ISTOP)
JMP (IGETIN)
JMP (ICLALL)

FF84

FF87

FF8A

FF8D

FF90
FF93
FF96
FF99

FF9C

FF9F

FFA2

FFA5

FFA8

FFAB
FFAE

FFB1
FFB4
FFB7
FFBA
FFBD

FFCO
FFC3
FFC6
FFC9
FFCC

FFCF
FFD2
FFD5
FFD8
FFDB
FFDE
FFE1
FFE4
FFE7

OPEN
CLOSE
CHKIN
CKOUT
CLRCH

BASIN
BSOUT

STOP
GETIN
CLALL

65412

65415

65418

65421

65424
65427
65430
65433

65436

65439

65442

65445

65448

65451
65454

65457
65460
65463
65460
65469

65472
65475
65478
65481
65484

65487
65490
65493
65496
65599
65502
65505
65508
65511

INIT I/O DEVICES (PORTS,
TIMERS, ETC.)
INITIALIZE RAM AND
BUFFERS FOR SYSTEM
RESTORE VECTORS TO
INITIAL SYSTEM
CHANGE VECTORS FOR
USER
CONTROL O.S. MESSAGE
SEND SA AFTER LISTEN
SEND SA AFTER TALK
SET/READ TOP OF SYSTEM
RAM
SET/READ BOTTOM OF
SYSTEM RAM
SCAN KEYBOARD
(EDITOR)
SET TIMEOUT IN IEEE
(RESERVED)
HANDSHAKE SERIAL BYTE
IN
HANDSHAKE SERIAL BYTE
OUT
SEND UNTALK OUT SERIAL
SEND UNLISTEN OUT
SERIAL
SEND LISTEN OUT SERIAL
SEND TALK OUT SERIAL
RETURN I/O STATUS BYTE
SET LA, FA, SA
SET LENGTH AND FILE
NAME ADDRESS
OPEN LOGICAL FILE
CLOSE LOGICAL FILE
SET CHANNEL IN
SET CHANNEL OUT
RESTORE DEFAULT I/O
CHANNEL
INPUT FROM CHANNEL
OUTPUT TO CHANNEL
LOAD FROM FILE
SAVE TO FILE
SET INTERNAL CLOCK
READ INTERNAL CLOCK
SCAN STOP KEY
READ BUFFERED DATA
CLOSE ALL FILES AND
CHANNELS

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 539

STANDARD KERNAL JUMP TABLE

KERNAL EDITOR FLAGS AND
SHADOW REGISTERS

The following symbols are used by the C128 Editor. Note that the Editor IRQ VIC
screen handler depends upon them. In most cases the contents of these locations will be
placed directly into the appropriate register and should be used instead of the actual
register. For example, to change the location of the character set used by VIC, use VM1
($0A2C) instead of VIC register 24 ($D018). VM1 will be used by the editor to update
VIC register 24.

ADDRESS/NAME

$00D8/GRAPHM
$00D9/CHAREN
$OA2C/VM1

$0A2D/VM2

$0A2E/VM3
$0A2F/VM4
$0A34/SPLIT

$0A2B/CURMOD
$0A21/PAUSE

EXPLANATION

SEE BELOW. IF = $FF THEN EDITOR LEAVES VIC ALONE.
MASK FOR 8502 /CHAREN BIT.
VIC TEXT MODE VIDEO MATRIX & CHARACTER BASE
POINTER.
VIC GRAPHIC MODE VIDEO MATRIX & BIT MAP
POINTER.
8563 TEXT DISPLAY BASE ADDRESS.
8563 ATTRIBUTE BASE ADDRESS.
IN SPLIT SCREEN MODE, CONTAINS VALUE FOR
MIDDLE RASTER IRQ.
8563 CURSOR MODE.
CONTROL S FLAG (IN EFFECT = $13)

EXPLANATION OF VARIOUS KERNAL/EDITOR FLAG BYTES, ETC.

ADDRESS SYMBOL DESCRIPTION

Notes on Kernal Symbols:

Init_Status. See also above. Lets system know what has been initialized and what
hasn't. Set to $00 by a reset but untouched by NMI.

System_Vector. Where the Kernal goes when it has to go somewhere. It's set to
BASIC cold at reset. BASIC itself sets it to BASIC warm after it has initialized.
The monitor respects it too.

System. Vector in RAM1 at SFFF8. Set at power-up to C128MODE, user may redirect
it to his code. Taken at reset always providing user with control (protection) from
reset.

COMMODORE 64 MEMORY MAP

LABEL

D6510
R6510

ADRAY1

ADRAY2

CHARAC
ENDCHR

HEX
ADDRESS

0000
0001

0002
0003-0004

0005-0006

0007
0008

DECIMAL
LOCATION

0
1

2
3-4

5-6

7
8

DESCRIPTION

6510 On-Chip Data-Direction Register
6510 On-Chip 8-Bit Input/Output

Register
Unused
Jump Vector: Convert Floating—

Integer
Jump Vector: Convert Integer—

Floating
Search Character
Flag: Scan for Quote at End of String

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 541

LABEL

TRMPOS
VERCK
COUNT
DIMFLG
VALTYP

INTFLG

GARBFL

SUBFLG

INPFLG

TANSGN

LINNUM
TEMPPT
LASTPT
TEMPST
INDEX
RESHO
TXTTAB
VARTAB
ARYTAB
STREND
FRETOP
FRESPC
MEMSIZ

CURLIN
OLDLIN
OLDTXT
DATLIN
DATPTR
INPPTR
VARNAM
VARPNT

FORPNT

FACEXP

FACHO
FACSGN

HEX
ADDRESS

0009
000A
000B
OOOC
000D

000E

000F

0010

0011

0012
0013
0014-0015
0016
0017-0018
0019-0021
0022-0025
0026-002A
002B-002C
002D-O02E
002F-0030
0031-0032
0033-0034
0035-0036
0037-0038

0039-003A
003B-003C
003D-O03E
003F-0040
0041-0042
0043-0044
0045-0046
0047-0048

0049-004A
004B-0060
0061

0062-0065
0066

DECIMAL
LOCATION

9
10
11
12
13

14

15

16

17

18
19
20-21
22
23-24
25-33
34-37
38-42
43^4
45-46
47-48
49-50
51-52
53-54
55-56

57-58
59-60
61-62
63-64
65-66
67-68
69-70
71-72

73-74
75-96
97

98-101
102

DESCRIPTION

Screen Column From Last TAB
Flag: 0 = Load, 1 = Verify
Input Buffer Pointer/No, of Subscripts
Flag: Default Array DIMension
Data Type: $FF = String, $00 =

Numeric
Data Type: $80 = Integer, $00 =

Floating
Flag: DATA scan/LIST quote/

Garbage Coll
Flag: Subscript Ref / User Function

Call
Flag: $00 = INPUT, $40 = GET,

$98 = READ
Flag: TAN sign / Comparison Result
Flag: INPUT Prompt
Temp: Integer Value
Pointer: Temporary String Stack
Last Temp String Address
Stack for Temporary Strings
Utility Pointer Area
Floating-Point Product of Multiply
Pointer: Start of BASIC Text
Pointer: Start of BASIC Variables
Pointer: Start of BASIC Arrays
Pointer: End of BASIC Arrays (+1)
Pointer: Bottom of String Storage
Utility String Pointer
Pointer: Highest Address Used by

BASIC
Current BASIC Line Number
Previous BASIC Line Number
Pointer: BASIC Statement for CONT
Current DATA Line Number
Pointer: Current DATA Item Address
Vector: INPUT Routine
Current BASIC Variable Name
Pointer: Current BASIC Variable

Data
Pointer: Index Variable for FOR/NEXT
Temp Pointer / Data Area
Floating-Point Accumulator #1 :

Exponent
Floating Accum. # 1 : Mantissa
Floating Accum. #1 : Sign

Commodore 64

LABEL

SGNFLG
BITS
ARGEXP

ARGHO
ARGSGN
ARISGN

FACOV

FBUFPT
CHRGET

CHRGOT

TXTPTR
RNDX
STATUS
STKEY
SVXT
VERCK
C3PO

BSOUR
SYNO

LDTND

DFLTN
DFLTO
PRTY
DPSW
MSGFLG

PTR1
PTR2
TIME

CNTDN
BUFPNT
INBIT
BITCI

RINONE

' Memory Map

HEX
ADDRESS

0067
0068
0069

OO6A-0O6D
006E
006F

0070

0071-0072
0073-008A

0079

007A-007B
008B-008F
0090
0091
0092
0093
0094

0095
0096
0097
0098

0099
009A
009B
009C
009D

009E
009F
00A0-00A2

00A3-00A4
00A5
00A6
00A7
00A8

00A9

(continued)

DECIMAL
LOCATION

103
104
105

106-109
110
111

112

113-114
115-138

121

122-123
139-143
144
145
146
147
148

149
150
151
152

153
154
155
156
157

158
159
160-162

163-164
165
166
167
168

169

DESCRIPTION

Pointer: Series Evaluation Constant
Floating Accum. # 1 : Overflow Digit
Floating-Point Accumulator #2 :

Exponent
Floating Accum. #2 : Mantissa
Floating Accum. #2 : Sign
Sign Comparison Result: Accum. #1

vs #2
Floating Accum. # 1 . Low-Order

(Rounding)
Pointer: Cassette Buffer
Subroutine: Get Next Byte of BASIC

Text
Entry to Get Same Byte of Text

Again
Pointer: Current Byte of BASIC Text
Floating RND Function Seed Value
Kernal I/O Status Word: ST
Flag: STOP key / RVS key
Timing Constant for Tape
Flag: 0 = Load, 1 = Verify
Flag: Serial Bus—Output Char.

Buffered
Buffered Character for Serial Bus
Cassette Sync No.
Temp Data Area
No. of Open Files / Index to File

Table
Default Input Device (0)
Default Output .(CMD) Device (3)
Tape Character Parity
Flag: Tape Byte-Received
Flag: $80 = Direct Mode, $00 =

Program
Tape Pass 1 Error Log
Tape Pass 2 Error Log
Real-Time Jiffy Clock (approx) 1/60

oec
Temp Data Area
Cassette Sync Countdown
Pointer: Tape I/O Buffer
RS-232 Input Bits / Cassette Temp
RS-232 Input Bit Count / Cassette

Temp
RS-232 Flag: Check for Start Bit

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 543

LABEL

RIDATA

RIPRTY

SAL
EAL
CMPO
TAPE1
BITTS

NXTBIT

RODATA
FNLEN
LA
SA
FA
FNADR
ROPRTY
FSBLK
MYCH
CAS1
STAL
MEMUSS
LSTX

NDX

RVS

INDX

LXSP
SFDX
BLNSW

BLNCT
GDBLN
BLNON
CRSW
PNT
PNTR
QTSW

LNMX

HEX
ADDRESS

OOAA

OOAB

00AC-00AD
00AE-00AF
00B0-00B1
00B2-00B3
00B4

00B5

00B6
00B7
00B8
00B9
OOBA
00BB-00BC
OOBD
OOBE
OOBF
OOCO
00C1-OOC2
00C3-O0C4
00C5

00C6

00C7

00C8

00C9-00CA
OOCB
OOCC

OOCD
OOCE
OOCF
00D0
00D1-00D2
00D3
00D4

00D5

DECIMAL
LOCATION

170

171

172-173
174-175
176-177
178-179
180

181

182
183
184
185
186
187-188
189
190
191
192
193-194
195-196
197

198

199

200

201-202
203
204

205
206
207
208
209-210
211
212

213

DESCRIPTION

RS-232 Input Byte Buffer/Cassette
Temp

RS-232 Input Parity / Cassette Short

V-ill

Pointer: Tape Buffer/Screen Scrolling
Tape End Addresses / End of Program
Tape Timing Constants
Pointer: Start of Tape Buffer
RS-232 Out Bit Count / Cassette

Temp
RS-232 Next Bit to Send / Tape EOT

Flag
RS-232 Out Byte Buffer
Length of Current File Name
Current Logical File Number
Current Secondary Address
Current Device Number
Pointer: Current File Name
RS-232 Out Parity / Cassette Temp
Cassette Read/Write Block Count
Serial Word Buffer
Tape Motor Interlock
I/O Start Address
Tape Load Temps
Current Key Pressed: CHR$(n) 0 =

No Key
No. of Chars, in Keyboard Buffer

(Queue)
Flag: Print Reverse Chars.—1 =

Yes, 0 = Not Used
Pointer: End of Logical Line for

INPUT
Cursor X-Y Pos. at Start of INPUT
Flag: Print Shifted Chars.
Cursor Blink enable: 0 = Flash

Cursor
Timer: Countdown to Toggle Cursor
Character Under Cursor
Flag: Last Cursor Blink On/Off
Flag: INPUT or GET from Keyboard
Pointer: Current Screen Line Address
Cursor Column on Current Line
Flag: Editor in Quote Mode, $00 =

NO
Physical Screen Line Length

Commodore 64

LABEL

TBLX

INSRT
LDTB1

USER

KEYTAB
RIBUF
ROBUF
FREKZP
BASZPT

BAD
BUF
LAT

FAT

SAT

KEYD
MEMSTR
MEMSIZ
TIMOUT

COLOR
GDCOL
HIBASE
XMAX
RPTFLG

KOUNT
DELAY
SHFLAG

LSTSHF
KEYLOG
MODE

AUTODN
M51CTR
M51CDR

Memory Map

HEX
ADDRESS

00D6

00D7
00D8
00D9-00F2

00F3-00F4

00F5-00F6
00F7-O0F8
OOF9-O0FA
00FB-00FE
OOFF
0100-01FF
0100-010A
010(M)13E
0200-0258
0259-0262

0263-026C

026D-0276

0277-0280
0281-0282
0283-0284
0285

0286
0287
0288
0289
028A

028B
028C
028D

028E
028F-0290
0291

0292
0293
0294

(continued)

DECIMAL
LOCATION

214

215
216
217-242

243-244

245-246
247-248
249-250
251-254
255
256-511
256-266
256-318
512-600
601-610

611-620

621-630

631-640
641-642
643-644
645

646
647
648
649
650

651
652
653

654
655-656
657

658
659
660

DESCRIPTION

Current Cursor Physical Line
Number

Temp Data Area
Flag: Insert Mode, >0 = # INSTs
Screen Line Link Table / Editor

Temps
Pointer: Current Screen Color RAM

loc.
Vector: Keyboard Decode Table
RS-232 Input Buffer Pointer
RS-232 Output Buffer Pointer
Free 0-Page Space for User Programs
BASIC Temp Data Area
Micro-Processor System Stack Area
Floating to String Work Area
Tape Input Error Log
System INPUT Buffer
KERNAL Table: Active Logical File

[NO S.

KERNAL Table: Device No. for Each
File

KERNAL Table: Second Address
Each File

Keyboard Buffer Queue (FIFO)
Pointer: Bottom of Memory for O.S.
Pointer: Top of Memory for O.S.
Flag: Kernal Variable for IEEE

Timeout
Current Character Color Code
Background Color Under Cursor
Top of Screen Memory (Page)
Size of Keyboard Buffer
Flag: REPEAT Key Used, $80 =

Repeat
Repeat Speed Counter
Repeat Delay Counter
Flag: Keyb'rd SHIFT Key / CTRL

Key / Key
Last Keyboard Shift Pattern
Vector: Keyboard Table Setup
Flag: $00 = Disable SHIFT Keys,

$80 = Enable SHIFT Keys
Flag: Auto Scroll Down, 0 = ON
RS-232: 6551 Control Register Image
RS-232: 6551 Command Register

Image

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 545

LABEL

M51AJB

RSSTAT
BITNUM
BAUDOF
RIDBE
RIDBS
RODBS
RODBE

IRQTMP
ENABL

IERROR
IMAIN
ICRNCH
IQPLOP
IGONE
IEVAL
SAREG
SXREG
SYREG
SPREG
USRPOK
USRADD

CINV
CBINV
NMINV
IOPEN
ICLOSE
ICHKIN
ICKOUT
ICLRCH
IBASIN
IBSOUT
ISTOP
IGETIN
ICLALL
USRCMD

HEX
ADDRESS

0295-0296

0297
0298
0299-029A
029B
029C
029D
029E

029F-02A0
02A1
02A2
02A3
02A4

02A5
02A6

02A7-02FF
0300-0301
0302-0303
0304-0305
0306-0307
0308-0309
030A-030B
030C
030D
030E
030F
0310
0311-0312
0313
0314-0315
0316-0317
0318-0319
031A-031B
031C-031D
031E-031F
0320-0321
0322-0323
0324-0325
0326-0327
0328-0329
O32A-032B
032C-032D
032E-032F

DECIMAL
LOCATION

661-662

663
664
665-666
667
668
669
670

671-672
673
674
675
676

677
678

697-767
768-769
770-771
772-773
774-775
776-777
778-779
780
781
782
783
784
785-786
787
788-789
790-791
792-793
794-795
796-797
798-799
800-801
802-803
804-805
806-807
808-809
810-811
812-813
814-815

DESCRIPTION

RS-232 Non-Standard BPS
(Time/2-100) USA

RS-232: 6551 Status Register Image
RS-232 Number of Bits Left to Send
RS-232 Baud Rate: Full Bit Time (jxs)
RS-232 Index to End of Input Buffer
RS-232 Start of Input Buffer (Page)
RS-232 Start of Output Buffer (Page)
RS-232 Index to End of Output

Buffer
Holds IRQ Vector During Tape I/O
RS-232 Enables
TOD Sense During Cassette I/O
Temp Storage For Cassette Read
Temp D1IRQ Indicator For Cassette

Read
Temp for Line Index
PAL/NTSC Flag, 0 = NTSC, 1 =

PAL
Unused
Vector: Print BASIC Error Message
Vector: BASIC Warm Start
Vector: Tokenize BASIC Text
Vector: BASIC Text LIST
Vector: BASIC Char. Dispatch
Vector: BASIC Token Evaluation
Storage for 6502 .A Register
Storage for 6502 .X Register
Storage for 6502 .Y Register
Storage for 6502 .SP Register
USR Function Jump Instr (4C)
USR Address Low Byte / High Byte
Unused
Vector: Hardware IRQ Interrupt
Vector: BRK Instr. Interrupt
Vector: Non-Maskable Interrupt
KERNAL OPEN Routine Vector
KERNAL CLOSE Routine Vector
KERNAL CHKIN Routine Vector
KERNAL CHKOUT Routine Vector
KERNAL CLRCHN Routine Vector
KERNAL CHRIN Routine Vector
KERNAL CHROUT Routine Vector
KERNAL STOP Routine Vector
KERNAL GETIN Routine Vector
KERNAL CLALL Routine Vector
User-Defined Vector

Commodore 64 Memory Map (continued)

LABEL

ILOAD
ISAVE

TBUFFR

VICSCN

HEX
ADDRESS

0330-0331
0332-0333
0334-033B
033C-03FB
03FC-03FF
0400-07FF
0400-07E7

07F8-07FF
0800-9FFF
8000-9FFF
A000-BFFF

C000-CFFF
D000-DFFF

EOOO-FFFF

DECIMAL
LOCATION

816-817
818-819
820-827
828-1019
1020-1023
1024-2047
1024-2023

2040-2047
2048-40959
32768-40959
40960-49151

49152-53247
53248-57343

57344-65535

DESCRIPTION

KERNAL LOAD Routine Vector
KERNAL SAVE Routine Vector
Unused
Tape I/O Buffer
Unused
1024 Byte Screen Memory Area
Video Matrix: 25 Lines x 40

Columns
Sprite Data Pointers
Normal BASIC Program Space
VSP Cartridge ROM—8192 Bytes
BASIC ROM—8192 Bytes (or 8K

RAM)
RAM—4096 Bytes
Input/Output Devices and Color

RAM
or Character Generator ROM
or RAM—4096 Bytes
KERNAL ROM—8192 Bytes (or 8K

RAM)

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

HEX

0000

0001

DECIMAL

0

1

BITS

7-0

0

1

2

3
4

5

6-7

DESCRIPTION

MOS 6510 Data Direction Register
(xxlOllll)
B i t = l : Output, Bit = O:
Input, x = Either

MOS 6510 Micro-Processor On-Chip
I/O Port

/LORAM Signal (0 = Switch BASIC
ROM Out)

/HIRAM Signal (0 = Switch Kernal
ROM Out)

/CHAREN Signal (0 = Switch Char.
ROM In)

Cassette Data Output Line
Cassette Switch Sense
1 = Switch Closed
Cassette Motor Control
0 = ON, 1 = OFF
Undefined

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 547

HEX

D000-D02E

D000
D001
D002
D003
D004
D005
D006
D007
D008
D009
DOOA
DOOB
DOOC
DOOD
DOOE
DOOF
D010
D011

D012

DOB
DOM
D015

D016

D017
D018

DECIMAL

53248-54271

53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265

53266

53267
53268
53269
53270

53271
53272

BITS

7
6

5
4

3

2-0

7-6
5
4

3

2-0

7-4

DESCRIPTION

MOS 6566 VIDEO INTERFACE
CONTROLLER (VIC)

Sprite 0 X Pos
Sprite 0 Y Pos
Sprite 1 X Pos
Sprite 1 Y Pos
Sprite 2 X Pos
Sprite 2 Y Pos
Sprite 3 X Pos
Sprite 3 Y Pos
Sprite 4 X Pos
Sprite 4 Y Pos
Sprite 5 X Pos
Sprite 5 Y Pos
Sprite 6 X Pos
Sprite 6 Y Pos
Sprite 7 X Pos
Sprite 7 Y Pos
Sprites 0-7 X Pos (msb of X coord.)
VIC Control Register
Raster Compare: (Bit 8) See 53266
Extended Color Text Mode: i =

Enable
Bit-Map Mode: 1 = Enable
Blank Screen to Border Color: 0 =

Blank
Select 24/25 Row Text Display: 1 =

25 Rows
Smooth Scroll to Y Dot-Position (0-7)
Read Raster / Write Raster Value for

Compare IRQ
Light-Pen Latch X Pos
Light-Pen Latch Y Pos
Sprite Display Enable: 1 = Enable
VIC Control Register
Unused
ALWAYS SET THIS BIT TO 0
Multi-Color Mode: 1 = Enable (Text

or Bit-Map)
Select 38/40 Column Text Display: 1

= 40 Cols
Smooth Scroll to X Pos
Sprites 0-7 Expand 2 x Vertical (Y)
VIC Memory Control Register
Video Matrix Base Address (inside

VIC)

Commodore 6A

HEX

D019

D01A

DO1B

D01C

D01D

D01E
DO1F

D020
D021
D022
D023
D024
D025
D026
D027
D028
D029
D02A
D02B
D02C
D02D
D02E
D400-D7FF

D400
D401

D402

t Input/Output

DECIMAL

53273

53274

53275

53276

53277

53278
53279

53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
54272-55295

54272
54273

54274

Assignments (continued)

BITS

3-1

7

3
2
1

0

DESCRIPTION

Character Dot-Data Base Address
(inside VIC)

VIC Interrupt Flag Register (Bit =
1: IRQ Occurred)

Set on Any Enabled VIC IRQ
Condition

Light-Pen Triggered IRQ Flag
Sprite to Sprite Collision IRQ Flag
Sprite to Background Collision IRQ

Flag
Raster Compare IRQ Flag
IRQ Mask Register: 1 = Interrupt

Enabled
Sprite to Background
Display Priority: 1 = Sprite
Sprites 0-7 Multi-Color Mode Select:

1 = M.C.M.
Sprites 0-7 Expand 2 x Horizontal

(X)
Sprite to Sprite Collision Detect
Sprite to Background Collision

Detect
Border Color
Background Color 0
Background Color 1
Background Color 2
Background Color 3
Sprite Multi-Color Register 0
Sprite Multi-Color Register 1
Sprite 0 Color
Sprite 1 Color
Sprite 2 Color
Sprite 3 Color
Sprite 4 Color
Sprite 5 Color
Sprite 6 Color
Sprite 7 Color
MOS 6581 SOUND INTERFACE

DEVICE (SID)
Voice 1: Frequency Control—Low-Byte
Voice 1: Frequency Control—High-

Byte
Voice 1: Pulse Waveform Width—

Low-Byte

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 549

HEX

D403

D404

D405

D406

D407
D40B

D409

D40A

D40B

D40C

DECIMAL

54275

54276

54277

54278

54279
54280

54281

54282

54283

54284

BITS

7-4
3-0

7

6
5
4
3
2

1

0

7-4
3-0

7-4
3-0

7-4
3-0

7

6
5
4
3
2

1

0

7-4

DESCRIPTION

Unused
Voice 1: Pulse Waveform Width—

High-Nybble
Voice 1: Control Register
Select Random Noise Waveform, 1 =

On
Select Pulse Waveform, 1 = On
Select Sawtooth Waveform, 1 = On
Select Triangle Waveform, 1 = On
Test Bit: 1 = Disable Oscillator 1
Ring Modulate Osc. 1 with Osc. 3

Output, 1 = On
Synchronize Osc. 1 with Osc. 3

Frequency, 1 = On
Gate Bit: 1 = Start Att/Dec/Sus, 0 =

Start Release
Envelope Generator 1: Attack / Decay

Cycle Control
Select Attack Cycle Duration: 0-15
Select Decay Cycle Duration: 0-15
Envelope Generator 1: Sustain /

Release Cycle Control
Select Sustain Cycle Duration: 0-15
Select Release Cycle Duration: 0-15
Voice 2: Frequency Control—Low-Byte
Voice 2: Frequency Control—

High-Byte
Voice 2: Pulse Waveform Width—

Low-Byte
Unused
Voice 2: Pulse Waveform Width—

High-Nybble
Voice 2: Control Register
Select Random Noise Waveform, 1 =

On
Select Pulse Waveform, 1 = On
Select Sawtooth Waveform, 1 = On
Select Triangle Waveform, 1 = On
Test Bit: 1 = Disable Oscillator 2
Ring Modulate Osc. 2 with Osc. 1

Output, 1 = On
Synchronize Osc. 2 with Osc. 1

Frequency, 1 = On
Gate Bit: 1 = Start Att/Dec/Sus, 0

= Start Release
Envelope Generator 2: Attack / Decay

Cycle Control
Select Attack Cvcle Duration: 0-15

Commodore 6^

HEX

D40D

D40E
D40F

D410

D411

D412

D413

D414

D415

D416
D417

f Input/Output

DECIMAL

54285

54286
54287

54288

54289

54290

54291

54292

54293

54294
54295

Assignments (continued)

BITS

3-0

7-4
3-0

7-4
3-0

7

6
5
4
3
2

1

0

7-4
3-0

7-4
3-0

7-4
3

2

1

DESCRIPTION

Select Decay Cycle Duration: 0-15
Envelope Generator 2: Sustain /

Release Cycle Control
Select Sustain Cycle Duration: 0-15
Select Release Cycle Duration: 0-15
Voice 3: Frequency Control—Low-Byte
Voice 3: Frequency Control—

High-Byte
Voice 3: Pulse Waveform Width—

Low-Byte
Unused
Voice 3: Pulse Waveform Width—

High-Nybble
Voice 3: Control Register
Select Random Noise Waveform, 1 =

On
Select Pulse Waveform, 1 = On
Select Sawtooth Waveform, 1 = On
Select Triangle Waveform, 1 = On
Test Bit: 1 = Disable Oscillator 3
Ring Modulate Osc. 3 with Osc. 2

Output, 1 = On
Synchronize Osc. 3 with Osc. 2

Frequency, 1 = On
Gate Bit: 1 = Start Att/Dec/Sus, 0 =

Start Release
Envelope Generator 3: Attack / Decay

Cycle Control
Select Attack Cycle Duration: 0-15
Select Decay Cycle Duration: 0-15
Envelope Generator 3: Sustain /

Release Cycle Control
Select Sustain Cycle Duration: 0-15
Select Release Cycle Duration: 0-15
Filter Cutoff Frequency: Low-Nybble

(Bits 2-0)
Filter Cutoff Frequency: High-Byte
Filter Resonance Control / Voice

Input Control
Select Filter Resonance: 0-15
Filter External Input: 1 = Yes, 0 =

No
Filter Voice 3 Output: 1 = Yes, 0 =

No
Filter Voice 2 Output: 1 = Yes, 0 =

No

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS 551

HEX

D418

D419

D41A

D41B

D41C
D500-D7FF
D800-DBFF
DCOO-DCFF

DCOO

DC01

DC02

DC03

DC04
DC05
DC06

DECIMAL

54296

54297

54298

54299

54300
54528-55295
55296-56319
56320-56575

56320

56321

56322

56323

56324
56325
56326

BITS

0

7

6

5

4
3-0

7-0

7-6

4
3-2
3-0

7-0

7
6
4
3-2
3-0

1
DESCRIPTION

Filter Voice 1 Output: 1 = Yes, 0 =
No

Select Filter Mode and Volume
Cut-Off Voice 3 Output: 1 = Off, 0

= On
Select Filter High-Pass Mode: 1 =

On
Select Filter Band-Pass Mode: 1 =

On
Select Filter Low-Pass Mode: 1 = On
Select Output Volume: 0-15
Analog/Digital Converter: Game

Paddle 1 (0-255)
Analog/Digital Converter: Game

Paddle 2 (0-255)
Oscillator 3 Random Number

Generator
Envelope Generator 3 Output
SID IMAGES
Color RAM (Nybbles)
MOS 6526 Complex Interface

Adapter (CIA) #1
Data Port A (Keyboard, Joystick,

Paddles, Light-Pen)
Write Keyboard Column Values for

Keyboard Scan
Read Paddles on Port A / B (01 =

Port A, 10 = Port B)
Joystick A Fire Button: 1 = Fire
Paddle Fire Buttons
Joystick A Direction (0-15)
Data Port B (Keyboard, Joystick,

Paddles): Game Port 1
Read Keyboard Row Values for

Keyboard Scan
Timer B: Toggle/Pulse Output
Timer A: Toggle/Pulse Output
Joystick 1 Fire Button: 1 = Fire
Paddle Fire Buttons
Joystick 1 Direction
Data Direction Register—Port A

(56320)
Data Direction Register—Port B

(56321)
Timer A: Low-Byte
Timer A: High-Byte
Timer B: Low-Byte

Commodore 64 Input/Output Assignments (continued)

HEX

DC07
DC08
DC09
DCOA
DCOB

DCOC
DCOD

DCOE

DCOF

DECIMAL

56327
56328
56329
56330
56331

56332
56333

56334

56335

BITS

7

4

3
2
1
0

7

6

5

4
3

2

1

0

7

6-5

4-0

DESCRIPTION

Timer B: High-Byte
Time-of-Day Clock: 1/10 Seconds
Time-of-Day Clock: Seconds
Time-of-Day Clock: Minutes
Time-of-Day Clock: Hours +

AM/PM Flag (Bit 7)
Synchronous Serial I/O Data Buffer
CIA Interrupt Control Register (Read

IRQ's/Write Mask)
IRQ Flag (1 = IRQ Occurred) /

Set-Clear Flag
FLAG1 IRQ (Cassette Read / Serial

Bus SRQ Input)
Serial Port Interrupt
Time-of-Day Clock Alarm Interrupt
Timer B Interrupt
Timer A Interrupt
CIA Control Register A
Time-of-Day Clock Frequency: 1 =

50 Hz, 0 = 60 Hz
Serial Port I/O Mode: 1 = Output, 0

= Input
Timer A Counts: 1 = CNT Signals, 0

= System 02 Clock
Force Load Timer A: 1 = Yes
Timer A Run Mode: 1 = One-Shot,

0 = Continuous
Timer A Output Mode to PB6: 1 =

Toggle, 0 = Pulse
Timer A Output on PB6: 1 = Yes, 0

= No
Start/Stop Timer A: 1 = Start, 0 =

Stop
CIA Control Register B
Set Alarm/TOD-Clock: 1 = Alarm, 0

= Clock
Timer B Mode Select:

00 = Count System 02 Clock Pulses
01 = Count Positive CNT

Transitions
10 = Count Timer A Underflow

Pulses
11 = Count Timer A Underflows

While CNT Positive
Same as CIA Control Reg. A—for

Timer B

THE COMMODORE 128 AND COMMODORE 64 MEMORY MAPS S53

HEX

DDOO-DDFF

DDOO

DD01

DD02
DD03
DD04
DD05
DD06
DD07
DD08
DD09
DDOA
DDOB

DDOC
DDOD

DDOE

DECIMAL

56576-56831

56576

56577

56578
56579
56580
56581
56582
56583
56584
56585
56586
56587

56588
56589

56590

BITS

7
6
5
4
3
2
1-0

7
6
5
4
3
2
1
0

7

4

3
1
0

7

6

DESCRIPTION

MOS 6526 Complex Interface
Adapter (CIA) #2

Data Port A (Serial Bus, RS-232,
VIC Memory Control)

Serial Bus Data Input
Serial Bus Clock Pulse Input
Serial Bus Data Ouput
Serial Bus Clock Pulse Output
Serial Bus ATN Signal Output
RS-232 Data Output (User Port)
VIC Chip System Memory Bank

Select (Default = 11)
Data Port B (User Port, RS-232)
User / RS-232 Data Set Ready
User / RS-232 Clear to Send
User
User / RS-232 Carrier Detect
User / RS-232 Ring Indicator
User / RS-232 Data Terminal Ready
User / RS-232 Request to Send
User / RS-232 Received Data
Data Direction Register—Port A
Data Direction Register—Port B
Timer A: Low-Byte
Timer A: High-Byte
Timer B: Low-Byte
Timer B: High-Byte
Time-of-Day Clock: 1/10 Seconds
Time-of-Day Clock: Seconds
Time-of-Day Clock: Minutes
Time-of-Day Clock: Hours +

AM/PM Flag (Bit 7)
Synchronous Serial I/O Data Buffer
CIA Interrupt Control Register (Read

NMI's/Write Mask)
NMI Flag (1 = NMI Occurred) /

Set-Clear Flag
FLAG1 NMI (User/RS-232 Received

Data Input)
Serial Port Interrupt
Timer B Interrupt
Timer A Interrupt
CIA Control Register A
Time-of-Day Clock Frequency: 1 =

50 Hz, 0 = 60 Hz
Serial Port I/O Mode: 1 = Output, 0

= Input

Commodore 6^

HEX

DDOF

DEOO-DEFF
DFOO-DFFF

\ Input/Output

DECIMAL

56591

56832-57087
57088-57343

Assignments (continued)

BITS

5

4
3

2

1

0

7

6-5

4-0

DESCRIPTION

Timer A Counts: 1 = CNT Signals, 0
= System 02 Clock

Force Load Timer A: 1 = Yes
Timer A Run Mode: 1 = One-Shot,

0 = Continuous
Timer A Output Mode to PB6: 1 =

Toggle, 0 = Pulse
Timer A Output on PB6: 1 = Yes, 0

= No
Start/Stop Timer A: 1 = Start, 0 =

Stop
CIA Control Register B
Set Alarm/TOD-Clock: 1 = Alarm, 0

= Clock
Timer B Mode Select:

00 = Count System 02 Clock
Pulses

01 = Count Positive CNT
Transitions

10 = Count Timer A Underflow
Pulses

11 = Count Timer A Underflows
While CNT Positive

Same as CIA Control Reg. A—for
Timer B

Reserved for Future I/O Expansion
Reserved for Future I/O Expansion

16
C128 HARDWARE
SPECIFICATIONS

This chapter describes the Commodore C128 hardware, VLSI integrated circuit require-
ments, and the relationship between the hardware configuration and the operating
system.

The C128 personal computer is compatible with C64 software and peripherals. In
addition to C64 compatibility, a C128 mode exists in which 128K of RAM is available
for system/user use. BASIC version 7.0 is the default language. The Commodore Kernal
is supported in a compatible fashion.

The C128 also has a Z80 coprocessor that can make full use of system RAM and
Kernal utilities, intended for use with such powerful operating systems as CP/M version
3.0. The Banking ROM scheme allows function key software to be installed internal to
the system or added externally as an expansion cartridge.

Another major feature is the 8563 80-column display capability, available in C128
mode as an addition to the 40-column mode.

Peripheral support includes the Commodore mouse, joystick, paddle, light pen
interface (both 40- and 80-column light pens); the Commodore Datassette; the User Port,
which supports RS232; modems; the Expansion Bus, which supports external memory
expansion; and the Commodore standard Serial Bus, which supports all existing Serial
Bus components. There are also several features intended to reduce software overhead,
such as relocatable zero page and system stack.

In C64 mode, the standard sixty-six keys are available. In C128 mode, twenty-
six extra keys are available, including separate cursor keys, a H E L P key, addi-
tional function keys, and a true C A P S L O C K key. The additional keys,
grouped into the alternate keypad, are user-definable, increasing the flexibility and user
friendliness of the system.

The following is a summary of C128 features:

C64 compatibility
80-column display capability
Z80 coprocessor (CP/M version 3.0 (2 MHz))
2 MHz 8502 operation in 80-column mode
128K standard system RAM
48K standard system ROM
32K internal function ROM (optional)
32K external cartridge ROM
Fast serial disk drive interface
Full keyboard, ninety-two keys with C A P S LOCK key, HELP key
and separate cursor-control keys.

C128 HARDWARE SPECIFICATIONS 5S7

SYSTEM ARCHITECTURE

The C128 computer utilizes a shared bus structure similar to that of the C64. The shared
bus emulates dual-port RAM and ROM, which allows the character ROM, color RAM
and system RAM to be shared by both the microprocessor and the 8564 VIC video
controller, with no interference to each other. This requires that the RAM be fast enough
to supply valid data in half the time of a normal microprocessor machine cycle. Normal
sharing is controlled by a coprocessor that will enable or disable the processor during
alternate halves of the machine cycle.

The C128 system splits the address bus into shared and nonshared sections. All
normal 8502 I/O parts are on the nonshared address bus; the VIC chip and its associated
support chips are located on the shared bus. The VIC chip will gate processor addresses
onto the shared bus based upon its AEC control line. The data bus is common to both
sides of the address bus.

The processor interfaces with most of the system chips like a standard 6502 bus
cycle, where a machine cycle is equal to a clock cycle. This allows the use of 1 MHz
parts for a 1 MHz clock and eliminates the need to create valid address and data strobes,
as this information is now supplied by the edges of the master clock, $0. Chip selects
for the I/O and system ROM are generated by the PLA that tracks the microprocessor
addresses during $ 1 .

For system RAM access, the row address is the address from the microproces-
sor, and the column address is the MMU output address (called the Translated Address).
The Translated Address outputs are calculated by considering the contents of the
MMU's Configuration Register and RAM Configuration Register. From these values,
the MMU generates either normal or translated addresses, a CAS selection. The
CAS-gating circuitry in the MMU enables either one of the two banks of 64K RAM in a
128K system. For VIC cycle access of RAM, the RAM bank is set independently of the
processor's bank. A write to ROM will result in the write "bleeding through" to RAM
underneath, while a read from ROM will always disable CAS in both banks. The MMU
allows custom arrangements of RAM for both banks 0 and 1.

Banking ROM is effected through the setting of bits in the Configuration Register
contained in the MMU and communicated to the PLA decoder. This allows Banking
Function ROM and any attached C128 cartridge to be included in the basic system
configuration.

The PLA generates chip selects for the color RAM, VIC control registers and
character ROM, which are used during processor and VIC cycles, as well as all chip
selects needed for the processor-only ROM and peripherals. To avoid bus contention,
the PLA must also generate CAS disable for any accesses to ROM or I/O devices.

The VIC chip generates the signals used to control Dynamic Memory and provides
macro-control functions such as RAM refresh. The VIC's primary purpose is to fetch
screen data from memory, using either cycle sharing or DMA, and create an NTSC- or
PAL-compatible video output that is applied to a monitor or modulated and applied to a
TV set. The C128 provides outputs for Composite, Chroma/Luminance and RF video

outputs from the VIC chip, as well as an edge-triggered light pen input latch going to
the VIC chip.

The output from the SID chip sound generator is buffered and applied directly to
an external amplifier, like that found in an external monitor, or modulated and repro-
duced in the user's television set. The SID chip also has an external input for mixing
another sound source.

The 8563 video control chip fetches screen data from a dedicated section of RAM
referred to as the display RAM and creates an RGBI (Red-Green-Blue-Intensity) output
for use with an external 80-column monitor. The 8563 also creates all needed signals for
dynamic refresh of its dedicated display RAM. The C128 provides RGBI and composite
monochrome outputs from the 8563 chip.

The cassette port is implemented using the zero page ports available on the 8502
and software control of hardware handshaking. The Commodore serial bus port is imple-
mented in a similar manner using a 6526 CIA for I/O. The serial bus works with
Commodore serial components, and in C64 mode is actually driven by the software
routines contained in the C64. The User Port is a multipurpose port comprising several
parallel port lines that support peripherals such as slow RS232, modem, etc. The
joystick ports are identical to those on the C64 and are implemented using a 6526 CIA
to read/write the port.

The video connector has composite video as well as separate chroma and lumi-
nance outputs for use with monitors. The 1701 and 1702 Commodore monitors interface
directly to this connector. The RF output jack supplies an RF signal compatible with the
regulations for TV interface devices and is switch selectable between channels 3 and 4.
Both NTSC and PAL television standards are supported. The RGBI connector and
signal are similar to the ones used by IBM, and are compatible with most monitors
supporting Type I RGBI. Additionally, a composite monochrome signal is available on
the RGBI connector and is generally compatible with NTSC (or PAL) composite. Audio
is available only from the 40-column video/audio connector.

SYSTEM SPECIFICATION

This section discusses various features and constraints of the C128 system. Included are
descriptions of the system and its configurations and limiting factors such as power,
loading and environment.

Figure 16-1 shows the C128 system.

Figure 16-1. The CI28 System

SYSTEM BUS ARCHITECTURE
The buses described include:

• Processor bus ® Shared address bus
• Translated address bus • Color data bus
• Multiplexed address bus • Display bus

THE PROCESSOR BUS
The Processor Bus includes the data and address buses that are connected directly to the
8502 processor. These buses are designated Do-D7 for the 8-bit data bus and A0-A15 for the
16-bit address bus. These buses tie the processor to most of the system ROM and I/O
devices, including at least part of all system ROM, all built-in function ROM, the
MMU, the PLA, the 8563 video processor, the SID and both CIA chips.

The processor bus is in communication with the Z80 coprocessor as well. All
address lines are shared directly by both processors. In order to allow the Z80 to operate
on a 6502 family bus, it is necessary to latch data going into the Z80 and gate the data
leaving the Z80. Thus, the Z80 has a small local data bus, designated ZD0-ZD7. During
a write cycle, when AEC is high, Z80 data is gated to the processor bus. During a read
cycle, processor bus data is gated to the Z80 data bus. This read data is transparently
latched by the 1 MHz system clock.

NOTE: Read and write cycles referred to in this document, unless
otherwise specified, are 8502-type bus cycles. The Z80 Read Enable and
Write Enable outputs are conditioned using logic to interface with an
8502 bus cycle, so no distinction is made as to the differences between
cycles of the different processors. For more information on this logic,
consult the section on the Z80 processor and the C128 Schematic,
Commodore Part No. 310378.

As mentioned above, the Z80 is not in direct communication with the processor
data bus, because of the need to adapt the Z80 to 8502 bus protocol. Note, however,
that every other device and every other bus (except two that will be explained later)
shares the processor data bus as a common data bus.

THE TRANSLATED ADDRESS BUS
Another C128 system bus is the Translated Address Bus produced by the MMU during
AEC high. This bus consists only of high-order addressing lines, designated TA8-TAi5.
These lines reflect the action of the MMU on the normal high-order address lines, which
may or may not include some sort of translation. The MMU can translate the address of
page zero or page one in normal operation, and it translates the Z80 address from $0000
through $0FFF in order to direct it to read the Z80 BIOS. A more complete description
of MMU translations can be found in the MMU section of this document.

Normally, the translated address bus indirectly drives the system RAM and the VIC

CI28 HARDWARE SPECIFICATIONS 561

chip by driving the multiplexed address buses. It directly drives system ROM 4 address
line 12 to allow the Z80 ROM relocation. Finally, this bus becomes address lines 8
through 15 of the C64 compatible expansion port.

During a VIC cycle or a DMA, the MMU pulls TA12-TA15 high, while TA8-TA,,
are tri-stated. This allows the VIC chip to drive TAg-TAu as VIC addresses VA8-VAn.
During an external DMA cycle, the TA lines of the MMU are tri-stated, and the TA
bus, presumably driven by the DMA source, in turn drives the processor address bus
from A8 to A)5. Thus allows the DMA source to access any peripheral chip except the
MMU. The action of the VIC during a VIC cycle is described below.

THE MULTIPLEXED ADDRESS BUS
This section describes two related address buses, the Multiplexed Address Bus and the
VIC Multiplexed Address Bus, known respectively as MA0-MA7 and VMA0-VMA7.
The VIC multiplexed address bus is created during AEC high by multiplexing the
high-order translated address bus (TA8-TA|5) with the low-order processor address bus
(Ao-A7), controlled via the MUX signal. This bus, driven by a hardware multiplexer
through series resistors, is called the Multiplexed Address Bus. The VIC multiplexed
address bus is used for processor access of the VIC chip registers. It is also used for VIC
access of system RAM.

During a VIC cycle (AEC low), the VIC chip address lines will be asserted. There
is no completely separate address bus for the VIC addresses, so it shares the VMA0-VMA7

and address lines that are tri-stated during AEC high. Most of the VIC addresses come
out of the VIC chip already multiplexed, but two of them, VA6 and VA7, do not supply
column information, as the VIC chip supplies only 14 bits of addressing. The higher-
order address bits VA14 and VA15 come from CIA-2, as in the C64. This means the VIC
supplies complete VMA0-VMA7 for a VIC DRAM access or DRAM refresh. The
TAg-TAn supplied by VIC are used in conjunction with another addressing bus for
nonmultiplexed VIC cycle addresses, such as character ROM and color RAM accesses.

THE SHARED ADDRESS BUS
The Shared Address Bus is a nonmultiplexed address bus used by both the processor
and the VIC chip to communicate with common resources, namely the character ROM
and color RAM (and the 8563 system RAM indirectly). During AEC high, the shared
address bus, designated Sao-SA7, is driven by Ao-A7, the lower-order processor
address bits. The higher-order bits needed are supplied by the translated address bus,
which is also a shared address bus. Thus, the processor is able to access both shared
items.

During AEC low, the VIC addresses VA0-VA7 (VMA0-VMA7) must come onto
the shared address bus. Since VA0-VA8 are actually multiplexed, the row address only
must be sent to the shared address bus. Thus, the multiplexed VIC addresses are
transparently gated when either /RAS or MUX are high, but latched and held afterward
so that when combined with the column address, the full address is presented. The high-
order address bits here are supplied by the shared translated address bus. Note that the
shared address bus provides the lower 8 bits of the expansion port address, allowing VIC
access to cartridges and some additional drive capability by way of the TTL chips used to

drive the shared address bus. During DMA, the SA lines, like the TA, are driven
backward to drive the processor bus. As noted above, this allows peripheral chips, ROM
and RAM to be accessed by a DMA source, like the RAM expansion module. Only the
MMU and the 8563 video controller cannot be accessed during DMA. See the auto-start
ROM section in Chapter 13 for more details on initializing both external and internal
expansion ROMS.

THE COLOR DATA BUS
The color RAM is written to or read from a nybble data bus called the Color Data Bus.
During AEC high, the color data bus is connected to the lower half of the processor data
bus via an analog switch, allowing the processor full access to the color RAM. During
AEC low, that switch is opened, effectively isolating the color data bus from the
processor data bus. In this state, it is driven by the VIC extended data bus D g -D u .
Since the color RAM is banked, only one-half appears here at a time.

THE DISPLAY BUS
The Display Bus is a bus local to the 8563 video controller, consisting of the Display
Address (DA0-DA7) and the Display Data Bus (DD0-DD7). This local bus supports
the 8563 display RAM, which is completely isolated from the rest of the C128 system.
The display address bus is a multiplexed address bus providing addressing to the display
DRAM. The display data bus provides communication between this DRAM and the
8563. The 8563 also provides row and column strobes and dynamic refresh to this
DRAM.

SYSTEM MEMORY
ORGANIZATION
This section describes the C128 memory system. Figure 16-2 is a detailed diagram of
the C128 Memory Map.

Figure 16-2. CI28 Memory Map (C64 Mode)

CI28 ROM MEMORY ORGANIZATION
C128 mode is achieved at system reset and is controlled by a bit in the MMU
Configuration Register. In C128 mode, the MMU asserts itself in the C128 memory
map at $FF00 and in the I/O space, starting at $D500. Use of MMU registers located at
$FF00 allows memory management without actually having the I/O block banked in at
the time and with a minimum loss of contiguous RAM. The MMU is completely
removed from the memory map in C64 mode. It is, however, still used by the hardware
to manage memory.

Figure 16-2 presents the standard map for the C64 mode. Some of the alternate modes
are shown in Figure 16-3. All C64 modes are compatible with the C64 computer, as the
C128 basically becomes a C64 when in C64 mode. The details of MMU register
location/operation are discussed in Chapter 13.

The ROMs in C64 mode look like Commodore 64 ROMs. The internal BASIC
and Kernal provide the C64 mode with the normal Commodore 64 operating system in
ROM. This ROM actually duplicates some of the ROM used in C128 mode, but it is
necessary, as it is not accessible from C128 mode. In C128 mode, up to 48K of the
operating system is present, with the exact amount being set by software control. This
allows quicker access to underlying RAM by turning off unneeded sections of the
operating system.

The external ROMs represented on the memory map are those used in C64 mode.
They obey the Commodore 64 rules for mapping; i.e., cartridges assert themselves in
hardware via the /EXROM and /GAME lines. External ROMs in C128 mode (i.e., C128
cartridges) are mapped as banked ROMs; when the system is initialized, all ROM slots
are polled for the existence of a ROM, and the ROM's priority, if one exists. This
allows much more flexibility than the hard-wired ROM substitution method, since the
Kernal and BASIC ROMs can be swapped for an application program, or for external
program control, or can be turned off altogether. This banking manipulation is accom-
plished by writing to the Configuration Register at location $D500 or $FF00 in the
MMU.

The hardware also features the ability to store preset values for the configuration
and force a load of the Configuration Register by writing to one of the LCRs (Load
Configuration Registers). This allows the programmer to imply that ROM does not
appear in the bank (by default) any time an access occurs to a bank where data is stored.

CI28 RAM MEMORY ORGANIZATION
As shown in Figure 16-2, the RAM present in the system is actually composed of two
banks of 64K by 8 bytes of DRAM. The RAM is accessed by selecting one of the two 64K
banks, the maximum address range of the 8502 and Z80, according to the RAM banking
rules set in the RAM configuration register of the MMU. This area shown as RAM
represents what the processor would see if all ROM were disabled. Bank switching can
be accomplished in one of two ways.

The bank in use is a function of the value stored in the configuration register. A
store to this register will always take effect immediately. An indirect store to this
register, using programmed bank configuration values, can be accomplished by writing
to one of the indirect load registers known as LCRs, located in the $FF00 region of
memory. By writing to an LCR, the contents of its corresponding PCR (PreConfiguration
Register) will be latched into the configuration register. This allows the programmer to
set up four different preprogrammed configurations that allow each bank to be personal-
ized ahead of time; e.g., bank 1 as a data bank might be strictly a RAM bank with no
ROM or I/O enabled, while bank 0 as the system bank can have the system ROM and
I/O enabled by default. Additionally, reading any LCR will return the value of its
corresponding PCR.

When dealing with 64K banks of memory at once, it may be desirable to bank in
bank 1 but still retain the system RAM (stack, zero page, screen, etc.). The MMU has
provisions for what is referred to as common RAM. This RAM does not bank and is
programmable in size and position (top, bottom, or both) in the memory map. The size
is set by bits 0 and 1 in the RAM Configuration Register (RCR). If the value of the
bits is 0, IK will be common. Values of 1, 2 and 3 produce common areas of 4K, 8K
and 16K respectively. If bit 2 of the RCR is set, bottom memory is held common; if bit
3 is set, then top memory is common. In all cases, common RAM is physically located
in bank 0.

Zero page and page one can be located (or relocated) independently of the
RCR. When the processor accesses an address that falls within zero page or page
one, the MMU adds to the high-order processor address the contents of the P0
register pair or the PI register pair, respectively, and puts this new address on the
bus, including the extended addressing bit A16. RAM banking will occur as appropriate
to access the new address. Writes to the P0 and PI registers will be stored in pre-
latch until a write to the respective low byte page pointer occurs. This prevents a PxH

high byte page pointer from affecting the translated address until both high and low
bytes have been written. Common memory overrides the page pointers.

At the same time, the contents of the P0 and PI registers are applied to a digital
comparator, and a reverse substitution occurs if the address from the 8502 falls within
the page pointed to by the register. This results in a swapping of the zero page or page
one with the memory that it replaced. Swapping occurs only if the swapped area is
defined as RAM; i.e., system or function ROM must always be at its assigned addresses
and thus should not be back-substituted but of course will not cause contention of any
kind. Note that upon system reset, the pointers are set to true zero page and true page
one.

CI28 HARDWARE SPECIFICATIONS 567

NOTE: There are actually several memory modes that override parts of
the bank as selected here. These modes are mentioned below, and are
covered in detail in a later section.

For VIC-chip access, one bit in the MMU status register substitutes for extended
address line A16, selecting the proper CAS enable to make it possible to steer the VIC
to anywhere in the 128K range. Note that AEC is the mechanism the MMU uses to steer
a VIC space address; i.e., when AEC is low, a VIC access is assumed. This results in
the VIC bank being selected as well for an outside DMA, since this, too, will pull the
AEC line to the MMU low.

PERFORMANCE SPECIFICATIONS

POWER CONSUMPTION
Table 16-1 contains values for C128 power consumption, including various add-on
options.

I .C . I xyp I Max I Typ I Max I Typ I Max Unit
(5v) (9v) (12v)

SUBTOTAL 61 2.63 3.83 0.03 0.05 0 0 A

PERIPHERALS

Magic Desk
RS-232
Auto Modem
Cassette

PERIPHERAL TOTAL

C128 AND PERIPHERALS

TOTAL POWER, WORST CASE (WATTS)

5V 12V

Voltage 5.25 9.45 12.60 TOTAL
Power 22.47 5.20 0.00 27.67

Table 16-1. C128 Power Consumption

BUS LOADING
Table 16-2 details AC and DC device loading for the C128 system. All capacitances
are in picofarads and currents are in microampheres.

1
1
1
1

4

0.24
0.07

0
0

0.31

2.94

0.35
0.10

0
0

0.45

4.28

0
0

0.07
0.28

0.35

0.38

0
0

0.10
0.40

0.50

0.55

0
0
0
0

0

0

0
0
0
0

0

0

A
A
A
A

A

A

Dev: DRAM ROM VIC 8563 4016 2332 LS MMU PLA 8502 Z80 4066 SID TOTAL
Signal TTL CIA LOADS

TA8-TA,5
#

I
p

SA,,-SA7
#

I
c

Do-D7

#

I
c

R/W
#
I
c

RES
#
I
c

1MHz
#
I
c

...

2
20

...

...

1
10
8

5
50
40

...

...

1
2.5
a

1
2.5
8

1
2.5
8

...

...

1
2.5
8

1
2.5
8

1
2.5
8

1
10
A

1
10
A

...

...

1
10
Q

1
10
S

...

...

2
800
^n

1
400
1^

1
400
15

2
800
30

...

5
2000
75

1 —
2.5 —
8 —

1 1
2.5 2.5
8 8

1 —
2.5 —
8 —

1
2.5
8

1
2.5
8

1
2.5
8

1 3
— 0.1 7.5

8 24

3
7.5
24

1 — 3
2.5 — 7.5
8 — 24

a
7 c

833
ee

420
27

488
129

820
94

18
56

2008
99

Table 16-2. Bus Loading Power Requirements (Capacitances and Currents)

ENVIRONMENTAL SPECIFICATIONS
The C128 is rated to operate at from 10 to 40 degrees Celsius (50 to 104 degrees
Fahrenheit) and at a noncondensing relative humidity of 5 to 95 percent.

CI28 HARDWARE SPECIFICATIONS 569

THE 8502
MICROPROCESSOR

GENERAL DESCRIPTION
The 8502 is an HMOSII Technology microprocessor, similar to the 6510/6502. It is the
normal operating processor used in C64 and C128 modes. Software-compatible with
the 6510, hence the 6502, the 8502 also features a zero page port used in memory
management and cassette implementation.

The 8502 is also specified for operation at 2 MHz. The 2 MHz operation is made
possible by removing the VIC from the system as a display chip. (The VIC chip is never
completely removed from the C128 system, as it continues to function as clock
generator and refresh controller.) What this refers to is that the VIC is removed as a display
chip and co-processor; thus the full clock cycle can be devoted to processor functioning
instead of sharing the cycle with the VIC.

The task of the video display processor is taken over by the 8563, which can
function without the need for bus sharing. Since the I/O devices, SID, etc., are rated at
1 MHz only, stretching of the 2 MHz clock is used to allow these parts to be accessed
directly by the 2 MHz processor and still keep throughput to a maximum.

The I/O devices are not affected by the 2 MHz operation, as they are still driven
by a 1 MHz source (as such, all timer operations remain unchanged), and clock
stretching is used only to synchronize the 2 MHz machine cycle to the 1 MHz <P0 high
time. The clock sources and clock-stretching capabilities are generated by the VIC chip.

ELECTRICAL SPECIFICATION
This section describes some of the electrical constraints and specifications of the system.

MAXIMUM RATINGS
Table 16-3 gives the absolute maximum ratings of the 8502 microprocessor.

RATING

Supply Voltage
Input Voltage
Storage Temperature
Operating Temperature

SYMBOL

vcc
Vin

Tstg

Ta

VALUE

-0.5 to
-0.5 to
-55 to

0 to

+ 7.0
+ 7.0
+ 150
+ 70

UNIT

Vdc
Vdc
°C
°C

Table i 6-3. 8502 Absolute Maximum Ratings

ELECTRICAL CHARACTERISTICS
Table 16-4 gives the 8502's basic electrical specifications for minimum, typical and
worst-case operation, valid over the range of operation T.

CHARACTERISTIC

Input High Voltage
<t>0 (i n)
/RES, Po-P7,/1RQ, Data

Input Low Voltage
4>o (in)
/RES, Po-P7,/IRQ, Data

Input Leakage Current
(Vin = 0 to 5.25V, Vcc = 5.25V)
Logic
4>o (in)

3-State (Off) Inp. Cur.
(Vin = 0.4 to 2.4V, Vcc = 5.25V)
Data Lines

Output High Voltage
(IOH = -100u,Adc, Vcc = 4.75V)
Data, Ag-Ais, R/W, P0-P7

Output Low Voltage
d o t = 1.6mAdc, Vcc = 4.75V)
Data, A,r-A,s, R/W, P0-P7

Power Supply Current

Capacitance
(Vin = 0, Ta = 25 C, f=lMHz)
Logic, P0-P7
Data
Ao-A7

4>o

SYMBOL

Vm

v,L

IlN

ITSI

V Q H

c

cin

COut
C(})0

MIN TYP

Vss + 2.4 -
Vss + 2.2 —

Vss-0.3 -
— —

— —
— —

— —

Vss + 2.4 —

— —

— 125

— —
— —
— —
— 30

MAX

—

Vss + 0.5
Vss + 0.8

2.5
10.0

10.0

—

Vss + 0.4

—

10
15
12
50

UNIT

Vdc
Vdc

Vdc
Vdc

u,A
fJLA

(xA

Vdc

Vdc

mA

pF
pF
pF
pF

Table 16-4. 8502 Basic Electrical Specifications

SIGNAL DESCRIPTION
Below is a description of all the 8502 signals from a functional and electrical point of
view:

CLOCK (<I>0)—This is the dual speed system clock. Note that the input level required is
above worst-case TTL; thus, extra precautions must be taken when attempting to
drive this input from a standard TTL level input.

ADDRESS BUS (Ao-A,5)—TTL output. Capable of driving 2 TTL loads at
130 pF.

DATA BUS (Do-D7)—Bidirectional bus for transferring data to and from the device
and the peripherals. The outputs are tri-state buffers capable of driving 2 standard
TTL loads at 130 pF.

CI28 HARDWARE SPECIFICATIONS 571

RESET—This input is used to reset or start the processor from a power down
condition. During the time that this line is held low, writing to or from the
processor is inhibited. When a positive edge is detected on the input, the
processor will immediately begin the reset sequence. After a system initialization
time of 6 cycles, the mask interrupt flag will be set and the processor will load the
program counter from the contents of memory locations $FFFC and $FFFD. This is
the start location for program control. After Vcc reaches 4.75 volts in a power up
routine, reset must be held low for at least 2 cycles. At this time the R/W line will
become valid.

INTERRUPT REQUEST (IRQ)—TTL input; requests that the processor initiate an
interrupt sequence. The processor will complete execution of the current instruc-
tion before recognizing the request. At that time, the interrupt mask in the Status
Code Register will be examined. If the interrupt mask is not set, the processor will
begin an interrupt sequence. The Program Counter and the Processor Status
Register will be stored on the stack and the interrupt disable flag is set so that no
other interrupts can occur. The processor will then load the program counter from
the memory locations $FFFE and $FFFF.

NON-MASKABLE INTERRUPT REQUEST (NMI)—TTL input, negative edge
sensitive request that the processor initiate an interrupt sequence. The processor
will complete execution of the current instruction before recognizing the request.
The Program Counter and the Processor Status Register will be stored on the
stack. The processor will then load the program counter from the memory
locations $FFFA and $FFFB. Since NMI is non-maskable, care must be taken to
insure that the NMI request will not result in system fatality.

ADDRESS ENABLE CONTROL (AEC)—The Address Bus is only valid when the
AEC line is high. When low, the address bus is in a high impedance state. This
allows DMA's for dual processor systems.

I/O PORT (P<r-P6)—Bidirectional port used for transferring data to and from the
processor directly. The Data Register is located at location $0001 and the Data
Direction Register is located at location $0000.

R/W—TTL level output from processor to control the direction of data transfer between
the processor and memory, peripherals, etc. This line is high for reading memory
and low for writing.

RDY—Ready. TTL level input, used to DMA the 8502. The processor operates
normally while RDY is high. When RDY makes a transition to the low state, the
processor will finish the operation it is on, and any subsequent operation if it
is a write cycle. On the next occurrence of read cycle the processor will halt,
making it possible to gain complete access to the system bus.

PROCESSOR TIMING
This section explores the timing considerations of the 8502 processor unit. Table 16-5 is
a processor timing chart. Figure 16-4 presents timing diagrams that show both general
timing and the particular method of clock stretching used in 2 MHz mode.

Electrical Characteristics Vcc = 5v ± 5%, Vss = Ov, Ts = 0 °C to 70 °C

CHARACTERISTIC

AEC setup time
Up data setup from 4>o
Up write data hold
Data bus to tri-state from AEC
Read data stable
Read data hold
Address setup from <|>o
Address hold
Address setup from AEC
Address tri-state from AEC
Port input setup
Port input half
Port output data valid
Cycle time
<t>o (in) pulse width @1.5v (crystal clock)
4>o (in) rise time
4>o (in) fall time
RDY setup time

SYMBOL

TAEC

TMDS

T H W

TAEDT

TDSU

THR

TADS

THA

TAADS

TAEAT

TPDSU

TpDH
TPDW

TCYC

PWH4>O

TRc|>o
TF<j>o

TRDY

MIN

25

40

40
40
40
40

105
65

489
235

80

MAX

60
100

120

75

60
120

195

265
10
10

UNITS

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Table 16-5. Processor Timing Chart

CLOCK STRETCHING
When running in 2 MHz mode, the processor clock sometimes must be stretched. This
is handled by the VIC chip, the processor and the PLA working together. When an I/O
operation is decoded during a 2 MHz cycle, the phase relationship between the 2 MHz
and 1 MHz clocks must be considered. If the 2 MHz access occurs during 1MHz $ 1 , the
access to a clocked I/O chip would be out of synchronization with the 1 MHz clock that
drives all I/O chips. Thus, during this phase relationship, /IOACC from the PLA signals
the VIC chip to extend the 2 MHz clock. Should the 2 MHz cycles take place during the
1 MHz <P2 cycle, no special attention is necessary.

C128 HARDWARE SPECIFICATIONS 573

Figure 16-4. Clock Stretching in 2 MHz Mode

Note the speed implications of this. In 2 MHz mode, half the I/O access given will
occur at an effective speed of 1MHz.

Figure 16-5 is a diagram of the 8502 microprocessor pin configuration.

Figure 16-5. The 8S02 Microprocessor Pin Configuration

For information on programming 8502 Machine Language, see Chapter 5, Machine
Language on the C128.

Z80 MICROPROCESSOR
HARDWARE SPECIFICATION

The Z80 microprocessor is used as a secondary processor in the C128 to run CP/M
based programs. Covered in this section is not only the operation of the Z80 as part of

CI28 HARDWARE SPECIFICATIONS S75

the C128 system, but some important electrical and timing specifications of the Z80. For
more information on Z80 bus interfacing, consult the Zilog Z80 Data Book.

SYSTEM DESCRIPTION
The Z80A, a 4MHz version of Zilog's standard Z80 processor, is included as an
alternate processor in the C128 system. This allows the C128 to run the CPM 3.0
operating system at an effective speed of 2 MHz. The Z80 is interfaced to the 8502 bus
interface and can access all the devices that the Z80 can access. The bus interface for the
Z80 (the most complex part of the Z80 implementation) is described in this section,
along with Z80's operation as a coprocessor in the C128 system.

NOTE: See the Signal Description section later in this chapter for
definitions of the signals mentioned in the following paragraphs.

BUS INTERFACE
Because a Z80 bus cycle is much different than a 65xx family bus cycle, a certain
amount of interfacing is required for a Z80 to control a 65xx-type bus. Since the Z80
has built-in bus arbitration control lines, it is possible to isolate the Z80 by tri-stating its
address lines. Thus, both the Z80 and the 8502 share common address lines.

The interfacing of the data lines is more complex. Because of the shared nature of
the bus during Z80 mode, the Z80 must be isolated from the bus during AEC low. Thus,
a tri-statable buffer must drive the processor bus during Z80 data writes. The reverse
situation occurs during a Z80 read—the Z80 must not read things that are going on
during AEC low; it must latch the data that was present during AEC high. Thus, a
transparent latch drives the data input to the Z80. It is gated by the Z80 read-enable
output, and latched when the 1 MHz clock is low. It will be seen that the Z80 actually
runs during AEC low, but that the data bus interfaces with it only during AEC high.

CONTROL INTERFACE
The Z80 control read-enable interfacing must provide useful clock pulses to the Z80,
and must tailor the Z80 and write-enable signals for the 8502-type bus protocol. The
Z80 clock is provided by the VIC chip, and is basically a 4MHz clock that occurs only
during AEC low, as seen in Figure 16-6. This ensures that the Z80 is clocked only when
it is actively on the bus. One additional consideration in clocking the Z80 is that while
all of the 8502 levels and most of the Z80 levels are TTL-compatible, the Z80 clock
input expects levels very close to 5 volts. For that reason, the output from the VIC chip
is processed by the 9-volt supply; thus, the 9-volt circuit must be operational for the
Z80, and the system, to function. The most common power-up failure for the C128 is a
blown 9-volt fuse.

Figure 16-6. Z80 Bus Timing

PROCESSOR SWITCHING
It is important in normal operation for the Z80 and the 8502 to operate as coprocessors,
communicating with each other. Since only one processor may have the bus at any one
time, this is only serial coprocessing, not parallel coprocessing or multiprocessing. This
is important in several ways:

First, the C128 system must power-up with the Z80 as master processor. This is to
prevent the Z80 from accidentally accessing the bus when powering up. Thus, the Z80
is made master on power-up and can do anything it likes to the bus. Also, because the
Z80 can start-up certain C64 applications that would cause the 8502 to crash, the Z80 is
the logical choice as start-up processor. After some initializations, the Z80 starts-up the
8502 in either C128 or C64 mode, depending upon whether a cartridge is present, and
upon the type of cartridge, if one is present. The operating system also allows C64 mode
to be forced on power-up.

Second, processor switching allows the Z80 to access 8502 Kernal routines. For
standardized programs or for any I/O operation not supported in the Z80 BIOS, the Z80
can pass on the task of I/O to the 8502. Since the Z80 sees BIOS ROM where the 8502
sees its pages 0 through F, the Z80 can operate without fear of disrupting any 8502
pointers or the stack in RAM Bank 0. The Z80 ROM BIOS physically overlays that
critical section of RAM Bank 1.

The Z80 can receive a bus grant request from the MMU via /Z80EN, or from the
VIC chip via BA. Since the VIC control line is used for DMAs, the latter request is not
of immediate concern. The /Z80EN action, however, is important, since it is the
mechanism by which the two processors exchange control.

CI28 HARDWARE SPECIFICATIONS 577

When the /Z80EN line goes high, it triggers a Z80 /BUSRQ. The Z80 then relin-
quishes the bus by pulling /BUSACK low. This action drives the 8502 AEC high and
(providing VIC does not request a DMA) also drives the 8502 RDY line high, enabling
the 8502. To switch back, a low on the Z80 /BUSRQ will result in Z80 /BUSACK
going high, tri-stating and halting the 8502.

See Appendix K on CP/M for interchip communication details.

SIGNAL DESCRIPTION
The list below defines each Z80 signal. The Z80 pin configuration is shown in Figure 16-7.

Address Bus (Ao-A|5): 16-bit tri-stating address bus. Used for 16-bit I/O cycles. This
allows up to 256 input or 256 output ports. During refresh time, the lower 7 bits
contain a valid refresh address. (This signal is not used in the C128 system.)

Data Bus (Do-D7): Input/output bus capable of tri-stating; used for 8-bit exchanges
with memory and I/O devices.

Machine Cycle One (/M|): Output, active low. This signal indicates that the current
machine cycle is the operation code fetch of an instruction execution. During
execution of a two-byte opcode, /Mi is generated, as each byte is fetched. /Mi also
occurs with an input/output request (/IORQ) to indicate an interrupt acknowledge
cycle. The M) line is used to disable the I/O decoder during an interrupt acknowl-
edge cycle (See Input/Output Request).

Memory Request (/MREQ): Active low, tri-state output that indicates that the address
bus holds a valid address for a memory read or write operation.

Input/Output Request (/INRQ): Active low, tri-state output. The /INRQ signal
indicates that the lower half of the address bus holds a valid address for an I/O
read or write operation. An /INRQ signal is also generated with a /Mi signal when
an interrupt is being acknowledged to indicate that an interrupt response vector
can be placed on the data bus. An interrupt can acknowledge during /Mi; I/O
operations never occur during /Mj.

Memory Read (/RD): Active low, tri-state output. /RD indicates that the CPU wants
to read data from memory or from an I/O device. This signal is generally used to
gate-read data onto the data bus.

Memory Write (/WR): Active low tri-state output. /WR indicates that the data bus
holds valid data to be processed by memory or by an I/O device.

Refresh (/RFSH): Active low output used to indicate that the address bus holds a
refresh address in its lower 7 bits. Thus, the current /MREQ signal should be used
to do a refresh read to all dynamic memories not refreshed from an alternate source.
A7 is set to 0 and the upper 8 bits contain the I register at this time.

Halt State (/HALT): Active low output, indicating that the Z80 has executed a halt
instruction and is awaiting some kind of interrupt before execution can continue.
While in the halt state, the Z80 continuously executes NOPs to continue refresh
activity.

Wait (/WAIT): Active low input, used to drive the Z80 into wait states. As long as this
signal is low, the Z80 executes wait states; thus, this signal can be used to access
slow memory and I/O devices.

NOTE: While the Z80 is in either a wait state or a bus acknowledge
(/BUSAK) state, a dynamic memory refresh cannot be performed. See Bus
Acknowledge.

Interrupt Request (/INT): Active low input, driven by external devices. If the
interrupt flag IFF is enabled and the bus request (/BUSRQ) line is not active, the
processor honors the request interrupt at the end of the current instruction. When
the Z80 acknowledges an interrupt, it generates an interrupt acknowledge signal
(/INRQ during /MO at the beginning of the next instruction cycle. There are three
different modes of response to a given interrupt. See Bus Request.

Non-Maskable Interrupt (/NMI): Active low input. This interrupt is edge-triggered
and cannot be masked against. It is always recognized at the end of the current
instruction, forcing the Z80 to restart at location $0066. The program counter is
automatically saved in the stack to allow a return from the interrupt program. Note
that continuous cycles can delay an /NMI by preventing the end of the current
cycle, and that /BUSRQ will override /NMI.

Reset (/RESET): Active low input that forces the program counter to zero and
initializes the Z80, which will set interrupt mode 0, disable interrupts, and set
register I and R to 0. During /RESET, the address and data buses go tri-state and
all other signals go inactive.

Bus Request (/BUSRQ): Active low input that requests the CPU address, data and
tri-statable output control signals to go tri-state for sharing and DMA's. The lines
go tri-state upon termination of the current machine cycle.

Bus Acknowledge (/BUSAK): Active low output, used to indicate to any device
taking over the bus that the Z80 has gone into tri-state and the bus has been
granted.

Clock (4>): Single phase system clock.

C128 HARDWARE SPECIFICATIONS 579

Figure 16-7. Z80 Microprocessor Pin Configuration

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS
Table 16-6 gives the absolute maximum temperature, voltage and power dissipation
ratings for the Z80. Permanent damage is likely to occur if these ratings are exceeded.

PARAMETER SYMBOL RANGE UNITS

Operating Temperature
Storage Temperature
Input Voltage
Power Dissipation

Ta

Tst

vin
Pec

Oto
-65
-0.3
1.5

+ 70
to +150
to 7.0

°C
°C
Vdc
W

Table 16-6. Z80 Absolute Maximum Ratings

DC OPERATING CHARACTERISTICS
Table 16-7 shows the maximum DC operating ratings for the Z80. Except as noted,
these ratings apply over the full rated temperature and voltage ranges.

PARAMETER

Power Supply Variance
Clock Input Low Voltage
Clock Input High Voltage
Input Low Voltage
Input High Voltage
Output Low Voltage

(IOL= 1.8mA)
Output High Voltage

(IOH = -250|XA)

Power Supply Current
Input Leakage Current

(Vin = 0toVcc)
Tri-State Leakage Current

(VOUTVOH, V O U T = VOL)
Data Bus Input Leakage Current

(Vss < Vin < Vcc)

SYMBOL

VCc

V.LC

V,HC
VIL

Vm
VOL

VoH

Ice

ILI

ILO

ILD

RANGE

5 ± 5%
-0.3 to 0.8
Vcc-0.6to Vcc + 0.3
-0.3 to 0.8
2.0 to Vcc

Vss to 0.4

2.4 to Vcc

200
10

+ 10,-10

±10

UNITS

Vdc
Vdc
Vdc
Vdc
Vdc
Vdc

Vdc

mA
(AA

(xA

^A

Table 16-7. Z80 DC Operating Characteristics

CAPACITANCE
The line capacitance values for the Z80 are given in Table 16-8. All measurements are
at T = 25 degrees, F = 1 MHz.

PARAMETER SYMBOL MAXIMUM UNIT

Clock Capacitance C§ 35 pF
Input Capacitance C(n 5 pF
Output Capacitance Cout 10 pF

Table 16-8. Z80 Capacitance Values

CI28 HARDWARE SPECIFICATIONS 581

THE PROGRAMMED
LOGIC ARRAY (PLA)

The 8721 C128 PLA is a programmed version of the Commodore 48 Pin Programmable
Logic Array (Commodore Part #315011). It provides all the chip selects and other
decoded signals that are necessary for the C64, along with a number of such signals
new in the C128 system. Figure 16-8 shows the PLA chip.

The PLA does a number of things vital to the operation of the C128, including:

All ROM selects (Kernal, BASIC, function, external) in all operating modes.
VIC chip select.
Color RAM chip select.
Character RAM chip select.
Write enable to color RAM.
Latched write enable to DRAMs.
Z80 select decoding.
Z80 I/O decoding, for Z80 I/O cycle and Z80 memory mapping.
Data bus direction signal.
I/O group chip select (includes I/O-l, I/O-2, CIA-1, CIA-2, SID, 8563).
I/O access signal indicating an I/O operation is occurring.
CAS ENaBle for DRAM enable.

CHIP SELECT GENERATION
This PLA device is responsible for defining the banking rules for ROM and RAM that
the system will follow. This chip generates chip selects for all ROM and the VIC chip.
It generates an enable for any other I/O device in the map, and can enable or disable
CAS based upon what else is enabled. In C128 mode, decisions are made using the
processor addresses and the four mode status lines: ROMBANKLO, ROMBANKHI,
I/O SELECT, and C128/64. The C128 mode banking scheme is quite straightforward
and simple. In Z80 mode, the selection mechanism becomes even simpler, thanks to the
I/O cycle of the Z80 processor.

C64 chip selects account for the bulk of the PLA font. The C64 selects I/O, RAM
and ROM based upon internal control lines: BA, HIRAM, LORAM, and CHAREN.
The status of these lines, and decoded addresses, determine for any given time which (if
any) chip is selected. When a cartridge is inserted, two additional control lines come
into play: /EXROM and /GAME. Various combinations of these lines cause different
memory maps to be asserted, all based upon the PLA font.

OTHER FUNCTIONS
The PLA performs a variety of functions other than chip selects. It creates the write
enable strobes for both DRAM and Color RAM. In C128 mode, the C64 control lines
(HIRAM, LORAM and CHAREN) are not needed, since the MMU controls the more
sophisticated C128 method of banking. Thus, these lines are used to extend the
functionality of the C128 at little or no additional cost in hardware. The CHAREN line is

used in C128 mode to turn the Character ROM on and off in the VIC bank selected; in
C128 mode the ROM can appear or disappear in any VIC bank.

The second of the new functions uses LORAM and HIRAM to select one of two
Color RAM banks. The level of LORAM selects the bank that will be seen during
processor time; the level of HIRAM selects the bank that will be seen during VIC time.
Thus, a program can swap between two full-color pictures very cleanly, or the processor
can modify one full-color picture while displaying another.

Figure 16-8. The CI28 PLA Chip

CI28 HARDWARE SPECIFICATIONS 583

THE MEMORY
MANAGEMENT UNIT (MMU)

The MMU is designed to allow complex control of the C128 system memory resources.
Because of the way it handles all the standard C64 modes of operation, it is completely
compatible with the C64. Additionally, it controls the management of particular C128
modes including the Z80 mode. The MMU's features include:

• Generation of translated address bus (TA8-TA15).
• Generation of control signals for different processor modes (C128, C64, Z80).
• Generation of CAS selects lines for RAM banking.
• Generation of ROMBANK lines for ROM banking.

Programming the MMU is described in detail in Chapter 13.

PHYSICAL DESCRIPTION
Many of the MMU input and output signals have been discussed informally so far.
This section contains descriptions of the MMU as a physial 48-pin device, includ-
ing a description of all pin requirements, input and output signals, and electrical
requirements.

PIN REQUIREMENTS
Table 16-9 lists the required MMU pins, indicating the number in each signal category
and the total number.

SIGNAL NAMES

A0-A3, Ag-At5

A4/5, Afr'7

Do-D7

TAg-TA.s

GND
PHI0

RESET
R/W
/CASo-/CAS,
AEC
/Z80EN
/GAME
/EXROM
MSo-MS,
I/O (MS2)
C128/64 (MS3)
40/80
/FSDIR
MUX

DESCRIPTION

Address Lines In
Combined Address Lines In
Data Lines In/Out
Translated Addr. Lines Out
+ 5V
Ground
2 MHz cj>0 Clock In
System Reset In
Read/Write Line In
DRAM CAS, 64K Bank Out
Address Enable Control In
Z80 Enable Out
Game ROM Enable In, Control Out
External ROM Enable In, Control Out
Memory Status Out
I/O Select Out
C128 or C64 Mode Out
40/80 Status In
Fast Serial Direction Out
Memory Multiplex In

TOTAL

NUMBER OF PINS

12
2
8
8
1
1
1
1
1
2
1
1
1
1
2
1
1
1
1
1

48

Table 16-9. MMU Pin Requirements

PIN DESCRIPTION
The following comprises a signal-by-signal description of the MMU input and output
signals. Figure 16-9 shows the MMU pin configuration. Included here are any available
bond options.

The MMU input signals are:

• Ao-A3, Ag—A15: Addresses from the microprocessor. Used to derive chip
selects as well as multiplexed address lines. Ao-A3 are found at pins 18-21 on
the MMU, while A8-A15 are located at pins 24—31.

u A4/5, A6,7: Combined addresses from the microprocessors. Used along with
simple addresses, combined in this fashion to lower the pin count of the
MMU. Located at pins 22 and 23 respectively.

• PHI0: Presystem clock. Used for early transition of gated signals on write
operations. Processor address is valid on the rising edge, and data is valid on
the falling edge. This is found at pin 33.

s R/W: System Read/Write control line. This input is high for a processor read,
low for a processor write. This signal is located at pin 32 on the MMU chip.

• RESET: System Reset. This input initializes internal registers on a power-up
or hardware reset. It can be found at pin 2.

• AEC: Address Enable Control. Indicates whether the 8502 processor or the
VIC has access to the shared bus. When low, VIC or an external DMA has the

CI28 HARDWARE SPECIFICATIONS 585

bus and VAj6 have the processor bus, and no pointer or BIOS translation takes
place. This signal occupies pin 16.

• MUX: The memory multiplex signal, used to clock various sections of the
MMU. It is located at pin 17.

m Vdd: System +5 Vdc supply, connected at pin 1.
• Vss: System Ground, connected at pin 34.

The following represents the MMU bidirectional lines. Some of the port bits
detailed here are left for future expansion in a one-directional sense.

• Do-D7: Data inputs from microprocessor. Used for writing to internal regis-
ters. Located at pins 35 to 42.

• /EXROM: This signal is used to sense the /EXROM line on the expansion
connector in C64 mode and as an expansion control line in C128 mode.
Located at pin 46. This line will drive one TTL load on output, and has a
passive depletion mode pull-up on input. This signal can be pulled down, but
not up, by an external driver.

• /GAME: This signal is used to sense the /GAME line on the expansion
connector in C64 mode and as the color RAM bank control line in C128 mode.
Located at pin 45. This line will drive one TTL load on output, and has a
passive depletion mode pull-up on input. External hardware can pull this line
down, but not up.

• 40/80: This port in input mode senses the 40/80 column switch. It detects
whether or not this switch is closed. Its output function is open for expansion.
Located at pin 48. This line will drive one TTL load on output, and has a
passive depletion mode pull-up on input. External hardware can pull this line
down, but not up.

• FSDIR: This port in output mode is used to control the data direction of the fast
serial disk interface. It is a general-purpose port signal, and is connected at pin
44. This line will drive one TTL load on output, and has a passive depletion
mode pull-up on input. External hardware can pull this line down, but not up.

The following list represents the MMU output signals, their physical locations on
the MMU and their logical levels if applicable.

• TAg~-TA15: Translated address outputs. Tri-stated for VIC cycles during AEC,
they provide translated physical addresses for use on the Multiplexed Address
Bus and the Shared Static Bus. TA12 to TA,5 are each defined to have an
internal, depletion mode pull-up with an equivalent resistance of 3.3KJQ. TAg

to TA n each go tri-state during VIC time (AEC low). These are located on the
MMU at pins 10 to 3.

• MSo-MSp Also called ROMBANK0 and ROMBANK1, these outputs control
ROM banking for all ROM slots. They are located on pins 15 and 14. These
lines are used to decode ROM bank selection for any ROM access in C128
mode. If they are both low, a system ROM has been selected. If MSj alone is

high, then a built-in function ROM has been selected. If MS0 alone is high,
then an external function ROM has been selected. Finally, if both are high, the
RAM that occupies the particular slot has been selected. In C64 mode, the
PLA completely ignores these lines.

• I/O: This output is used to select memory mapped I/O in C128 mode. It is on
pin 13, and is also known as MS2. In C128 mode, this line always reflects the
polarity of the I/O bit. It is ignored by the PLA in C64 mode, and remains
high throughout C64 mode.

• C128: This output directs the system to act in either C128 or C64 mode. It is
located on pin 47, and is also known at MS3. It goes low to indicate C64
mode, high for C128 mode.

• /Z80EN: This output is used to enable the Z80 processor and disable the
normal operation of the 8502 processor. It can be found at pin 43. It goes low
to indicate Z80 mode, high for all other modes.

• /CASQ-CAS, : CAS enables to control RAM banking. CAS0 enables the first
bank of 64K; CAS] enables the second bank of 64K. These are pins 12 and
11, respectively.

ABSOLUTE MAXIMUM RATINGS

CI28 HARDWARE SPECIFICATIONS 587

Figure 16-9. The Memory Management Unit Pin Configuration

THE 8564
VIDEO INTERFACE CHIP

The 8564 VIC chip used in the C128 is an updated version of the VIC chip used in
current C64 systems. It contains all the video capabilities of the earlier 6567 VIC chip,
including high-resolution bit-mapped graphics and movable image blocks. It also sup-
ports new features used by the C128 system, including extended keyboard scanning. Its
register map is upwardly compatible with the old VIC, allowing compatibility in C64
mode. It is powered by a single, 5V DC source instead of the two sources required by
the old VIC chip. The 8564 pin configuration is shown in Figure 16-10.

GENERAL DESCRIPTION

The 8564 VIC chip is similar to the 6567 VIC chip, yet it supports many new
features unique to the C128 system requirements. It will run on a single 5V DC supply,
and is packaged in a 48-pin dual-in-line package.

8564 VIC OPERATIONS
The 8564 VIC supports all the operations of the previous VIC chip. These functions,
quickly summarized, are:

Standard color character display mode.
Multicolor character display mode.
Extended color character display mode.
Standard bit map mode.
Multicolor bit map mode.
Movable image blocks.
Movable image block magnification.
Movable image block priority
Movable image block collision detection
Screen blanking
Row/column display select
Smooth scrolling
Light pen
Raster compare interrupt

As these functions exist in the previous VIC, their description is purposely kept to
a minimum here, while the VIC programming information is contained in Chapter 8. The
new functions, however, are described in detail below.

EXTENDED KEYBOARD SCANNING
The 8564 contains a register called the Keyboard Control Register. This register
allows scanning of three additional keyboard control lines on the C128 keyboard. Thus,
the C128 keyboard can have advanced additional keys in C128 mode while still

CI28 HARDWARE SPECIFICATIONS 589

retaining C64 keyboard compatibility in C64 mode. In this register (register 53295
($D02F)), bits 0-2 are directly reflected in output lines Ko to K2, while bits 3-7 are
unused, returning high when read.

2 MHz OPERATION
The VIC chip contains a register that allows the C128 system to operate at 2 MHz
instead of the standard 1 MHz speed of the C64. This operating speed, however,
disallows the use of the VIC chip as a display processor. This is bit 0 in 53296 ($D030),
and setting this bit enables 2 MHz mode. During 2 MHz operations, the VIC is disabled
as a video processor. The processor spends the full time cycle on the bus, while VIC is
responsible only for dynamic RAM refresh. Clearing this bit will bring back 1 MHz
operation and allow the use of the VIC as a video display chip. During refresh and I/O
access, the system clock is forced to 1 MHz regardless of the setting of this bit.

The 2MHz speed is available in C64 mode by setting bit 0 of location 53296
($D030). Prior to this, blank the screen by clearing bit 4 of location 53265 ($D011).
You can then process at 2MHz (to perform number crunching, for example); however,
you will have no visible VIC screen. To return, set bit 4 of 53265 ($D011) and clear bit
Oof 53296 ($D030).

Bit 1 of this register contains a chip-testing facility. For normal operation, this bit
must be clear. None of the other bits in this register is connected.

SYSTEM CLOCK CONTROL
The new VIC chip generates several clocks used by the C128 system. The main clock is
the 1 MHz clock, which operates at approximately 1 MHz at all times. Most bus
operations and all I/O operations take place in reference to this clock. The next clock to
consider is the 2 MHz clock. This clock clocks selected system components, such as the
processor, at 2 MHz when in 2 MHz mode. The VIC chip monitors the /IOACC input,
which indicates the access of an I/O chip, and when asserted, will stretch the 2 MHz
clock to synchronize all 2 MHz parts with the 1 MHz I/O parts. Finally, the last clock is
the Z80 clock, which is a 4 MHz clock that takes place only during the low half of the 1
MHz clock. Since all timed I/O parts look only at the 1 MHz clock, all I/O timings
remain the same no matter what the 2 MHz clock is doing.

SIGNAL DESCRIPTION
The VIC chip is mounted in a 48-pin dual-in-line package. The following lists describe
the electrical signals that it generates.

The signals used in the system interface are:

• D0-D7: These are the bidirectional data bus signals. They are for communica-
tion between the VIC and the processor, and can be accessed only during AEC
high. They occupy pins 7 through 1 and 47, respectively.

• Dg-Dn: These are the extended data bus signals. They are used for VIC
communication with the color RAM. They occupy pins 47 to 43 in order.

• /CS: Chip select, used by the processor to select the VIC chip. Found at pin 13.
• R/W: Standard 8502 bus read/write for interface between the processor and

the various VIC registers. Pin 14.

• A0-A6: Multiplexed address lines, pins 32 through 38. During row address
time, Ao-Ag are driven on Ao-A5. During column address time, A8-A13 are
driven on Ao- A5 and A6 is held at 1. During a processor read or write, Ao-A5

serve as address inputs that latch on the low edge or /RAS.
a A-AJ0: Static address lines, pins 39 through 42, These address lines are used

for non-multiplexed VIC memory accesses, such as to character ROM and
color RAM.

• 1MHz: The 1 MHz system clock, pin 18. All system bus activity is referenced
to this clock.

• 2MHz: This is the changing system clock, which will be either 1 MHz or 2
MHz. If the 2 MHz bit is clear, no VIC or external DMA is taking place, and
no I/O operation is occurring, the clock will be 2 MHz; otherwise it will be 1
MHz. Found at pin 23.

• Z80 Phi: The special 4 MHz Z80 clock, pin 25.
• /IOACC: From PLA, indicating an I/O chip access for clock stretching. Pin 22

of the VIC.
B /RAS: Row address strobe for DRAMs, pin 19.
• /CAS: Column address strobe for DRAMs, pin 20.
• MUX: Address multiplexing control for DRAMs, pin 21.
a /IRQ: Interrupt output, used to signal one of the various internal interrupt

sources has taken place. Requires a pull-up, found at pin 8 on the chip.
a AEC: Address Enable Control, high for processor enable on the shared bus,

low for VIC cycle and VIC or external DMA. Found at pin 12 of the VIC.
H BA: Bus Available signal, used to DMA processor. Pin 10.
• K0-K2: Extended keyboard strobe bits, pins 26 to 28.
• LP: Edge triggered latch for light pen input. Pin 9 of the VIC chip.

The signals comprised in the video interface, i.e., all the signals required to create
a color video image, are:

• PH IN: The fundamental shift rate clock, also called the dot clock. Used as the
reference for all system clocks. Located at pin 30.

• PH CL: The color clock, used to derive the chroma signal. Pin 29.
a SYNC: Output containing composite sync information, video data and lumi-

nance information. Requires a pull-up, pin 17.
• COLOR: Output containing all color-based video information. Open source

output, should be tied through a resistor to ground. Found at pin 16.

ELECTRICAL SPECIFICATION
Tables 16-12 and 16-13 specify the electrical operation of the VIC chip in its new form.
These specs include absolute maximum ratings and maximum operating conditions.

CI28 HARDWARE SPECIFICATIONS 591

ITEM SYMBOL RANGE UNIT

Input voltage
Supply Voltage
Operating Temperature
Storage Temperature

Vjn

v
" ccTa

Ts,

-0.5
-0.5
Oto
-65

to
to
75
to

+ 7.0
+ 7.0

150

Vdc
Vdc
°C

°c
Table 16-12. Absolute Maximum Ratings for VIC Chip

Below is a list of the maximum operating specifications for the new VIC chip:

ITEM

Power Supply Variance
Input Leakage Current
Input High Voltage
Input Low Voltage
Output High Voltage

(I O H = -200 |AA, Vcc = 5.0 ±

Output Low Voltage
(IOL = -3.2mA, Vcc = 5.0 ±

Max Power Supply Current

SYMBOL

v
T CC
II
VIH

V,L
VoH

5% Vdc)
VoL

5% Vdc)
lcc

RANGE

5.0 ± 5 %
-1.0
Vss + 2.0to Vcc

V^-O.Sto Vss + 0.8
V^ + 2.4

V s s + 0.4

200

UNIT

Vdc
uA
Vdc
Vdc
Vdc

Vdc

mA

Table 16-13. Maximum Operating Specifications for VIC Chip

RASTER REGISTER
The Raster Register is a dual function register. A read of the raster register 53266 ($D012)
returns the lower 8 bits of the current raster position [the MSB-RC8 is located in register
53265 ($D011)]. A write to the raster bits (including RC8) is latched for use in an internal
raster compare. When the current raster matches the written value, the raster interrupt
latch is set. The raster register should be interrogated to prevent display flicker by
delaying display changes to occur outside the visible area. The visible area of the
display is from raster 51 to raster 251 ($033-$0FB).

INTERRUPT REGISTER
The Interrupt Register indicates the status of the four sources of interrupts. An interrupt
latch in register 53273 ($D019) is set to 1 when an interrupt source has generated an
interrupt request.

LATCH ENABLE
BIT BIT WHEN SET

IRST ERST Actual raster count = stored raster count (bit 0)
IMDC EMDC MOB-DATA collision (first bit only) (bit 1)
IMMC EMMC MOB-MOB collision (first bit only) (bit 2)
ILP ELP First negative transition of LP per frame (bit 3)
IRQ When IRQ/ output low (bit 7)

Table 16-14. Interrupt Register Definitions

To enable an interrupt request to set the IRQ/ output to 0, the corresponding interrupt
enable bit in register 53274 ($D01A) must be set to " 1 " . Once an interrupt latch has
been set, the latch may be cleared only by writing a " 1 " to the associated bit in the
interrupt register. This feature allows selective handling of video interrupts without
software storing the active interrupts.

SCREEN BLANKING

The display screen can be blanked by clearing the BLNK bit (bit 4) in register 53265
($D011) to zero (0). When the screen is blanked, the entire screen displays the exterior
color specified by register 53280 ($D020). When blanking is enabled, only transparent
(phase 1) memory accesses are required, permitting full processor utilization of the
system bus. However, sprite data will be accessed if the sprites are not also disabled.

DISPLAY ROW/COLUMN SELECT

The normal display screen consists of 25 rows of 40 character regions per row. For
special display purposes, the display window is reduced to 24 rows of 38 characters.
There is no change in the format of the display information, except that characters (bits)
adjacent to the exterior border area are covered by the border.

CI28 HARDWARE SPECIFICATIONS 593

RSEL NUMBER OF ROWS CSEL NUMBER OF COLUMNS

0 24 rows 0 38 columns
1 25 rows 1 40 columns

The RSEL bit (bit 3) is in register 53265 ($D011), and the CSEL bit (bit 3) is in
register 53270 ($D016). For standard display, the larger display window is normally
used, while the smaller display window is normally used in conjunction with scrolling.

SCROLLING
The display data may be scrolled up to one character in both the horizontal and vertical
directions. When used in conjunction with the smaller display window (above), scrolling
can be used to create a smooth panning motion of display data while updating the
system memory only when a new character row (or column) is required. Scrolling is
also used for centering a display within the border. An example of horizontal smooth
scrolling is found in Chapter 8.

BITS

0-2
0-2

REGISTER

53270 ($D016)
53265 ($D011)

FUNCTION

Horizontal Position
Vertical Position

LIGHT PEN
The light pen input latches the current screen position into a pair of registers (LPX,
LPY) on a low-going edge. Since the X position is defined by a 9-bit counter (53267
($D013)), resolution to 2 horizontal dots is provided. Similarly, the Y position is latched
in register 53268 ($D014) with 8 bits providing unique raster resolution within the
visible display. The light pen latch may be triggered only once per frame, and subse-
quent triggers within the same frame will have no effect.

For more information on programming the VIC (8564) chip, see Chapter 8, The
Power Behind Commodore 128 Graphics.

|2L[
0

Figure 16-10. The 8564 VIC Chip

CI28 HARDWARE SPECIFICATIONS 595

THE 8563
VIDEO CONTROLLER

The 8563 is a HMOSII technology custom 80-column, color video display controller.
The 8563 supplies all necessary signals to interface directly to 16K of DRAM, including
refresh, and generated RGBI for use with an external RGBI monitor. For more informa-
tion on the 8563 video controller, see Chapter 10, Programming the 80-Column (8563) Chip.

GENERAL DESCRIPTION
The 8563 is a text display chip designed to implement an 80-column display system with
a minimum of parts and cost. The chip contains the high-speed pixel frequency logic
necessary for 80-column RGBI video. It can drive loads directly, though some buffering
is desirable in most real-world applications. The chip can address up to 64K of DRAM
for character font, character pointer, and attribute information. The chip provides RAS,
CAS, write enable, address, data and refresh for its subordinate DRAMs. A program-
mable bit selects either two 4416 DRAMs (16K total) or eight 4164 DRAMs (64K total)
for the display RAM. The C128 system uses the 4416 DRAMs.

EXTERNAL REGISTERS
The 8563, which sits at $D600 in the C128, appears to the user as a device consisting of
only two registers. These two registers are indirect registers that must be programmed to
access the internal set of thirty-seven programming registers. The first register, located
at $D600, is called the Address Register. Bit 7 of $D600 is the Update Ready Status Bit.
When written to, the five least significant bits convey the address of an internal register
to access in some way. On a read of this register, a status byte is returned. Bit 7 of this
register is low while display memory is being updated, and goes high when ready for the
next operation. The sixth bit will return low for an invalid light pen register condition and
high for a valid light pen address. The final register indicates with a low that the scan is
not in vertical blanking, and with a high that it is in vertical blanking.

The other register is the Data Register. It can be read from and written to. Its
purpose is to write data to the internal register selected by the address register. All
internal registers can be read from and written to through this register, though not all of
them are a full 8 bits wide.

INTERNAL REGISTERS
There are thirty-seven internal registers in the 8563, used for a variety of operations.
They fall into two basic groups: setup registers and display registers. Setup registers are
used to define internal counts for proper video display. By varying these registers, the
user can configure the 8563 for NTSC, PAL or other video standards.

The display registers are used to define and manipulate characters on the screen.
Once a character set has been downloaded to this chip, it is possible to display
80-column text in 4-bit digital color. There are also block movement commands that
remove the time overhead needed to load large amounts of data to the chip through the
two levels of indirection. Figure 16-11 is a display of the 8563 internal register map.

SIGNAL DESCRIPTION
There are many different signals involved with the 8563 chip, but they can be divided
into three general categories. The CPU interface signals serve as an interface to the 8502
bus. The local bus management signals serve to maintain the local memory bus. Finally,
the video interface signals are the signals that are necessary to provide an RGBI image
on an RGBI monitor. The 8563 pin configuration is shown in Figure 16-12.

THE CPU INTERFACE
The 8563 chip interfaces to the 8502 bus using a minimum of signals. This is due
mainly to the local memory used by the 8563. The CPU interface signals are as follows:

• D0-D7: Bidirectional data bus allowing data to be passed between the 8563
and 8502. Found on pins 18 to 13, 11 and 10.

• CS: Chip select input. This input must be high for selection and proper
operation of the chip. Located at pin 4.

• /CS: Chip select input. This input must be low for selection and proper
operation of the chip. Located at pin 7.

CI28 HARDWARE SPECIFICATIONS 597

• /RS: Register Select input. A high allows reads and writes to the selected data
register. A low allows reads of the status register and writes to the address
register. In the system, this line is tied to AO. It is located at pin 8.

• R/W: This line controls the data direction for the data bus. This is a typical
8502 control signal. Found at pin 9.

• INIT: Active low input for clearing internal control latches, allowing the chip
to begin operation following initial power-on. Connect to /RES in the C128,
at pin 23.

• DISPEN: Display Enable output signal, unused in the C128. Found at pin 19.
• RES: This input initializes all internal scan counters, but not control registers.

It is not actively used in the C128 circuit, and is not found at pin 22.
• TST: Pin used for testing only, tied to ground in the C128. Located at pin 24

of the chip.

THE LOCAL BUS MANAGEMENT INTERFACE
The local bus management interface is a group of signals generated by the 8563 for the
management of local video DRAM. This local DRAM both simplifies the addition of an
80-column video display to a system and enables a computer system with a limited
address space to support an 80-column display without taxing its limited memory
resources.

• DDo-DD7: Bidirectional local display DRAM data bus, comprising pins 35-36
and 38-42.

• DA0-DA7: Local display DRAM multiplexed address bus. Takes up pins
26-33.

• DR/W: Local display DRAM Read/Write, pin 21.
• /RAS: Row Address Strobe for local DRAM, pin 47.
• /CAS: Column Address Strobe for local DRAM, pin 48.

THE VIDEO INTERFACE
The final set of 8563 signals are the video interface signals. These signals are directly
related to the display video image.

• DCLK: Video Dot Clock, determines the pixel width and is used internally as
the timing basis for all synchronized signals, such as character clock and
DRAM timing. Found at pin 2.

• CCLK: The character clock output, unused in the C128 system, and found at pin 1.
• LP2: Input for light pen; a positive going transition on this input latches the

vertical and horizontal position of the character being displayed at that time.
Found at pin 25.

• HSYNC: The horizontal sync signal, fully programmable via internal 8563
registers, and found at pin 20.

• R,G,B>I: The pixel data outputs. They form a 4-bit code associated with each
pixel, containing color/intensity information, allowing a total of sixteen colors
or gray shades to be displayed. Located at pins 46, 45, 44, 43, respectively.

Figure 16-12. The 8563 Chip Pin Configuration

CI28 HARDWARE SPECIFICATIONS 599

6581 SOUND INTERFACE DEVICE (SID)
CHIP SPECIFICATIONS

CONCEPT
The 6581 Sound Interface Device (SID) is a single-chip, three-voice electronic music
synthesizer/sound effects generator compatible with the 8502 and similar microprocessor
families. SID provides wide-range, high-resolution control of pitch (frequency), tone
color (harmonic content), and dynamics (volume). Specialized control circuitry mini-
mizes software overhead, facilitating use in arcade/home video games and low-cost
musical instruments.

FEATURES

• 3 TONE OSCILLATORS
Range: 0-4 kHz

• 4 WAVEFORMS PER OSCILLATOR
Triangle, Sawtooth,
Variable Pulse, Noise

• 3 AMPLITUDE MODULATORS
Range: 48 dB

• 3 ENVELOPE GENERATORS
Exponential response
Attack Rate: 2ms-8 s
Decay Rate: 6 ms-24 s
Sustain Level: 0-peak volume
Release Rate: 6 ms-24 s

• OSCILLATOR SYNCHRONIZATION
• RING MODULATION
• PROGRAMMABLE FILTER

Cutoff range: 30 Hz-12 kHz
12 dB/octave Rolloff
Low pass, Bandpass,
High pass, Notch outputs
Variable Resonance

• MASTER VOLUME CONTROL
• 2 A/D POT INTERFACES
• RANDOM NUMBER/MODULATION GENERATOR
• EXTERNAL AUDIO INPUT

Figure 16-13. 6581 SID Pin Configuration

DESCRIPTION
The 6581 consists of three synthesizer "voices" which can be used independently or in
conjunction with each other (or external audio sources) to create complex sounds. Each
voice consists of a Tone Oscillator/Waveform Generator, an Envelope Generator and an
Amplitude Modulator. The Tone Oscillator controls the pitch of the voice over a wide
range. The Oscillator produces four waveforms at the selected frequency, with the
unique harmonic content of each waveform providing simple control of tone color. The
volume dynamics of the oscillator are controlled by the Amplitude Modulator under the
direction of the Envelope Generator. When triggered, the Envelope Generator creates an
amplitude envelope with programmable rates of increasing and decreasing volume. In
addition to the three voices, a programmable Filter is provided for generating complex,
dynamic tone colors via subtractive synthesis.

SID allows the microprocessor to read the changing output of the third Oscillator
and third Envelope Generator. These outputs can be used as a source of modulation
information for creating vibrato, frequency/filter sweeps and similar effects. The third
oscillator can also act as a random number generator for games. Two A/D converters are
provided for interfacing SID with potentiometers. These can be used for "paddles" in a
game environment or as front panel controls in a music synthesizer. SID can process
external audio signals, allowing multiple SID chips to be daisy-chained or mixed in
complex polyphonic systems. For full register descriptions, see Chapter 11, Sound and
Music on the Commodore 128.

SID PIN DESCRIPTION

CAP I A, CAP IB, (PINS 1,2)/ CAP2A,CAP2B (PINS 3,4)
These pins are used to connect the two integrating capacitors required by the program-
mable filter. Cl connects between pins 1 and 2, C2 between pins 3 and 4. Both
capacitors should be the same value. Normal operation of the filter over the audio range
(approximately 30 Hz-12 kHz) is accomplished with a value of 2200 pF for Cl and C2.
Polystyrene capacitors are preferred and in complex polyphonic systems, where many
SID chips must track each other, matched capacitors are recommended.

The frequency range of the filter can be tailored to specific applications by the
choice of capacitor values. For example, a low-cost game may not require full high-
frequency response. In this case, large values for Cl and C2 could be chosen to provide
more control over the bass frequencies of the filter. The maximum cutoff frequency of
the filter is given by:

FCmax = 2.6E-5/C

where C is the capacitor value. The range of the filter extends nine octaves below the
maximum cutoff frequency.

RES (PIN 5)
This TTL-level input is the reset control for SID. When brought low for at least ten 4>2
cycles, all internal registers are reset to 0 and the audio output is silenced. This pin is
normally connected to the reset line of the microprocessor or a power-on-clear circuit.

CI28 HARDWARE SPECIFICATIONS 603

cj>2 (PIN 6)
This TTL-level input is the master clock for SID. All oscillator frequencies and
envelope rates are referenced to this clock. cf>2 also controls data transfers between SID
and the microprocessor. Data can only be transferred when <j>2 is high. Essentially, cj>2 acts
as a high-active chip select as far as data transfers are concerned. This pin is normally
connected to the system clock, with a nominal operating frequency of 1.0 MHz.

R/W (PIN 7)
This TTL-level input controls the direction of data transfers between SID and the
microprocessor. If the chip select conditions have been met, a high on this line allows
the microprocessor to Read data from the selected SID register and a low allows the
microprocessor to Write data into the selected SID register. This pin is normally
connected to the system Read/Write line.

CS (PIN 8)
This TTL-level input is a low active chip select which controls data transfers between
SID and the microprocessor. CS must be low for any transfer. A Read from the selected
SID register can only occur if CS is low, <|>2 is high and R/W is high. A Write to the
selected SID register can only occur if CS is low, <J>2 is high and R/W is low. This pin is
normally connected to address decoding circuitry, allowing SID to reside in the memory
map of a system.

A0-A4 (PINS 9-13)
These TTL-level inputs are used to select one of the 29 SID registers. Although enough
addresses are provided to select one of thirty-two registers, the remaining three register
locations are not used. A Write to any of these three locations is ignored and a Read
returns invalid data. These pins are normally connected to the corresponding address
lines of the microprocessor so that SID may be addressed in the same manner as
memory.

GND(PIN 14)
For best results, the ground line between SID and the power supply should be separate
from ground lines to other digital circuitry. This will minimize digital noise at the audio
output.

D0-D7(PINS 15-22)
These bidirectional lines are used to transfer data between SID and the microprocessor.
They are TTL compatible in the input mode and capable of driving two TTL loads in the
output mode. The data buffers are usually in the high-impedance off state. During a
Write operation, the data buffers remain in the off (input) state and the microprocessor
supplies data to SID over these lines. During a Read operation, the data buffers turn on
and SID supplies data to the microprocessor over these lines. The pins are normally
connected to the corresponding data lines of the microprocessor.

POTX,POTY (PINS 24,23)
These pins are inputs to the A/D converters used to digitize the position of potentiome-
ters. The conversion process is based on the time constant of a capacitor tied from the
POT pin to ground, charged by a potentiometer tied from the POT pin to +5 volts. The
component values are determined by:

RC = 4.7E-4

Where R is the maximum resistance of the pot and C is the capacitor.
The larger the capacitor, the smaller the POT value jitter. The recommended

values of R and C are 470 kO and 1000 pF. Note that a separate pot and cap are required
for each POT pin.

Vcc (PIN 25)
As with the GND line, a separate +5 VDC line should be run between SID Vcc and the
power supply in order to minimize noise. A bypass capacitor should be located close to
the pin.

EXT IN (PIN 26)
This analog input allows external audio signals to be mixed with the audio output of SID
or processed through the Filter. Typical sources include voice, guitar, and organ. The
input impedance of this pin is on the order of 100 kft. Any signal applied directly to the
pin should ride at a DC level of 6 volts and should not exceed 3 volts p-p. In order to
prevent any interference caused by DC level differences, external signals should be
AC-coupled to EXT IN by an electrolytic capacitor in the 1-10 |xf range. As the direct
audio path (FILTEX = 0) has unity gain, EXT IN can be used to mix outputs of many
SID chips by daisy-chaining. The number of chips that can be chained in this manner is
determined by the amount of noise and distortion allowable at the final output. Note that
the output volume control will affect not only the three SID voices, but also any external
inputs.

AUDIO OUT (PIN 27)
This open-source buffer is the final audio output of SID, comprised of the three
SID voices, the filter and any external input. The output level is set by the output
volume control and reaches a maximum of 2 volts p-p at a DC level of 6 volts. A
source resistor from Audio Out to ground is required for proper operation. The recom-
mended resistance is 1 kfl for a standard output impedance.

As the output of SID rides at a 6-volt DC level, it should be AC-coupled to any
audio amplifier with an electrolytic capacitor in the 1-10 jjuf range.

VD D (PIN 28)
As with Vcc, a separate + 12 VDC line should be run to SID VDD and a bypass capacitor
should be used.

CI28 HARDWARE SPECIFICATIONS 60S

6581 SID CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

RATING

Supply Voltage
Supply Voltage
Input Voltage (analog)
Input Voltage (digital)
Operating Temperature
Storage Temperature

SYMBOL

vDD
Vec

v i n a
v i n d
TA

TsTG

VALUE

-0.3 to
-0.3 to
-0.3 to
-0.3 to

0 to
-55 to

+ 17
+ 7
+ 17
+ 7
+ 70

+ 150

UNITS

VDC
VDC
VDC
VDC
°C

°c

ELECTRICAL CHARACTERISTICS

(VDD = 12 VDC±5%, Vcc = 5 VDC±5%, TA = 0 to 70° C)

CHARACTERISTIC

Input High Voltage
Input Low Voltage

Input Leakage Current

Three-State (Off)

Input Leakage Current

Output High Voltage

Output Low Voltage

Output High Current

Output Low Current

Input Capacitance

Pot Trigger Voltage

Pot Sink Current

(RES, <j>2, R/W, CS
A0-A4, D0-D7)

(RES, <t>2, R/W, CS,
A0-A4; Vin = 0-5 VDC)
(D0-D7; Vcc = max)

Vin = 0.4-2.4 VDC

(D0-D7; Vcc = min,
1 load = 200 uA)

(D0-D7; Vcc = max,
1 load = 3.2 mA)

(D0-D7; Sourcing,
VOH = 2.4VDC)

(D0-D7; Sinking
VOL = 0.4VDC)

(RES, <j>2, R/W, CS,
A0-A4, D0-D7)

(POTX, POTY)

(POTX, POTY)

SYMBOL

V,H

V,L

Ifa.

ITSI

VOH

VoL

IoH

Io

cin

v
T pot

*DOt

MIN

2
-0.3

:

2.4

GND

200

3.2

—

—

500

TYP MAX

- v c c
— 0.8

— 2.5

— 10

- Vcc-0.7

— 0.4

— —

— —

— 10

Vec/2 -

UNITS

VDC
VDC

,AA

^A

VDC

VDC

|xA

mA

pF

VDC

uA

SYMBOL

TCYC

T c
TR,TF

T R S

TRH

TACC

TAH

T C H

TDH

NAME

Clock Cycle Time
Clock High Pulse Width
Clock Rise/Fall Time
Read Set-Up Time
Read Hold time
Access Time
Address Hold Time
Chip Select Hold Time
Data Hold Time

MIN

1
450
—

0
0

—
10
0

20

TYP MAX

— 20
500 10,000
— 25
— —
— —
— 300
— —
— —
— —

UNITS

|XS

ns
ns
ns
ns
ns
ns
ns
ns

Figure 16-15. Read Cycle

CI28 HARDWARE SPECIFICATIONS 607

*TW is measured from the latest occurring of oj- CS. R/W

SYMBOL

Tw

T\V'H

TAWS

TAH

TCH

TVD

TDH

NAME

Write Pulse Width
Write Hold Time
Address Set-up Time
Address Hold Time
Chip Select Hold Time
Valid Data
Data Hold Time

MIN TYP MAX

300 — —
0 — —
0 — —

10 — —
0 — —•

80 — —
10 — —

UNITS

ns
ns
ns
ns
ns
ns
ns

Figure 16-16. Write Cycle

EQUAL-TEMPERED
MUSICAL SCALE VALUES

The table in Chapter 11 lists the numerical values which must be stored in the SID
Oscillator frequency control registers to produce the notes of the equal-tempered musical
scale. The equal-tempered scale consists of an octave containing twelve semitones
(notes): C,D,E,F,G,A,B and C#,D#,F# ,G#,A#. The frequency of each semitone is
exactly the 12th root of 2 {^/~2) times the frequency of the previous semitone. The table
is based on a 4>2 clock of 1.02 MHz. Refer to the equation given in the Register
Description in Chapter 11 for use of other master clock frequencies. The scale selected
is concert pitch, in which A-A = 440 Hz. Transpositions of this scale and scales other
than the equal-tempered scale are also possible.

Although the table in Chapter 11 provides a simple and quick method for generat-
ing the equal-tempered scale, it is very memory inefficient as it requires 192 bytes for
the table alone. Memory efficiency can be improved by determining the note value
algorithmically. Using the fact that each note in an octave is exactly half the
frequency of that note in the next octave, the note look-up table can be reduced from
ninety-six entries to twelve entries, as there are twelve notes per octave. If the twelve

entries (24 bytes) consist of the 16-bit values for the eighth octave (C-7 through B-7),
then notes in lower octaves can be derived by choosing the appropriate note in the eighth
octave and dividing the 16-bit value by two for each octave of difference. As division by
two is nothing more than a right-shift of the value, the calculation can easily be
accomplished by a simple software routine. Although note B-7 is beyond the range of
the oscillators, this value should still be included in the table for calculation purposes
(the MSB of B-7 would require a special software case, such as generating this bit in the
CARRY before shifting). Each note must be specified in a form which indicates which
of the twelve semitones is desired, and which of the eight octaves the semitone is in.
Since 4 bits are necessary to select one of twelve semitones and 3 bits are necessary to
select one of eight octaves, the information can fit in one byte, with the lower nybble
selecting the semitone (by addressing the look-up table) and the upper nybble being used
by the division routine to determine how many times the table value must be right-shifted.

SID ENVELOPE GENERATORS

The four-part ADSR (ATTACK, DECAY, SUSTAIN, RELEASE) envelope generator
has been proven in electronic music to provide the optimum trade-off between flexibility
and ease of amplitude control. Appropriate selection of envelope parameters allows the
simulation of a wide range of percussion and sustained instruments. The violin is a good
example of a sustained instrument. The violinist controls the volume by bowing the
instrument. Typically, the volume builds slowly, reaches a peak, then drops to an
intermediate level. The violinist can maintain this level for as long as desired,
then the volume is allowed to slowly die away. A "snapshot" of this envelope is
shown below:

PEAK AMPLITUDE

ZERO AMPLITUDE

Figure 16-17. ADSR Envelope

This volume envelope can be easily reproduced by the ADSR as shown below,
with typical envelope rates:

C128 HARDWARE SPECIFICATIONS 609

ATTACK:
DECAY:

SUSTAIN:
RELEASE:

10
8

10
9

($A)

($A)

500
300

750

ms
ms

ms

Note that the tone can be held at the intermediate SUSTAIN level for as long as
desired. The tone will not begin to die away until GATE is cleared. With minor
alterations, this basic envelope can be used for brass and woodwinds as well as strings.

An entirely different form of envelope is produced by percussion instruments such
as drums, cymbals and gongs, as well as certain keyboards such as pianos and
harpsichords. The percussion envelope is characterized by a nearly instantaneous attack,
immediately followed by a decay to zero volume. Percussion instruments cannot be
sustained at a constant amplitude. For example, the instant a drum is struck, the sound
reaches full volume and decays rapidly regardless of how it was struck. A typical
cymbal envelope is shown below:

ATTACK:
DECAY:

SUSTAIN:
RELEASE:

0
9
0
9

2 ms
750 ms

750 ms

Note that the tone immediately begins to decay to zero amplitude after the peak is
reached, regardless of when GATE is cleared. The amplitude envelope of pianos and
harpsichords is somewhat more complicated, but can be generated quite easily with the
ADSR. These instruments reach full volume when a key is first struck. The amplitude
immediately begins to die away slowly as long as the key remains depressed. If the key
is released before the sound has fully died away, the amplitude will immediately drop to
zero. This envelope is shown below:

ATTACK:
DECAY:

SUSTAIN:
RELEASE:

0
9
0
0

2 ms
750 ms

6 ms

Note that the tone decays slowly until GATE is cleared, at which point the
amplitude drops rapidly to zero.

The most simple envelope is that of the organ, When a key is pressed, the tone
immediately reaches full volume and remains there. When the key is released, the tone
drops immediately to zero volume. This envelope is shown below:

ATTACK:
DECAY:

SUSTAIN:
RELEASE:

0 2 ms
0 6 ms
15 ($F)
0 6 ms

The real power of SID lies in the ability to create original sounds rather than
simulations of acoustic instruments. The ADSR is capable of creating envelopes which
do not correspond to any "real" instruments. A good example would be the "back-
wards" envelope. This envelope is characterized by a slow attack and rapid decay
which sounds very much like an instrument that has been recorded on tape then played
backwards. This envelope is shown below:

ATTACK:
DECAY:

SUSTAIN:
RELEASE:

10
0

15
3

($A)

($F)

500
6

72

ms
ms

ms

Many unique sounds can be created by applying the amplitude envelope of one
instrument to the harmonic structure of another. This produces sounds similar to familiar
acoustic instruments, yet notably different. In general, sound is quite subjective and
experimentation with various envelope rates and harmonic contents will be necessary in
order to achieve the desired sound.

Figure 16-18. Typical 6581/SID Application

C128 HARDWARE SPECIFICATIONS 611

6526 COMPLEX INTERFACE ADAPTER
(CIA) CHIP SPECIFICATIONS

DESCRIPTION
The 6526 Complex Interface Adapter (CIA) is an 8502 bus compatible peripheral
interface device with extremely flexible timing and I/O capabilities. Figure 16-19 shows
the 6526 pin configuration. Figure 16-20 shows the 6526 block diagram.

FEATURES

16 Individually programmable I/O lines
8 or 16-bit handshaking on read or write
2 independent, linkable 16-bit interval timers
24-hour (AM/PM) time of day clock with programmable alarm
8-bit shift register for serial I/O
2TTL load capability
CMOS compatible I/O lines
1 or 2 MHz operation available

ORDERING INFORMATION

MXS 6526 —

Figure 16-19. 6526 CIA Pin Configuration

C128 HARDWARE SPECIFICATIONS 613

Figure 16-20. 6526 Block Diagram

ABSOLUTE MAXIMUM RATINGS
Supply Voltage, Vcc

Input/Output Voltage, VtN

Operating Temperature, TOp
Storage Temperature, TSTG

-O.3V to +7.0V
-0.3V to +7.0V

0° C to 70° C
-55° C to 150° C

All inputs contain protection circuitry to prevent damage due to high static
discharges. Care should be exercised to prevent unnecessary application of voltages in
excess of the allowable limits.

COMMENT
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. These are stress ratings only. Functional operation of this device
at these or any other conditions above those indicated in the operational sections of this
specification is not implied and exposure to absolute maximum rating conditions for
extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
(Vc c ± 5%, Vss = 0 V, TA = 0-70°C)

CHARACTERISTIC

Input High Voltage

Input Low Voltage

Input Leakage Current;
VIN = VSS + 5V
(TOD, R/W, FLAG,ct>2,
RES, RS0-RS3, CS)

Port Input Pull-up Resistance

Output Leakage Current for
High Impedance State (Three
State); ViN = 4V to 2.4V;
(DB0-DB7, SP, CNT, IRQ)

Output High Voltage

VCC = M I N , I L O A D < _
-200(JLA (PA0-PA7, PC
PB0-PB7, DB0-DB7)

Output Low Voltage
VCC = M I N , I L O A D < 3.2 mA

Output High Current (Sourcing);
VOH > 2.4V (PA0-PA7,
PB0-PB7, PC, DB0-DB7

SYMBOL

V,H

vIL

IlN

MIN.

+ 2.4

-0.3

TYP.

_

—

1.0

MAX.

Vcc

—

2.5

UNIT

V

V

RP, 3.1 5.0

ITSI - ±1.0

Output Low Current (Sinking);
VOL < -4V (PA0-PA7, PC,
PB0-PB7, DB0-DB7)

Input Capacitance

Output Capacitance

Power Supply Current

IOL

ClN

CoUT

Ice

3.2

—

—

—

7

7

70

10

10

100

mA

pf

pf

mA

C128 HARDWARE SPECIFICATIONS 615

Figure 16-21. 6S26 Write Timing Diagram

Figure 16-22. 6526 Read Timing Diagram

6526 INTERFACE SIGNALS

c)>2—CLOCK INPUT
The 4>2 clock is a TTL-compatible input used for internal device operation and as a timing
reference for communicating with the system data bus.

CS—CHIP SELECT INPUT
The CS input controls the activity of the 6526. A low level on CS while <|>2 is high causes
the device to respond to signals on the R/W and address (RS) lines. A high on CS
prevents these lines from controlling the 6526. The CS line is normally activated (low)
at 4>2 by the appropriate address combination.

R/W—READ/WRITE INPUT
The R/W signal is normally supplied by the microprocessor and controls the direction of
data transfers of the 6526. A high on R/W indicates a read (data transfer out of the
6526), while a low indicates a write (data transfer into the 6526).

RS3-RS0—ADDRESS INPUTS
The address inputs select the internal registers as described by the Register Map.

DB7-DB0—DATA BUS INPUTS/OUTPUTS
The eight data bus pins transfer information between the 6526 and the system data bus.
These pins are high impedance inputs unless CS is low and R/W and 4>2 are high to read
the device. During this read, the data bus output buffers are enabled, driving the data
from the selected register onto the system data bus.

IRQ—INTERRUPT REQUEST OUTPUT
IRQ is an open drain output normally connected to the processor interrupt input. An
external pullup resistor holds the signal high, allowing multiple IRQ outputs to be
connected together. The IRQ output is normally off (high impedance) and is activated
low as indicated in the functional description.

RES—RESET INPUT
A low on the RES pin resets all internal registers. The port pins are set as inputs and
port registers to zero (although a read of the ports will return all highs because of
passive pullups). The timer control registers are set to 0 and the timer latches to all ones.
All other registers are reset to 0.

6526 TIMING CHARACTERISTICS

SYMBOL

TCYC

TR, T F

TCHW

TCLW

TpD

Twcs
TADS

TADH

TRWS

TRWH

TDS

TDH

CHARACTERISTIC

i>2 Clock

Cycle Time
Rise and Fall Time
Clock Pulse Width (High)
Clock Pulse Width (Low)

Write Cycle
Output Delay From 4>2
CS low while c|>2 high
Address Setup Time
Address Hold Time
R/W Setup Time
R/W Hold Time
Data Bus Setup Time
Data Bus Hold Time

1 MHz

MIN MAX

1000 20,000
— 25
420 10,000
420 10,000

— 1000
420 —

0 —
10 —
g
0 —

150 —
0 —

2MHz

MIN MAX

500 20,000
— 25
200 10,000
200 10,000

— 500
200 —

0 —
5 —
0 _
0 —

75 —
0 —

UNIT

ns
ns
ns
ns

ns
ns
ns
ns
ns
ns
ns
ns

C128 HARDWARE SPECIFICATIONS 617

6526 TIMING CHARACTERISTICS

SYMBOL

TPS

Twcs(2)
TADS

TAOH

TRWS

TRWH

TACC

IcoO)
TDR

CHARACTERISTIC

Read Cycle
Port Setup Time
CS low while <f>2 high
Address Setup Time
Address Hold Time
R/W Setup Time
R/W Hold Time
Data Access from RS3-RS0
Data Access from CS
Data Release Time

(continued)

1 MHz

MIN MAX

300 —
420 —

0 —
10 —
0 —
0 —

— 550
— 320

50 —

2MHz

MIN MAX

150 —
20 —

0 —
5 —
0 —
0 —

— 275
— 150
25 —

UNIT

ns
ns
ns
ns
ns
ns
ns
ns
ns

1. All timings are referenced from VjL max and V^ min on inputs and VOL max and
VDH min on outputs.

2- T w c s is measured from the later of 4>2 high or CS low. CS must be low at least
until the end of 4>2 high.

3. T c o is measured from the later of <|>2 high or CS low. Valid data is available only
after the later of TACC or Tco-

REGISTER MAP

6526 FUNCTIONAL DESCRIPTION

I/O PARTS (PRA, PRB, DDRA, DDRB).
Parts A and B each consist of an 8-bit Peripheral Data Register (PR) and an 8-bit Data
Direction Register (DDR). If a bit in the DDR is set to one, the corresponding bit in the PR
is an output; if a DDR bit is set to a 0, the corresponding PR bit is defined as an input.
On a READ, the PR reflects the information present on the actual port pins (PA0-PA7,
PB0-PB7) for both input and output bits. Port A and Port B have passive pull-up
devices as well as active pull-ups, providing both CMOS and TTL compatibility. Both
parts have two TTL load drive capability. In addition to normal I/O operation, PB6 and
PB7 also provide timer output functions.

HANDSHAKING
Handshaking on data transfers can be accomplished using the PC output pin and the
FLAG input pin. PC will go low for one cycle following a read or write of PORT B.
This signal can be used to indicate "data ready" at PORT B or "data accepted" from
PORT B. Handshaking on 16-bit data transfers (using both PORT A and PORT B) is
possible by always reading or writing PORT A first. FLAG is a negative edge sensitive
input which can be used for receiving the PC output from another 6526, or as a general
purpose interrupt input. Any negative transition of FLAG will set the FLAG interrupt
bit.

REG NAME D, D6 Ds D4 D, D2 D, Do

0 PRA PA7 PA6 PA5 PA4 PA3 PA2 PA! PA0

1 PRB PB7 PB6 PB5 PB4 PB3 PB2 PB, PB0

2 DDRA DPA7 DPA6 DPA5 DPA4 DPA3 DPA2 DPA, DPA0

3 DDRB DPB7 DPB6 DPB5 DPB4 DPB3 DPB2 DPB, DPB0

INTERVAL TIMERS (TIMER A, TIMER B)
Each interval timer consists of a 16-bit read-only Timer Counter and a 16-bit write-
only Timer Latch. Data written to the timer are latched in the Timer Latch, while
data read from the timer are the present contents of the Time Counter. The timers
can be used independently or linked for extended operations. The various timer modes
allow generation of long time delays, variable width pulses, pulse trains and variable
frequency waveforms. Utilizing the CNT input, the timers can count external pulses
or measure frequency, pulse width and delay times of external signals. Each timer
has an associated control register, providing independent control of the following
functions:

START/STOP
A control bit allows the timer to be started or stopped by the microprocessor at any
time.

C128 HARDWARE SPECIFICATIONS 619

PB ON/OFF
A control bit allows the timer output to appear on a PORT B output line (PB6 for
TIMER A and PB7 for TIMER B). This function overrides the DDRB control bit and
forces the appropriate PB line to an output.

TOGGLE/PULSE
A control bit selects the output applied to PORT B. On every timer underflow the output
can either toggle or generate a single positive pulse of one cycle duration. The toggle
output is set high whenever the timer is started and is set low by RES.

ONE-SHOT/CONTINUOUS
A control bit selects either timer mode. In one-shot mode, the timer will count down
from the latched value to 0, generate an interrupt, reload the latched value, then stop. In
continuous mode, the timer will count from the latched value to 0, generate an interrupt,
reload the latched value and repeat the procedure continuously.

FORCE LOAD
A strobe bit allows the timer latch to be loaded into the timer counter at any time,
whether the timer is running or not.

INPUT MODE
Control bits allow selection of the clock used to decrement the timer. TIMER A can
count 4>2 clock pulses or external pulses applied to the CNT pin. TIMER B can count 4>2
pulses, external CNT pulses, TIMER A underflow pulses or TIMER A underflow pulses
while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on a force load or
following a write to the high byte of the prescaler while the timer is stopped. If the timer
is running, a write to the high byte will load the timer latch, but not reload the counter.

READ (TIMER)

REG NAME

4 TA LO TAL7 TAL6 TAL5 TAL4 TAL3 TAL2 TAL, TAL0

5 TAHI TAH7 TAH« TAHS TAH4 TAH3 TAH2 TAH, TAH0

6 TB LO TBL7 TBL6 TBL5 TBL4 TBL3 TBL2 TBL, TBL0

7 TB HI TBH7 TBH« TBH5 TBH4 TBH3 TBH2 TBH, TBH0

WRITE (PRESCALER)

REG NAME

4 TALO PAL7 PAL6 PAL5 PAL4 PAL3 PAL2 PAL, PAL0

5 TAHI PAH7 PAH6 PAH5 PAH4 PAH3 PAH2 PAH, PAH0

6 TB LO PBL7 PBL6 PBLS PBL4 PBL3 PBL2 PBL, PBL0

7 TB HI PBH7 PBH6 PBHS PBH4 PBH3 PBH2 PBH, PBH0

TIME OF DAY CLOCK (TOD)
The TOD clock is a special purpose timer for real-time applications. TOD consists of a
24-hour (AM/PM) clock with 1/1 Oth second resolution. It is organized into four regis-
ters: lOths of seconds, Seconds, Minutes and Hours. The AM/PM flag is in the MSB of
the Hours register for easy bit testing. Each register reads in BCD format to simplify
conversion for driving displays, etc. The clock requires an external 60 Hz or 50 Hz
(programmable) TTL level input on the TOD pin for accurate time keeping. In addition
to timekeeping, a programmable ALARM is provided for generating an interrupt at a
desired time. The ALARM registers are located at the same addresses as the correspond-
ing TOD registers. Access to the ALARM is governed by a Control Register bit. The
ALARM is write-only; any read of a TOD address will read time regardless of the state
of the ALARM access bit.

A specific sequence of events must be followed for proper setting and reading of
TOD. TOD is automatically stopped whenever a write to the Hours register occurs. The
clock will not start again until after a write to the lOths of seconds register. This assures
TOD will always start at the desired time. Since a carry from one stage to the next can
occur at any time with respect to a read operation, a latching function is included to
keep all Time Of Day information constant during a read sequence. All four TOD
registers latch on a read of Hours and remain latched until after a read of lOths of
seconds. The TOD clock continues to count when the output registers are latched. If
only one register is to be read, there is no carry problem and the register can be read
"on the fly," provided that any read of Hours is followed by a read of lOths of seconds
to disable the latching.

READ

REG

8
9
A
B

NAME

TOD
TOD
TOD
TOD

10THS
SEC
MIN
HR

0
0
0
PM

0
SH4

MH4

0

0
SH2

MH2

0

0
SH,
MHj
HH

T8
SL8

ML8

HL8

T4
SL4

ML4

HL4

Ti
SL2

ML2

HL2

Ti
SLi
ML,
HL,

WRITE

CRB7 = 0TOD
CRB7 = 1 ALARM
(SAME FORMAT AS READ)

SERIAL PORT (SDR)
The serial port is a buffered, 8-bit synchronous shift register system. A control bit
selects input or output mode. In input mode, data on the SP pin is shifted into the shift
register on the rising edge of the signal applied to the CNT pin. After eight CNT pulses,
the data in the shift register is dumped into the Serial Data Register and an interrupt is
generated. In the output mode, TIMER A is used for the baud rate generator. Data is

C128 HARDWARE SPECIFICATIONS 621

shifted out on the SP pin at one half the underflow rate of TIMER A. The maximum
baud rate possible is 4>2 divided by 4, but the maximum useable baud rate will be
determined by line loading and the speed at which the receiver responds to input data.
Transmission will start following a write to the Serial Data Register (provided TIMER A
is running and in continuous mode). The clock signal derived from TIMER A appears as
an output on the CNT pin. The data in the Serial Data Register will be loaded into the
shift register then shift out to the SP pin when a CNT pulse occurs. Data shifted out
becomes valid on the falling edge of CNT and remains valid until the next falling edge.
After eight CNT pulses, an interrupt is generated to indicate more data can be sent. If
the Serial Data Register was loaded with new information prior to this interrupt, the new
data will automatically be loaded into the shift register and transmission will continue. If
the microprocessor stays one byte ahead of the shift register, transmission will be
continuous. If no further data is to be transmitted, after the 8th CNT pulse, CNT will
return high and SP will remain at the level of the last data bit transmitted. SDR data is
shifted out MSB first and serial input data should also appear in this format.

The bidirectional capability of the Serial Port and CNT clock allows many 6526
devices to be connected to a common serial communication bus on which one 6526 acts
as a master, sourcing data and shift clock, while all other 6526 chips act as slaves. Both
CNT and SP outputs are open drain to allow such a common bus. Protocol for
master/slave selection can be transmitted over the serial bus, or via dedicated handshaking
lines.

REG NAME

C^ JJL/JK 1S7 og 05 04 33 S2 "1 ^0

INTERRUPT CONTROL (ICR)
There are five sources of interrupts on the 6526: underflow from TIMER A, underflow
from TIMER B, TOD ALARM, Serial Port full/empty and FLAG. A single register
provides masking and interrupt information. The interrupt Control Register consists of a
write-only MASK register and a read-only DATA register. Any interrupt will set the
corresponding bit in the DATA register. Any interrupt which is enabled by the MASK
register will set the IR bit (MSB) of the DATA register and bring the IRQ pin low. In a
multi-chip system, the IR bit can be polled to detect which chip has generated an
interrupt request. The interrupt DATA register is cleared and the IRQ line returns high
following a read of the DATA register. Since each interrupt sets an interrupt bit
regardless of the MASK, and each interrupt bit can be selectively masked to prevent the
generation of a processor interrupt, it is possible to intermix polled interrupts with true
interrupts. However, polling the IR bit will cause the DATA register to clear, therefore,
it is up to the user to preserve the information contained in the DATA register if any
polled interrupts were present.

The MASK register provides convenient control of individual mask bits. When
writing to the MASK register, if bit 7 (SET/CLEAR) of the data written is a ZERO, any

mask bit written with a one will be cleared, while those mask bits written with a 0
will be unaffected. If bit 7 of the data written is a ONE, any mask bit written with a one
will be set, while those mask bits written with a 0 will be unaffected. In order for an
interrupt flag to set IR and generate an Interrupt Request, the corresponding MASK bit
must be set.

READ (INT DATA)

REG NAME

D ICR IR 0 0 FLG SP ALRM TB TA

WRITE (INT MASK)
REG NAME

D ICR S/C X X FLG SP ALRM TB TA

CONTROL REGISTERS

There are two control registers in the 6526, CRA and CRB. CRA is associated
with TIMER A and CRB is associated with TIMER B. The register format is as
follows:

CRA:

BIT NAME FUNCTION

0 START 1 = START TIMER A, 0 = STOP TIMER A, This bit is automat-
ically reset when underflow occurs during one-shot mode.

1 PBON 1 = TIMER A output appears on PB6, 0 = PB6 normal operation.
2 OUTMODE 1 = TOGGLE, 0 = PULSE
3 RUNMODE 1 = ONE-SHOT, 0 = CONTINUOUS
4 LOAD 1 = FORCE LOAD (this is a STROBE input, there is no data

storage, bit 4 will always read back a 0 and writing a 0 has no
effect).

5 INMODE 1 = TIMER A counts positive CNT transitions, 0 = TIMER A counts
4)2 pulses.

6 SPMODE 1 = SERIAL PORT output (CNT sources shift clock), 0 = SERIAL
PORT input (external shift clock required).

7 TODIN 1 = 50 Hz clock required on TOD pin for accurate time, 0 = 60 Hz
clock required on TOD pin for accurate time.

CI28 HARDWARE SPECIFICATIONS 623

CRB:

BUT NAME

5,6 INMODE

FUNCTION

(Bits CRB0-CRB4 are identical to CRA0-CRA4 for TIMER B
with the exception that bit 1 controls the output of TIMER B on
PB7).
Bits CRB5 and CRB6 select one of four input modes for TIMER
B as:
CRB6
0
0

CRB5
0 TIMER B counts <|>2 pulses.
1 TIMER B counts positive CNT transitions.

1 0 TIMER B counts TIMER A underflow pulses.
1 1 TIMER B counts TIMER A underflow pulses

while CNT is high.
7 ALARM 1 = writing to TOD registers sets ALARM, 0 = writing to TOD

registers sets TOD clock.

REC

E

NAME

CRA

IN

0 = 60Hz

1 = S 0 H E

MODE

0 = INPUT

1= OUTPUT

MODE

0 = *2

1 = CNT

LOAD

1 = FORCE
LOAD
(STROBE)

MODE

0=CONT

1=0.5

MODE

0=PULSE

I=TOGGLE

PS ON

0 = PB6OFF

1=PB 6 ON

START

0=STOP

1=START

- T A -

REG

F

NAME

CRS

ALARM

0 = TOD

1 =

ALARM

IN

0
1
1
1

MODE

0 = <f>2
I = CNT
0 = TA
1 = CNT TA

LOAD

i= FORCE
LOAD

(STROBE)

RUN
MODE

0 = CONT.

1=O.S.

OLT
MODE

0=PULSE

1=TOGGLE

PS ON

0 = P S T O F F

1 = PS,ON

START

0=STOP

1=START

All unused register bits are unaffected by a write and are forced to zero on a
read.

DYNAMIC RANDOM ACCESS
MEMORY

This section discusses the characteristics of the C128 dynamic RAMs, which are
currently the 4164 64K-bit RAM. This RAM device is in the 64K by 1-bit configura-
tion. This section also contains information on the 4416 dynamic RAMs used by
the 8563 video controller. This type of RAM is a 64K RAM in the 16K by 4 bit
configuration.

SYSTEM RAM DESCRIPTION
The C128 system contains 128K of processor-addressable DRAM in the 64K by 1
configuration, organized into two individual 64K banks. Additionally, the system
contains 16K of video display DRAM local to the 8563 video controller, not directly
accessable by the processor.

RAM banking, described in detail in the MMU section in Chapter 13, is controlled
by several MMU registers: the Configuration Register, the RAM Configuration Regis-
ter, and the Zero Page and Page One Pointers. Simply put, the Configuration Register
controls which 64K bank of RAM is selected; the RAM Configuration Register controls
if and how much RAM is kept in common between banks, and the Pointer Registers
redirect the zero and one pages to any page in memory, overriding the effect of the two
Configuration Registers. In the system, RAM bank select is achieved via gated CAS
control.

PHYSICAL CHARACTERISTICS
This section covers some of the characteristics of the 64K by 1-bit RAM and 16K by
4-bit RAM that are used in the C128 system. A pinout table and a figure are given for
both the 4164 and the 4416 packages (See Tables 16-15 and 16-16 and Figures 16-23 and
16-24).

CI28 HARDWARE SPECIFICATIONS 625

PIN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

NAME

NC
Din

/WE
/RAS
Ao

A2

A,
Vcc
A7

As

A4

A3

A6

D«,
/CAS

vss

DESCRIPTION

No Connection
Data In
Write Enable (Active Low)
Row Address Strobe (Active Low)
Address Bit 0
Address Bit 2
Address Bit 1
Power Supply + 5 Vdc
Address Bit 7
Address Bit 5
Address Bit 4
Address Bit 3
Address Bit 6
Data Out
Column Address Strobe (Active Low)
Power Supply Ground

Table 16-15. 4164 Pinout

Figure 16-23. The 4164 Chip

PIN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
IS
16
17
18

NAME

/OE
D,
D2
/WE
/RAS
A6

A5
A4

v«
A7

A3

A2

Aj

Ao

D3
/CAS
D4
Vss

DESCRIPTION

Output Enable (Active Low)
Data Bit 1
Data Bit 2
Write Enable (Active Low)
Row Address Strobe (Active Low)
Address Bit 6
Address Bit 5
Address Bit 4
Power Supply + 5 Vdc
Address Bit 7
Address Bit 3
Address Bit 2
Address Bit 1
Address Bit 0
Data Bit 3
Column Address Strobe (Active Low)
Data Bit 4
Power Supply Ground

Table 16-16. 4416 Pinout

Figure 16-24. The 4464 Chip

CI28 HARDWARE SPECIFICATIONS 627

READ ONLY MEMORY (ROM)

This section describes the C128 system ROM, both from a logical and a hardware point
of view. It mentions aspects of the ROM banking structure, the management of Kernal
and BASIC, and explains the physical specifications of the ROM devices themselves.

SYSTEM ROM DESCRIPTION

In C64 mode, the operating system resides in 16K of ROM, which includes approxi-
mately 8K for Kernal and 8K for BASIC. In C128 mode, the operating system resides in
48K of ROM and includes advanced Kernal and BASIC features. The Kernal, by
definition, is the general operating system of the computer, with fixed entry points into
usable subroutines to facilitate ROM update transparent use by higher-level programs.
There is also a character ROM that resides on the Shared Bus, shared by the VIC chip
and the processor. This ROM is a 4016 8K by 8, NMOS ROM. The C64 OS ROM is
wired so as to appear as two chunks of noncontiguous ROM, copying the actual C64
ROM memory map. Provision is included to handle system ROM as either four 16K X
8 ROMs or as two 32K x 8 ROMs. All internal C128 function ROMs will be the 32K
x 8 variety.

ROM BANKING

Refer back to the MMU register map, Figure 13—4 in Chapter 13. Note that the
Configuration Register (CR) controls the type of ROM or RAM seen in a given address
location. Dependent on the contents of the CR, ROM may be enabled and disabled to
attain the most useful configuration for the application at hand. ROM is enabled in three
memory areas in C128 mode, each consisting of 16K of address space. The lower ROM
may be defined as RAM or System ROM, the upper two ROMs may be System ROM,
Function ROM, Cartridge ROM or RAM. In C64 mode, the C64 memory mapping rules
apply, which are primitive compared to those used in C128 mode. C64 ROM is banked
as two 8K sections, BASIC and Kernal, according to the page zero port and the
cartridge in place at the time. No free banking can occur when a cartridge is in
place.

In the C128, if an address falls into the range of an enabled ROM, the MMU will
communicate the status of ROM to the PLA decoder via the memory status lines.
Essentially, the MMU looks up in the Configuration Register which ROM or RAM is
set. See Chapter 13. The way the banking scheme is implemented, it allows up to 32K
of internal, bankable ROM for use in such programs as Function Key Applications,
and will support 32K of internal bankable ROM. Various combinations of ROM are
possible, and can be noted by studying the configurations for the Configuration
Register. Type 23128 (16K by 8) and 23256 (32K by 8) ROMs are used by the
system.

TIMING SPECIFICATION

INTERNAL ROMs
This section specifies timing parameters for both the 23128 and the 27256 Read Only
Memories. This timing spec applies to internal ROMs and for external ROMs run at 1
MHz. For external ROMs run at 2 MHz, see Table 16-18.

PARAMETER SYMBOL MIN MAX UNIT

Address Valid to Output Delay TACC 300 — ns
Chip Enable to Output Delay T C E 300 — ns
Output Enable to Output Delay T O E 120 — ns

Table 16-17. internal ROM Timing

Figure 16-25. ROM Timing Diagram

EXTERNAL ROMS
All C64 mode external ROMs and many C128 mode external ROMs can be of the type
mentioned above. Any external ROM that is to run at 2 MHz must be faster, as
specified in Table 16-18.

PARAMETER

Address Valid to Output Delay
Chip Enable to Output Delay
Output Enable to Output Delay

Table 16-18. External 2MHz ROM Timing

SYMBOL

TACC

T C E

TOE

MIN

250
200
100

MAX

—

—

U1N

ns
ns
ns

C128 HARDWARE SPECIFICATIONS 629

THE 23128 ROM

PIN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

NAME

Al2
A7

A6

A5

A4

A3

A2

Aj

Ao

Do

D,
D2

GND
D3

D4

D5

D«
D7

ICE
Aio
/OE
An
A9

A8

A,3
/PGM
Vcc

DESCRIPTION

Programming Voltage
Address Bit 12 (AJ3 on the C64 OS ROM)
Address Bit 7
Address Bit 6
Address Bit 5
Address Bit 4
Address Bit 3
Address Bit 2
Address Bit 1
Address Bit 0
Data Bit 0
Data Bit 1
Data Bit 2
Power Supply Ground
Data Bit 3
Data Bit 4
Data Bit 5
Data Bit 6
Data Bit 7
Chip Enable (Active Low)
Address Bit 10
Output Enable (Active Low)
Address Bit 11
Address Bit 9
Address Bit 8
Address Bit 13
Program Enable (Active Low)
Power Supply + 5 Vdc

Table 16-19. 23128 ROM Pinout

Figure 16-26. The 23128 ROM Chip (BASIC, Kernal, Editor and External Function
ROMs)

CI28 HARDWARE SPECIFICATIONS 631

THE 23256 ROM

PIN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

NAME

v w
A12

A7

A6

A5

A4

A3

A2

A,
Ao

Do

D,
D2

GND
D3
D4

D5

D6

D7

/CE-/PGM
Aio
/OE
A n

A9

A8

A,3

A]4

Vcc

DESCRIPTION

Programming Voltage
Address Bit 12
Address Bit 7
Address Bit 6
Address Bit 5
Address Bit 4
Address Bit 3
Address Bit 2
Address Bit 1
Address Bit 0
Data Bit 0
Data Bit 1
Data Bit 2
Power Supply Ground
Data Bit 3
Data Bit 4
Data Bit 5
Data Bit 6
Data Bit 7
Chip Enable-Program Enable (Active Low)
Address Bit 10
Output Enable (Active Low)
Address Bit 11
Address Bit 9
Address Bit 8
Address Bit 13
Address Bit 14
Power Supply +5 Vdc

Table 16-20. 23256 ROM Pinout (Internal or External Function ROMs)

Figure 16-27. The 23256 ROM Chip

CI28 HARDWARE SPECIFICATIONS 633

THE SERIAL BUS

The C128 Serial Bus is an improved version of the C64 serial bus. This bus uses
IEEE-488-type addressing, thus maintaining software compatibility between the con-
sumer market serial devices and the CBM IEEE-488 parallel devices. The C128
improves this bus by allowing communication at much greater speeds with specially
designed peripherals, the most important being the disk drive, while still maintaining
compatibility with older, slower peripherals used by the C64. This section describes the
hardware and some of the software aspects of both the old and the new serial transmis-
sion scheme.

BUS OPERATIONS
There are three basic bus operations that take place on the serial bus, in both fast and
slow modes. The first of these is called Control. The C128 is the controller in most
circumstances. The controller of the bus is always the device that initiates protocol on
the bus, requesting peripheral devices to do one of the two other serial operations, either
Talk or Listen.

All serial bus devices can listen. A listening device is a device that has been
ordered by the controller to receive data. Some devices, such as disk drives, can talk. A
talking device is sending data to the controller. Both hardware and software drive this
bus protocol.

BUS SIGNALS

The Commodore serial bus is composed of the following signals:

• SRQ (pin 1): This signal is called Service Request. The slow serial bus does
not use this line, the fast bidirectional clock line. (Not used in C64 Mode.)

• GND (pin 2): Chassis ground.
• ATN (pin 3): This signal is called Attention. It is used to address a device on

the bus. When requesting a device to talk to or listen, the controller brings this
signal low, creating some sort of interrupt on all serial bus devices. It then
sends out an address that will select one device on the bus. It is the controller's
responsibility to time out if a device on the bus does not respond within a
reasonable amount of time.

• CLK (pin 4): This is the slow serial clock. It is used by slow serial devices,
which are software-clocked, to clock data transmitted on the serial bus.

• DATA (pin 5): This is the serial data line. It is used by both slow and fast
serial devices to transmit data in sync with clock signal.

• RESET (pin 6): This is the reset line, used to reset all peripherals when the
host resets.

FAST SERIAL BUS

FAST PROTOCOL
To function as a fast talker, the system must be addressing a fast device, such as the
1571 disk drive. When addressing any device, the C128 sends a fast byte, toggling the
SQR line eight times, with the ATN line low. If the device is a fast device, it will record
the fact that a fast controller accessed it and respond with a fast acknowledge. If the
device is a slow device, no response is delivered and the C128 then assumes it is talking
with a slow device. The status of drive speed is retained until the device is requested to
untalk or unlisten, if an error occurs, or if a system reset occurs.

FAST HARDWARE
The fast serial bus, in order to achieve its speed increase, uses different hardware from
that of the slow serial bus. The slow serial bus uses several 6526 port lines to drive
ATN, CLK and DATA. Thus, clocking of the data transfers must be software-driven.
The fast serial method is to use the serial port line of a 6526 (CIA-1) to actually transfer
the serial data. This increases the transfer rate dramatically, to the point where the
transfer becomes limited more by software overhead than anything else. The actual
speed of transfer is set by the 6526 timer. Current 6526's have a minimum serial timer
value of 4, though in actual use this value is closer to 6, owing to loading. Any
advances in the 6526 would make a faster data transfer possible.

This scheme could interfere with slow serial transmissions, since the DATA line is
shared by both schemes. Thus, circuitry exists that will isolate the fast serial drivers
from the slow serial bus. Setting FSDIR to input mode is sufficient to remove any
possible fast serial interactions with the slow serial bus, other than the additional device
loading, which is not a problem at slow serial bus speeds.

In order to ensure compatibility with the C64, however, the slow serial bus cannot
interfere with the fast drivers, since these drivers are shared with the User Port and a
user port device could presumably make use of them. Once C64 mode is set, the input
direction of the interface circuitry is disabled. Thus, in C64 mode, the FSDIR bit must
be set to input to remove fast to slow interference, but slow to fast interference is
automatically removed by invoking C64 mode. There is no way to disable slow to fast
interference in C128 mode (at least not simultaneously with the elimination of fast to
slow interference).

C128 HARDWARE SPECIFICATIONS 635

THE EXPANSION BUS

The C128 Expansion Bus is compatible with the C64 Expansion Bus, while at the same
time allowing extended capabilities in C128 mode.

CARTRIDGE ADDITION
The C128 can use larger and more sophisticated cartridges than the C64. One of the
main reasons for this is the new banking scheme used in the C128 for external
cartridges. The C64 uses two hardware control lines, /EXROM and /GAME, to control
banking out of internal facilities and banking in of cartridge facilities. The C128 uses a
software polling method, where upon power-up it polls the cartridge, according to a
defined protocol, to determine if such a cartridge exists, and if so, what its software
priority is. Since the C128 is always free to bank between cartridges and built-in ROM,
an external application can take advantage of internal routines and naturally become an
extended part of the C128, as opposed to becoming a replacement application. See
Chapter 13 for information on the Auto Start Cartridge ROM sequence.

The elimination of /EXROM and /GAME as hardware control lines for cartridge
identification (in C128 mode) has freed up both of these lines for extended functioning.
Both of the lines appear as bits in the MMU Mode Configuration Register, and are both
input and output ports. Neither has a dedicated function other than general cartridge
function expansion, and lend themselves to act as latched banking lines or input sense
lines. Of course, neither can be asserted on C128 power-up or C64 mode will automati-
cally be set.

DMA CAPABILITY
The C128 expansion bus supports DMAs in a fashion similar to that of the C64. A C64
DMA is achieved by pulling the /DMA pin on the expansion bus low. Immediately after
this happens, the RDY and AEC lines of the processor are brought low. This can neatly
shut down the processor, but it can also cause problems, depending on what the
processor is doing at the time. The RDY input of an 8502 series processor, when brought
low, will halt the processor of the next <f>l cycle, leaving the processor's address lines
reflecting the current address being fetched. However, if the processor is in a write cycle
when RDY is brought low, it will ignore RDY until the next read cycle. Thus, in the
C64, a /DMA input occurring during a write cycle will tri-state the processor's address
and data bus, but not stop it until up to three cycles later when the next read cycle
occurs. The write cycles following the /DMA input do not actually write, causing
memory corruption and often processor fatality when the /DMA line is released. Any
/DMA input during $2 is a potentially fatal DMA.

If a proper /DMA is asserted, the C64 tri-states and shuts down, allowing the
DMA source complete access to the processor bus. Such a DMA source must monitor
the <f>2 and BA outputs, as it must tri-state when the VIC is on the bus, and it must
completely DMA when a VIC DMA is called for. The VIC chip always has the highest

DMA priority. When on the bus, the DMA source has access to RAM, ROM and I/O
in the C64 scheme. A proper DMA shutdown is usually achieved via some C64 software
handshaking with the DMA source.

The C128 system uses a similar DMA scheme. When the /DMA input goes low,
the RDY input to the 8502, the AEC input to the 8502, and the /BUSRQST input to the
Z80 immediately go low. Additionally, the gated AEC signal, GAEC, goes low,
causing the MMU to go immediately to its VIC CYCLE MODE, and the Z80 Data Out
buffer to tri-state. The DMA causes the Address to the Shared Address buffer to reverse
direction, and the Translated Address to the Address buffer to be enabled, giving the
external DMA source complete access to the processor address bus. The PLA is still
looking at ungated AEC and as such will allow access to I/O devices, RAM and ROM.
There can be no access to the MMU; thus for C128 memory mapping the memory map
must be set up before being DMA'ed. For C64 mode, memory mapping is done by the
8502 processor port lines and by the external /EXROM and /GAME. Since the 8502
ports will be inaccessible by a DMA source, only the C64 map changes based upon
/EXROM and /GAME can be made during a DMA. This is the same as in a C64 unit.
All DMA sources, as with the C64, must yield to the VIC during 4>0 or BA low. The
C128 can perform a destructive DMA as easily as the C64. In order to use DMA's, the DMA
source will most likely have to cooperate with a C128 mode program, allowing it to
handshake with a DMA source to effect DMA's nondestructively.

C128 HARDWARE SPECIFICATIONS 637

EXPANSION BUS P1NOUT

PIN

1
2
3
4
5
6
7
8
9

10
11

12
13

14
15
16
17
18
19
20
21
22
A
B

C
D
E
F
H
J
K
L
M
N
P
R
S
T
U
V

w
X
Y
Z

NAME

GND
+ 5V
+ 5V
/IRQ
R/W
DCLOCK
I/O,
/GAME
/EXROM
I/O2
/ROML

BA
/DMA

D7

D6

D,
D4

D3

D2

D,
Do
GND
GND
/ROMH

/RESET
/NMI
1MHz
TA,5

TA14

TA13

TA12

TA,,
TA10

TA9

TA8

SA7

SA6

SAS

SA4

SA3

SA2

SA,
SA0

GND

DESCRIPTION

System Ground
System Vcc

System Vcc
Interrupt Request
System Read Write Signal
8.18 MHz Video Dot Clock
I/O Chip Select: $DE00-$DEFF, Active Low
Sensed for Memory Map Configuration
Sensed for Memory Map Configuration
I/O Chip Select: $DF00-$DFFF, Active Low.
External ROM Chip Select, $8000-$BFFF in C128 Mode
($8000-$9FFF in C64 mode)
Bus Available Output
Direct Memory Access Input (see caution on DMA capability
on p. 636)
Data Bit 7
Data Bit 6
Data Bit 5
Data Bit 4
Data Bit 3
Data Bit 2
Data Bit 1
Data Bit 0
System Ground
System Ground
External ROM Chip Select, $C000-$FFFF in C128 Mode
($C000-$FFFF in C64 mode)
System Reset Signal
Non-Maskable Interrupt Request
System 1MHz <t>0 Clock
Translated Address Bit 15
Translated Address Bit 14
Translated Address Bit 13
Translated Address Bit 12
Translated Address Bit 11
Translated Address Bit 10
Translated Address Bit 9
Translated Address Bit 8
Shared Address Bit 7
Shared Address Bit 6
Shared Address Bit 5
Shared Address Bit 4
Shared Address Bit 3
Shared Address Bit 2
Shared Address Bit 1
Shared Address Bit 0
System Ground

Table 16-21. Expansion Bus Pinout

THE VIDEO INTERFACE

The C128 VIC video interface hardware allows the connection of a standard NTSC or
PAL commercial television and/or a color monitor. The monitor can accept either a
composite video signal or separate chroma and luminance/sync signals in addition to an
audio signal. This output is very similar to the output in later revision C64 units.

The C128 also provides 80-column video interfacing. The available 80-column
display is RGBI and monochrome, able to interface to most NTSC- or PAL-compatible
RGB I TYPE I monitors and most 80-column-compatible NTSC or PAL monochrome
monitors.

THE VIC VIDEO INTERFACE
The following items specify the VIC video interface for 40-column display in sixteen
colors. The VIC signal is available at analog levels at the video connector and at RF
levels at the RF output.

MODULATOR SPECIFICATION
The modulator provides a broadcast-type RF signal carrying the VIC composite video
and audio signals. The NTSC modulator is switchable between channels 3 and 4 to help
minimize local broadcast interference. The signal generated by the RF modulator
complies with the FCC ruling concerning FCC Class B, TV interface devices. The RF
output is accessible via a standard RCA-type phono/video jack.

MONITOR OUTPUT
The VIC video output provides the signals shown in Table 16-22.

SIGNAL

Luminance/Sync
Chroma
Composite
Audio

LEVEL

lVp-p
lVp-p
l V p - p
l V p - p

IMPEDENCE

75 n
75 ft
75 ft
IK a

DC

0.5
0.5
0.5

OFFSET

V
V
V

Table 16-22. VIC Video Output Signals

VIDEO CONNECTOR PINOUT
The VIC video connector exists physically as an eight-pin DIN connector. It provides
the signals shown in Table 16-23.

CI28 HARDWARE SPECIFICATIONS 639

PIN SIGNAL

1
2
3
4
5
6
7
8

Luminance/Sync
Ground
Audio Out
Composite
Audio In
Chroma
N.C.
N.C.

Table 16-23. Video Connector Signals

THE 8563 VIDEO INTERFACE

The following items specify the 8563 video interface for 80-column display in sixteen
colors. The 8563 signal is available at digital levels for RGBI and at a three-level
derived analog for black and white composite video.

MONITOR OUTPUT
Table 16-24 shows the signals provided by the 8563 output.

SIGNAL

Red
Green
Blue
Intensity
HSync
VSync
Composite

Full Intensity
Half Intensity
Sync

LEVEL

TTL
TTL
TTL
TTL
TTL
TTL

2.0 V
1.5 V
0.5 V

IMPEDENCE

TTL
TTL
TTL
TTL
TTL
TTL
75 n

Table 16-24. 8563 Output Signals

VIDEO CONNECTOR PINOUT
The 8563 video connector is an IBM-style D9 connector, providing the signals shown in
Table 16-25.

PIN

1
2
3
4
5
6
7
8
9

SIGNAL

Ground
Ground
Red
Green
Blue
Intensity
Monochrome (non-standard)
Horizontal Sync
Vertical Sync

Table 16-25. 8563 Video Connector Pinout

THE KEYBOARD

The C128 Keyboard is an advance over the standard C64 keyboard, while still maintain-
ing full compatibility. It has several extra keys that are used in C128 mode, but not in
C64 mode. It features a numeric keypad, a H E L P key, extended function keys, a
true C A P S L O C K key, and a 4 0 / 8 0 column switch key, all of which are
strobed by the VIC chip or tied to dedicated 8502 or MMU I/O lines.

CONNECTOR PiNOUT
The C128 keyboard is designed to be connected by one 12- and one 13-pin internal
single-in-line connector for the unit with a built-in keyboard. Table 16-26 illustrates
both connections.

CI28 HARDWARE SPECIFICATIONS 641

D-TYPE SIGNAL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Ground
Key
Restore
+ 5V
Row 3
Row 6
Row 5
Row 4
Row 7
Row 2
Row 1
RowO
Column 0
Column 6
Column 5
Column 4
Column 3
Column 2
Column 1
Column 7
Ko

Kj

K2

40/80
Alpha Lock

Table 16-26. The Keyboard Connector Pinout

THE CI28 KEYBOARD TABLE

CO

PIN13

Cl

PIN19

C2

PIN18

C3

PIN17

C4

PIN16

C5

PIN15

C6

PIN14

C7

PIN20

KO

PIN21

Kl

PIN22

K2

PIN23

GND

PIN-1

RO
PIN12

Rl
PIN11

R2
PIN10

R3
PIN5

R4
PIN8

R5
PIN7

R6
PIN6

R7

PIN9

INS
DEL

RET

t
I

F8
F7

F2
Fl

F4
F3

F6
F5

<-

#
3

W

A

$
4

Z

s

E

LEFT

SHIFT

%
5

R

D

&
6

C

F

T

X

7

Y

G

(
8

B

H

U

V

)
9

I

J

0

M

K

O

N

+

P

L

-

>

[

@

<

lb

*

]

CLR
HOM

RIGHT
SHIFT

=

9

/

1

<-

CTRL

2

SPACE
BAR

Q

RUN

STOP

HELP

8

5

TAB

2

4

7

1

ESC

+

-

LINE
FEED

ENTER

6

9

3

ALT

0

t

->

NO

SCRL

NMI
PIN3

40/80
PIN24

P6510
PIN25

«

*

<

SHIFT
LOCK

RESTR

40/80
DSPLY

CAPS
LOCK

/ (LOCKING)

/ (LOCKING)

/ (LOCKING)

NOTE: Pins RO through R7 pertain to the keyboard row values for the keyboard SCAN.
These pins correspond to bits 0 through 7 of location 56321 (SDC01).

Pins CO through C7 are the keyboard's column values, which correspond to bits 0
through 7 of location 56320 ($DC00).

Pins K0 through K2 pertain to the C128 keyboard control register bit, 0 through 2 of
location 53295 ($D02F).

APPENDIXES
Appendix A - BASIC Language Error Messages 644

Appendix B - DOS Error Messages 648

Appendix C — Connectors/Ports for Peripheral

Equipment 652

Appendix D - Screen Display Codes 658

Appendix E - ASCII and CHR$ Codes 660

Appendix F - Screen and Color Memory Maps 663

Appendix G - Derived Trigonometric Functions 665

Appendix H - Control and Escape Codes 666

Appendix I - BASIC 7.0 Abbreviations 670

Appendix J - Disk Command Summary 674

Appendix K -

Part I-Commodore 128 CP/M 676

Part Il-Calling CP/M BIOS, 8502 BIOS, and CP/M

User Functions in Z80 Machine Language 702

Part Ill-The CP/M System Memory Map 709

Appendix L - Commodore 128 System Schematics 721

APPENDIX A

BASIC LANGUAGE
ERROR MESSAGES
The following error messages are displayed by BASIC. Error messages can also be
displayed with the use of the ERR$() function. The error numbers below refer only to
the number assigned to the error for use with the ERR$() function.

ERROR # ERROR NAME

1 TOO MANY FILES

2 FILE OPEN

3 FILE NOT OPEN

4 FILE NOT FOUND

5 DEVICE NOT PRESENT

6 NOT INPUT FILE

7 NOT OUTPUT FILE

8 MISSING FILE NAME

9 ILLEGAL DEVICE NUMBER

10 NEXT WITHOUT FOR

11 SYNTAX

DESCRIPTION

There is a limit of ten files OPEN at one
time.

An attempt was made to open a file using
the number of an already open file.

The file number specified in an I/O state-
ment must be opened before use.

Either no file with that name exists (disk)
or an end-of-tape marker was read (tape).

The required I/O device is not available or
buffers deallocated (cassette). Check to make
sure the device is connected and turned
on.

An attempt was made to GET or INPUT
data from a file that was specified as output
only.

An attempt was made to send data to a file
that was specified as input only.

File name missing in command.

An attempt was made to use a device im-
properly (SAVE to the screen, etc.).

Either loops are nested incorrectly, or there
is a variable name in a NEXT statement
that doesn't correspond with one in FOR.

A statement not recognized by BASIC. This
could be because of a missing or extra
parenthesis, a misspelled key word, etc.

APPENDIXES 645

ERROR # ERROR NAME

12 RETURN WITHOUT GOSUB

13 OUT OF DATA

14 ILLEGAL QUANTITY

15 OVERFLOW

16 OUT OF MEMORY

17 UNDEF'D STATEMENT

18 BAD SUBSCRIPT

19 REDIM'D ARRAY

20 DIVISION BY ZERO

21 ILLEGAL DIRECT

22 TYPE MISMATCH

23 STRING TOO LONG

24 FILE DATA

25 FORMULA TOO COMPLEX

26 CAN'T CONTINUE

27 UNDEF'D FUNCTION

DESCRIPTION

A RETURN statement was encountered
when no GOSUB statement was active.

A READ statement is encountered without
any data left to READ.

A number used as the argument of a func-
tion or statement is outside the allowable
range.

The result of a computation is larger than
the largest number allowed (1.701411834E
+ 38).

Either there is no more room for program
code and/or program variables, or there are
too many nested DO, FOR or GOSUB state-
ments in effect.

A referenced line number doesn't exist in
the program.

The program tried to reference an element
of an array out of the range specified by
the DIM statement.

An array can only be DIMensioned once.

Division by zero is not allowed.

INPUT, GET, INPUT#, GET# and GET-
KEY statements are allowed only within a
program.

This error occurs when a numeric value is
assigned to a string variable or vice versa.

A string can contain up to 255 characters.

Bad data read from a tape or disk file.

The computer was unable to evaluate this
expression. Simplify the expression (break
into two parts or use fewer parentheses).

The CONT command does not work if the
program was not RUN, if there was an
error, or if a line has been edited.

A user-defined function that was never de-
fined was referenced.

ERROR # ERROR NAME

28 VERIFY

29 LOAD

30 BREAK

31 CAN'T RESUME

32 LOOP NOT FOUND

33

34

35

36

37

38

39

LOOP WITHOUT DO

DIRECT MODE ONLY

NO GRAPHICS AREA

BAD DISK

BEND NOT FOUND

LINE NUMBER TOO LARGE

UNRESOLVED REFERENCE

40 UNIMPLEMENTED
COMMAND

DESCRIPTION

The program on tape or disk does not match
the program in memory.

There was a problem loading. Try again.

The STOP command was issued in a pro-
gram or the S T O P key was pressed
to halt program execution.

A RESUME statement was encountered
without a TRAP statement in effect.

The program has encountered a DO state-
ment and cannot find the corresponding
LOOP.

LOOP was encountered without a DO state-
ment active.

This command is allowed only in direct
mode, not from a program.

A command (DRAW, BOX, etc.) to create
graphics was encountered before the
GRAPHIC command was executed.

An attempt failed to HEADER a diskette,
because the quick header method (no ID)
was attempted on an unformatted diskette
or the diskette is bad.

The program encountered an "IF . . . THEN
BEGIN" or "IF . . . THEN . . . ELSE
BEGIN" construct, and could not find a
BEND keyword to match the BEGIN.

An error has occurred in renumbering a
BASIC program. The given parameters re-
sult in a line number greater than 63999
being generated; therefore, the renumbering
was not performed.

An error has occurred in renumbering a
BASIC program. A line number referred to
be a command (e.g., GOTO 999) does not
exist. Therefore, the renumbering was not
performed.

A command not supported by BASIC 7.0
was encountered.

APPENDIXES 647

ERROR # ERROR NAME DESCRIPTION

41 FILE READ An error condition was encountered while
loading or reading a program or file from
the disk drive (e.g., opening the disk drive
door while a program was loading).

APPENDIX B

DOS ERROR MESSAGES
The following DOS error messages are returned through the DS and DS$ variables. The
DS variable contains just the error number, and the DS$ variable contains the error
number, the error message, and any corresponding track and sector number. NOTE:
Error message numbers less than 20 should be ignored with the exception of 01, which
gives information about the number of files scratched with the SCRATCH command.

ERROR

NUMBER ERROR MESSAGE AND DESCRIPTION

20 READ ERROR (block header not found)
The disk controller is unable to locate the header of the requested data
block. Causes: an illegal sector number, or the header has been destroyed.

21 READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track.
Causes: misalignment of the read/write head, no diskette, or an unformat-
ted or improperly seated diskette. Can also indicate a hardware failure.

22 READ ERROR (data block not present)
The disk controller has been requested to read or verify a data block that
was not properly written. This error occurs in conjunction with the BLOCK
commands and can indicate an illegal track and/or sector request.

23 READ ERROR (checksum error in data block)
This error message indicates there is an error in one or more of the data
bytes. The data has been read into the DOS memory, but the checksum
over the data is in error. This message may also indicate hardware ground-
ing problems.

24 READ ERROR (byte decoding error)
The data or header has been read into the DOS memory but a hardware
error has been created owing to an invalid bit pattern in the data byte. This
message may also indicate hardware grounding problems.

25 WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch between the
written data and the data in the DOS memory.

26 WRITE PROTECT ON
This message is generated when the controller has been requested to write
a data block while the write protect switch is depressed. This is caused by
using a diskette with a write protect tab over the notch or a notchless diskette.

APPENDIXES 649

ERROR

NUMBER ERROR MESSAGE AND DESCRIPTION

27 READ ERROR
This message is generated when a checksum error has been detected in the
header of the requested data block. The block has not been read into DOS
memory.

28 WRITE ERROR
This error message is generated when a data block is too long and
overwrites the sync mark of the next header.

29 DISK ID MISMATCH
This message is generated when the controller has been requested to access
a diskette that has not been initialized or improperly formatted. The
message can also occur if a diskette has a bad header.

30 SYNTAX ERROR (general syntax)
The DOS cannot interpret the command sent to the command channel.
Typically, this is caused by an illegal number of file names, or patterns
that are illegally used. For example, two file names appear on the left side
of the COPY command.

31 SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in the
first position.

32 SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters. Use abbreviated disk
commands.

33 SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command. Spell
out the file name.

34 SYNTAX ERROR (no file given)
The file name was left out of the command or the DOS does not recognize
it as such. Typically, a colon(:) has been left out of the command.

39 SYNTAX ERROR (invalid command)
This error may result if the command sent to the command channel
(secondary address 15) is unrecognized by the DOS.

50 RECORD NOT PRESENT
Result of disk reading past the last record through INPUT# or GET#
commands. This message will also appear after positioning to a record
beyond end-of-file in a relative file. If the intent is to expand the file by
adding the new record (with a PRINT# command), the error message may
be ignored. INPUT# and GET# should not be attempted after this error is
detected without first repositioning.

ERROR

NUMBER ERROR MESSAGE AND DESCRIPTION

51 OVERFLOW IN RECORD
PRINT# statement exceeds record boundary. Information is truncated.
Since the carriage return that is sent as a record terminator is counted in the
record size, this message will occur if the total characters in the record
(including the final carriage return) exceed the defined size of the record.

52 FILE TOO LARGE
The record position within a relative file indicates that disk overflow will
result.

60 WRITE FILE OPEN
This message is generated when a write file that has not been closed is
being opened for reading.

61 FILE NOT OPEN
A file that has not been opened in the DOS is being accessed. Sometimes
in this situation, a message is not generated; the request is simply ignored.

62 FILE NOT FOUND
The requested file does not exist on the indicated drive.

63 FILE EXISTS
The file name of the file being created already exists on the diskette.

64 FILE TYPE MISMATCH
The requested file access is not possible using files of the type named.
Reread the chapter covering that file type.

65 NO BLOCK
Occurs in conjunction with block allocation. The sector you tried to allocate
is already allocated. The track and sector numbers returned are the next
higher track and sector available. If the track number returned is 0, all
remaining higher sectors are full. If the diskette is not full yet, try a
lower track and sector.

66 ILLEGAL TRACK AND SECTOR
The DOS has attempted to access a track or a block that does not exist in
the format being used. This may indicate a problem reading the pointer to
the next block.

67 ILLEGAL SYSTEM T OR S
This special error message indicates an illegal system track or sector.

70 NO CHANNEL (available)
The requested channel is not available, or all channels are in use. A
maximum of five buffers are available for use. A sequential file requires
two buffers; a relative file requires three buffers; and the error/command
channel requires one buffer. You may use any combination of those as
long as the combination does not exceed five buffers.

APPENDIXES 651

ERROR

NUMBER ERROR MESSAGE AND DESCRIPTION

71 DIRECTORY ERROR
The BAM (Block Availability Map) on the diskette does not match the
copy on disk memory. To correct this, initialize the disk drive.

72 DISK FULL
Either the blocks on the diskette are used, or the directory is at its entry
limit. DISK FULL is sent when two blocks are still available on the
diskette, in order to allow the current file to be closed.

73 DOS VERSION NUMBER (73, CBM DOS V30 1571, 00, 00)
DOS 1 and 2 are read compatible but not write compatible. Disks may be
interchangeably read with either DOS, but a disk formatted on one version
cannot be written upon with the other version because the format is
different. This error is displayed whenever an attempt is made to write
upon a disk that has been formatted in a noncompatible format. This
message will also appear after power-up or reset and is not an error in this
case.

74 DRIVE NOT READY
An attempt has been made to access the disk drive without a diskette
inserted; or the drive lever or door is open.

APPENDIX C

CONNECTORS/PORTS FOR
PERIPHERAL EQUIPMENT

1.
2.
3.
4.
5.
6.

Power Socket
Power Switch
Reset Button
Controller Ports
Expansion Port
Cassette Port

7.
8.
9.

10,
11.
12.

Serial Port
Composite Video Connector
Channel Selector
RF Connector
RGBI Connector
User Port

APPENDIXES 653

SIDE PANEL CONNECTIONS

1. Power Socket—The free end of the cable from the power supply is attached here.
2. Power Switch—Turns on power from the transformer.
3. Reset Button—Resets computer (warm start).
4. Controller Ports—There are two Controller ports, numbered 1 and 2. Each Con-

troller port can accept a joystick mouse or a game controller paddle. A light pen
can be plugged only into port 1, the port closest to the front of the computer. Use
the ports as instructed with the software.

CONTROLLER PORT 1

REAR CONNECTIONS

5. Expansion Port—This rectangular slot is a parallel port that accepts program or
game cartridges as well as special interfaces.

CARTRIDGE
EXPANSION PORT

PIN

12
13
14
15
16
17
18
19
20
21
22

PIN

N
P
R
S
T
U
V

w
X
Y

z
2221

TYPE

BA
DMA
D7
D6
D5
D4
D3
D2
Dl
DO
GND

TYPE

A9
A8
A7
A6
A5
A4
A3
A2
Al
A0
GND

20 1918 1?

PIN

1
2
3
4
5
6
7
8
9

10
11

PIN

A
B
C
D
E
F
H
J
K
L
M

16 15 14 13 12 11 10 J

TYPE

GND
+ 5V
+ 5V
IRQ.
R/W
Dot Clock
l/Ol
GAME
EXROM
I/O 2
ROML

TYPE

GND
ROMH
RESET
NMI
S02
A15
A14
A13
A12
Al l
A10

8 7 6 5 4 3 2 1

Z V X W V U T S B P N M L K J H F E O C 8 A

(view of port from the back of the C128)

6. Cassette Port—A 1530 Datassette recorder can be attached here to store programs
and information.

CASSETTE PORT

1 2 3 4 5 6PIN

A-l
B-2
C-3
D-4
E-5
F-6

TYPE

GND
+ 5V
CASSETTE
CASSETTE
CASSETTE
CASSETTE

MOTOR
READ
WRITE
SENSE

A B C D E F

APPENDIXES 655

7. Serial Port—A Commodore serial printer or disk drive can be attached directly to
the Commodore 128 through this port.

SERIAL I/O PORT

PIN

1
2
3
4
5
6

TYPE

SERIAL SRQIN
GND
SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
RESET

Composite Video Connector—This DIN connector supplies direct audio and com-
posite video signals. These can be connected to the Commodore monitor or used
with separate components. This is the 40-column output connector.

(view of port while facing the rear of the C128)

COMPOSITE VIDEO CONNECTOR

PIN

1
2
3
4
5
6
7
8

TYPE

LUM/SYNC
GND
AUDIO OUT
VIDEO OUT
AUDIO IN
COLOR OUT
NC
NC

NOTE

Luminance/SYNC output

Composite signal output

Chroma signal output
No connection
No connection

9. Channel Selector—Use this switch to select which TV channel (L = channel 3, H
= channel 4) the computer's picture will be displayed on when using a television
instead of a monitor.

10. RF Connector—This connector supplies both picture and sound to your television
set. (A television can display only a 40-column picture.)

11. RGBI Connector—This 9-pin connector supplies direct audio and an RGBI (Red/
Green/ Blue/Intensity) signal. This is the 80-column output.

RGBI CONNECTOR

PIN

1
2
3
4
5
6
7
8
9

SIGNAL

Ground
Ground
Red
Green
Blue
Intensity
Monochrome
Horizontal Sync
Vertical Sync

12. User Port—Various interface devices can be attached here, including a Commo-
dore modem.

APPENDIXES 657

USER I/O PORT

PIN

1
2
3
4
5
6
7
8
9

10
11
12

PIN

A
B
C
D
E
F
H
J
K
L
M
N

TYPE

GND
+ 5V
RESET
CNT1
SP1
CNT2
SP2
PC2
SER. ATN IN
9 VAC
9 VAC
GND

TYPE

GND
FLAG2
PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PA2
GND

1 2 3 4 5 6 7

NOTE

MAX. 100mA

MAX. 100mA
MAX. 100mA

NOTE

8 9 10 11 12

APPENDIX D

SCREEN DISPLAY CODES

SCREEN DISPLAY CODES
40 COLUMNS
The chart below lists all the characters built into the Commodore screen character sets.
It shows which numbers should be PGKEd into the VIC chip (40-column) screen
memory (location 1024 to 2023) to get a desired character on the 40-column screen.
(Remember, to set color memory, use locations 55296 to 56295.) Also shown is which
character corresponds to a number PEEKed from the screen.

Two character sets are available. Both are available simultaneously in 80-column
mode, but only one is available at a time in 40-column mode. The sets are switched by
holding down the S H I F T and C£ (Commodore) keys simultaneously. The entire
screen of characters changes to the selected character set.

From BASIC, PRINT CHR$(142) will switch to upper case/graphics mode and
PRINT CHR$(14) will switch to upper/lower case mode.

Any number on the chart may also be displayed in reverse. The reverse character
code can be obtained by adding 128 to the values shown.

APPENDIXES 659

APPENDIX E

ASCII AND CHR$ CODES
This appendix shows you what characters will appear if you PRINT CHR$(X), for all
possible values of X. It also shows the values obtained by typing PRINT ASC ("x"),
where x is any character that can be displayed. This is useful in evaluating the character
received in a GET statement, converting upper to lower case and printing character-
based commands (such as switch to upper/lower case) that could not be enclosed in
quotes.

APPENDIXES 661

NOTE: The 80-column (RGBI) output has three colors that are different
from the 40-column (composite video) color output. This means that the
character string codes that represent color codes for these three colors are
used differently depending on which video output is used. The following
character string codes represent these colors in each video output.

CHR$ 40-COLUMN (VIC COMPOSITE) 80-COLUMN (8563 RGBI)

Dark Purple
Dark Yellow
Dark Cyan

129
149
151

Orange
Brown
Dark Gray

APPENDIXES 663

APPENDIX F

SCREEN AND COLOR MEMORY MAPS—
CI28 MODE, 40-COLUMN
AND C64 MODE
The maps below display the memory locations used in 40-column mode (C128 and C64)
for identifying the characters on the screen as well as their color. Each map is separately
controlled and consists of 1000 positions.

The character displayed on the maps can be controlled directly with the POKE
command.

VIC CHIP (40-COLUMN) SCREEN MEMORY MAP

The Screen Map is POKEd with a Screen Display Code value (see Appendix D).
For example:

POKE 1024, 13 (from BANK 0 or 15)

will display the letter M in the upper-left corner of the screen.

VIC CHIP (40-COLUMN) COLOR MEMORY MAP

If the color map is POKEd with a color value, this changes the character color. For
example:

POKE 55296,1 (from BANK 15)

will change the letter M inserted above from light green to white.

COLOR CODES—40

0
1
2
3
4
5
6
7

Black
White
Red
Cyan
Purple
Green
Blue
Yellow

8
9

10
11
12
13
14
15

COLUMNS

Orange
Brown
Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Border Control Memory 53280
Background Control Memory 53281

APPENDIXES 665

APPENDIX G

DERIVED TRIGONOMETRIC
FUNCTIONS

FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

BASIC EQUIVALENT

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) = ATN(X/SQR(-X*X +1))
ARCCOS(X) = -ATN(X/SQR
(-X*X +1)) +IT/2
ARCSEC(X) = ATN(X/SQR(X*X-1))
ARCCSC(X) = ATN(X/SQR(X*X-1))

+ (S G N (X H) * T / 2

ARCCOT(X) = -ATN(X) + IT/2
SINH(X) = (EXP(X>-EXP(-X))/2
COSH(X) = (EXP(X) + EXP(-X))/2
TANH(X) = -EXP(-X)/(EXP(X) + EXP

(-X))*2 + l
SECH(X) = 2/(EXP(X) + EXP(-X))
CSCH(X) = 2/(EXP(X)-EXP(-X))
COTH(X) = EXP(-X)/(EXP(X)

-EXP(-X))*2 +1
ARCSINH(X) = LOG(X + SQR(X*X + 1))
ARCCOSH(X) = LOG(X + SQR(X*X-1))
ARCTANH(X) = LOG(1 + X)/(l-X))/2
ARCSECH(X) = LOG(SQR
(-X*X + 1) + 1/X)

ARCCSCH(X) = LOG(SGN(X)*SQR
(X*X+1)/X)

ARCCOTH(X) = LOG((X + l)/(x-l))/2

APPENDIX H

CONTROL AND ESCAPE CODES

CONTROL CODES
The table below lists the control codes used by the Commodore 128. The print codes
in the first column are used in PRINT statements. The key codes in the second
column are the sequence of keys pressed to perform specific controls. Hold down
the C O N T R O L key (or the key specified on the left in the key code column)
and strike the key specified to the right in the key code column.

PRINT
CODES

(CHR$)

CHR$(2)
CHR$(5)
CHR$(7)
CHR$(8)
CHR$(9)

CHR$(10)
CHR$(11)
CHR$(12)
CHR$(13)

CHR$(14)

CHR$(15)
CHR$(17)

CHR$(18)

CHR$(19)

NOTE: (40)
(80)

KEY CODES

KEY SEQUENCE

CTRLB
CTRL 2 or CTRL E
CTRL G
CTRLH
CTRL I

CTRL J
CTRLK
CTRLL
CTRLM

CTRLN

CTRLO
CRSR DOWN/CTRL
Q
CTRL 9 or CTRL R

HOME

= 40-column screen only
= 80-column screen only

FUNCTION

Underline (80)
Set character color to white
Produce bell tone
Disable character set change
Enable character set change
Move cursor to next set tab
position
Line feed
Enable character set change
Disable character mode change
Send a carriage return and line
feed to the computer and enter a
line of BASIC
Set character set to upper/lower
case
Turn flash on (80)
Move the cursor down one
row
Cause characters to be printed in
reverse field
Move the cursor to the home po-
sition (top left) of the display (the
current window)

EFFECTIVE

IN MODE:

C64

/

J
J

J

J

y

y

y

C128

y
y
y

y
y
y
y

y
/</
y

y

y

y

APPENDIXES 667

PRINT
CODES

(CHR$)

CHR$(20)

CHR$(24)

CHR$(27)
CHR$(28)

CHR$(29)

CHR$(30)

CHR$(31)

CHR$(34)

CHR$(129)

CHR$(130)
CHR$(131)

KEY CODES

KEY SEQUENCE

DEL or CTRL T

CTRL X, CTRL TAB
or O TAB
ESC or CTRL[
CTRL 3 or CTRL £

CRSR or CTRL]

CTRL 6 or CTRL

CTRL 7 or CTRL =

O l

FUNCTION

Delete last character typed and
move all characters to the right
of the deleted character one space
to the left

Tab set/clear
Send an ESC character
Set character color to red (40)
and (80)
Move cursor one column to the
right
Set character color to green (40)
and (80)
Set character color to blue (40)
and (80)
Print a double quote on screen
and place editor in quote mode
Set character color to orange (40);
dark purple (80)
Underline off (80)
Run a program. This CHR$ code

EFFECTIVE

IN MODE:

C64 C128

y

•J v'

•j y

V V

V V

/ /
V v

CHR$(133)
CHR$(134)
CHR$(135)
CHR$(136)
CHR$(137)
CHR$(138)
CHR$(139)
CHR$(140)
CHR$(141)

CHR$(142)

CHR$(143)

Fl
F3
F5
F7
F2
F4
F6
F8
SHIFT RETURN,
CTRL ENTER,
O ENTER or
C" RETURN

does not work in PRINT CHR$
(131), but works from keyboard
buffer
Reserved CHR$ code for Fl key
Reserved CHR$ code for F3 key
Reserved CHR$ code for F5 key
Reserved CHR$ code for F7 key
Reserved CHR$ code for F2 key
Reserved CHR$ code for F4 key
Reserved CHR$ code for F6 key
Reserved CHR$ code for F8 key

Send a carriage return and line
feed without entering a BASIC
line
Set the character set to upper
case/graphic
Turn flash off (80)

NOTE: (40) = 40-column screen only.
(80) = 80-column screen only.

PRINT
CODES

(CHR$)

CHR$(144)

CHR$(145)

CHR$(146)
CHR$(147)

CHR$(148)

CHR$(149)

CHR$(150)

CHR$(151)

CHR$(152)

CHR$(153)

CHR$(154)

CHR$(155)

CHR$(156)

CHR$(157)
CHR$(158)

CHR$(159)

NOTE: (40)
(80)

KEY CODES

KEY SEQUENCE

CTRL 1

CRSR UP

CTRLO
CLEAR HOME

INST

O 2

O 3

O 4

O 5

O 6

O 7

O 8

CTRL 5

CRSR LEFT
CTRL 8

or CTRL 4

= 40-column screen only.
= 80-column screen only.

FUNCTION

Set character color to black (40)
and (80)
Move cursor or printing position
up one row
Terminate reverse field display
Clear the window screen and
move the cursor to the top-left
position
Move character from cursor
position end of line right one
column
Set character color to brown (40);
dark yellow (80)
Set character color to light red
(40) and (80)
Set character color to dark gray
(40); dark cyan (80)
Set character color to medium
gray (40) and (80)
Set character color to light green
(40) and (80)
Set character color to light blue
(40) and (80)
Set character color to light gray
(40) and (80)
Set character color to purple (40)
and (80)
Move cursor left by one column
Set character color to yellow (40)
and (80)
Set character color to cyan (40);
light cyan (80)

EFFECTIVE

IN MODE:

C64 C128

APPENDIXES 669

ESCAPE CODES
This table lists the key sequences for the ESCape functions available on the Commodore
128. ESCape sequences are entered by pressing and releasing the E S C key, fol-
lowed by pressing the key listed in the right column.

ESCAPE FUNCTION SEQUENCE KEY

Cancel quote, reverse, flash ESC O

Erase to end of current line ESC Q
Erase to start of current line ESC P
Clear to end of screen ESC @

Move to start of current line ESC J
Move to end of current line ESC K

Enable auto-insert mode ESC A
Disable auto-insert mode ESC C

Delete current line ESC D
Insert line ESC I

Set default tab stop (8 spaces) ESC Y
Clear all tab stops ESC Z

Enable scrolling ESC L
Disable scrolling ESC M

Scroll up ESC V
Scroll down ESC W

Enable bell (by controI-G) ESC G
Disable bell ESC H

Set cursor to nonflashing mode ESC E
Set cursor to flashing mode ESC F

Set bottom right corner of screen window at cursor position ESC B
Set top left corner of screen window at cursor position ESC T

Swap 40/80 column display output device ESC X

The following ESCape sequences have an effect on an 80-column screen only.

ESCAPE FUNCTION SEQUENCE KEY

Change to underlined cursor (80) ESC U
Change to block cursor (80) ESC S

Set screen to reverse video (80) ESC R
Return screen to normal (non reverse video) state (80) ESC N

APPENDIX I

BASIC 7.0 ABBREVIATIONS
NOTE: The abbreviations below operate in upper case/graphics mode. Press the letter
key(s) indicated, then hold down the S H I F T key and press the letter key follow-
ing the word SHIFT.

KEYWORD

ABS
APPEND
ASC
ATN
AUTO
BACKUP
BANK
BEGIN
BEND
BLOAD
BOOT
BOX
BSAVE
BUMP
CATALOG
CHAR
CHR$
CIRCLE
CLOSE
CLR
CMD
COLLECT
COLLISION
COLOR
CONCAT
CONT
COPY
COS
DATA
DEC
DCLEAR
DCLOSE
DEFFN
DELETE
DIM

ABBREVIATION

A
A
A
A
A

BA
B
B

BE
B
B

B
B
C

CH
C
C

CL
C
C

COLL
COL
COL

C

CO

D

DCL
D

DE
D

SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
none
SHIFT
none
SHIFT
SHIFT
none
SHIFT
SHIFT

B
P
S
T
U

c
A
E
N
L
O

S

u
A
A
H
I
O
L
M
E
L
0
O

P

A

E
C

L
I

APPENDIXES 671

KEYWORD

DIRECTORY
DLOAD
DO
DOPEN
DRAW
DS
DS$
DSAVE
DVERIFY
EL
END
ENVELOPE
ER
ERR$
EXIT
EXP
FAST
FETCH
FILTER
FOR
FRE
FNXX
GET
GETKEY
GET#
GOSUB
GO64
GOTO
GRAPHIC
GSHAPE
HEADER
HELP
HEX$
IF . . . GOTO
IF . . . THEN .
INPUT
INPUT#
INSTR
INT
JOY
KEY
LEFTS
LEN
LET
LIST
LOAD
LOCATE
LOG

. ELSE

ABBREVIATION

DISHIFT R
D SHIFT L

none
D SHIFT O
D SHIFT R

none
none

D SHIFT S
D SHIFT V

none
none

E SHIFT N
none

E SHIFT R
EX SHIFT I

E SHIFT X
none

F SHIFT E
F SHIFT I
F SHIFT O
F SHIFT R

none
G SHIFT E

GETK SHIFT E
none

GO SHIFT S
none

G SHIFT O
G SHIFT R
G SHIFT S

HE SHIFT A
X SHIFT X
H SHIFT E

none
none
none

I SHIFT N
IN SHIFT S

none
J SHIFT O
K SHIFT E

LE SHIFT F
none

L SHIFT E
L SHIFT I
L SHIFT O

LO SHIFT C
none

KEYWORD

LOOP
MID$
MONITOR
MOVSPR
NEW
NEXT
ON GOSUB
ON GOTO
OPEN
PAINT
PEEK
PEN
PI
PLAY
POINTER
POKE
POS
POT
PRINT
PRINT#
PRINT USING
PUDEF
RCLR
RDOT
READ
RECORD
REM
RENAME
RENUMBER
RESTORE
RESUME
RETURN
RGR
RIGHTS
RND
RREG
RSPCOLOR
RSPPOS
RSPR
RSPRITE
RUN
RWINDOW
SAVE
SCALE
SCNCLR
SCRATCH
SGN

ABBREVIATION

LO
M

MO
M

N
ON GO

ONG
O
P

PE
P

P
PO
PO

P

P
US

p
R
R

RE
R

RE
REN

RE
RES

RE
R
R
R
R

RSP
R

RSP
R
R
S

sc
s

sc
s

SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
SHIFT
SHIFT
none
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT

O
I
N
0

E
S

o
p
A
E
E

L
I
K

O

R
I
U

c
D
A
E

N
U
S

u
T
G
I
N
R
C
S

R
U

w
A
A
C
R
G

APPENDIXES 673

KEYWORD

SIN
SLEEP
SLOW
SOUND
SPC
SPRCOLOR
SPRDEF
SPRITE
SPRSAV
SQR
SSHAPE
STASH
ST
STEP
STOP
STR$
SWAP
SYS
TAB(
TAN
TEMPO
TI
TI$
TO
TRAP
TROFF
TRON
UNTIL
USR
VAL
VERIFY
VOL
WAIT
WHILE
WIDTH
WINDOW
XOR

ABBREVIATION

s
s

s
SPR
SPR

s
SPR

s
s
s

ST
ST
ST

S

T

T

T
TRO

TR
U
U

V
V

w
w

WI

w
X

SHIFT
SHIFT
none
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
none
SHIFT
none
none
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
none
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT

I
L

O

C
D
P
S
Q
S
T

E
O
R
W

A

E

R
F
O
N
S

E
0
A
H
D
I
0

APPENDIX J

DISK COMMAND SUMMARY
This appendix lists the commands used for disk operation in C128 and C64 modes
on the Commodore 128. For detailed information on any of these commands, see
Chapter 2. Your disk drive manual also has information on disk commands.

The new BASIC 7.0 commands can be used only in C128 mode. All BASIC 2.0
commands can be used in both C128 and C64 modes.

COMMAND USE

APPEND Append data to file
BLOAD Load a binary file starting at the specified

memory location
BOOT Load and execute a bootable program
BSAVE Save a binary file from the specified mem-

ory location
CATALOG Display directory contents of disk on screen*
CLOSE Close logical disk file
CMD Redirect screen output to a peripheral

device
COLLECT Free inaccessible disk space*
CONCAT Concatenate two data files*
COPY Copy files between devices*
DCLEAR Clear all open channels on disk drives
DCLOSE Close logical disk file
DIRECTORY Display directory of contents of disk on

screen*
DLOAD Load a BASIC program from disk
DOPEN Open a disk file for a read and/or write

operation
DSAVE Save a BASIC program to disk
DVERIFY Verify program in memory against pro-

gram on disk
GET# Receive input from open disk file
HEADER Format a disk*
LOAD Load a file from disk
OPEN Open a file for input or output
PRINT# Output a data to file
RECORD Position relative file pointers*
RENAME Change name of a file on disk*

BASIC 2.0 BASIC 7.0

APPENDIXES 675

COMMAND USE BASIC 2.0 BASIC 7.0

RUN filename Execute BASIC program from disk /
SAVE Store program in memory to disk /
VERIFY Verify program in memory against pro- /

gram on disk

*Although there is no single equivalent command in BASIC 2.0, there is an equivalent multi-command
instruction. See your disk drive manual for these BASIC 2.0 conventions.

APPENDIX K

PART I—COMMODORE 128 CP/M
This appendix explains each CP/M BIOS, 8502 BIOS and User Function routine and
how to call each in Z80 assembly language. This section assumes you already have
some knowledge about Z80 machine language and the basic operations of the CP/M
system. If you need more information about Z80 or CP/M, your local bookstore
probably has several good reference books about these widely covered subjects. To fully
cover these topics is beyond the scope of this reference guide. See "Suggestions for
Reading" at the end of this guide.

Part I of this appendix first lists each CP/M BIOS, 8502 BIOS and User Function
routine by number. Part II explains how and provides examples to call these routines.
Part III lists the Z80 memory map.

The format used to describe these routines are as follows:

a) Function Name
b) Input Parameters
c) Output Parameters
d) Brief Description
e) Other required preparatory/post routines (or additional information)

The 8502 BIOS and User Function routines require certain values to be placed into
the Z80 microprocessor registers. In Chapter 5 you learned about the 8502 microproces-
sor registers: A, X, Y, Status (PSW), Stack Pointer (S) and Program Counter (PC). The
Z80 also has applicable registers. The Z80 registers are named as follows:

A
BC
DE
HL
PSW
IX
IY
PC
SP

(Accumulator)

(Status Word)
(X register)
(Y index register)
(program counter)'
(stack pointer)

Certain registers can be used as a register pair, to represent a 16 bit address, or as
single 8-bit register. The Z80 has a duplicate set of registers for interrupt processing.

For more detailed information on the Z80 microprocessor consult the "Sugges-
tions for Further Reading." For more detailed information on the CP/M system, refer to
the Commodore 128 System Guide to receive the full set of CP/M Plus documentation,
written by Digital Research Inc., through Commodore.

APPENDIXES 677

COMMODORE 128 CP/M BIOS ROUTINES

The Commodore 128 CP/M system has a set of routines called the CP/M BIOS, which
handle the low level input/output operations of the system. Each of these routines can
be accessed via the CP/M BIOS jump table below. The jump vector numbers 0 through
29 are the CP/M BIOS jump vectors. The 30th jump vector is for system dependent
User Functions. These are discussed following the CP/M BIOS routines.

The 8502 BIOS routines are a subset of the system dependent User Functions
(specifically, User Function 4) contained in the Commodore 128 CP/M system. Many of
the User Functions have subfunctions which require certain parameters to be passed
through the Z80 registers. This is discussed in detail in the User Function section in this
appendix. Examples of calling the CP/M BIOS and User Function routines are provided
in Part II of this appendix.

NO. INSTRUCTION DESCRIPTION

Perform cold start initialization
Perform warm start initialization
Check for console input character ready
Read Console Character in
Write Console Character out
Write List Character out
Write Auxiliary Output Character
Read Auxiliary Input Character
Move to Track 00 on Selected Disk
Select Disk Drive
Set Track Number
Set Sector Number
Set DMA Address
Read Specified Sector
Write Specified Sector
Return List Status
Translate Logical to Physical Sector
Return Output Status of Console
Return Input Status of Aux. Port
Return Output Status of Aux. Port
Return Address of Char. I/O Table
Initialize Char. I/O Devices
Return Address of Disk Drive Table
Set Number of Logically Consecutive sectors to be read or written
Force Physical Buffer Flushing for user-supported deblocking
Memory to Memory Move
Time Set/Get signal
Select Bank of Memory
Specify Bank for DMA Operation
Set Bank When a Buffer is in a Bank other than 0 or 1
Reserved for System Implementor
Reserved for Future Use
Reserved for Future Use

CP/M 3 BIOS Jump Vector Table

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

BOOT
WBOOT
CONST
CONIN
CONOUT
LIST
AUXOUT
AUXIN
HOME
SELDSK
SETTRK
SETSEC
SETDMA
READ
WRITE
LISTST
SECTRN
CONOST
AUXIST
AUXOST
DEVTBL
DEVINI
DRVTBL
MULTIO
FLUSH
MOVE
TIME
SELMEN
SETBNK
XMOVE
USERF
RESERV1
RESERV2

0 BOOT
Bank:
Input:
Output:
Function:

1 WBOOT
Bank:
Input:
Output:
Function:

2 CONST
Bank:
Input:
Output:

Function:

3 CONIN
Bank:
Input:
Output:
Function:

CONOUT
Bank:
Input:
Output:
Function:

5 LIST
Bank:
Input:
Output:
Function:

0
None
None
This code does all of the hardware initialization, sets up zero
page, prints any sign-on message and loads the CCP and then
transfers control to the CCP.

Oor 1
None
None
This code sets up page zero, reloads the CCP and then exe-
cutes the CCP.

Oor 1
None
A = OFFH if console character
A = 00H if no console character
Checks the console input status of the current console devices.
If any of the devices have a character available, FFH is
returned, otherwise 00H is returned.

Oor 1
None
A = ASCII console character
Reads a character from any ONE of the assigned console input
devices. A scan of each assigned device is done until an
input character is found. The character is returned in the A
register.

Oor 1
C = ASCII character to display
None
Sends the character in C to ALL devices that are currently
assigned to the console. It waits for all assigned devices to
accept a character before exiting.

Oor 1
C = ASCII character to print
None
Sends the character in C to ALL devices that are currently
assigned to the LIST device. It waits for all assigned devices
to accept a character before exiting.

APPENDIXES 679

6 AUXOUT
Bank:
Input:
Output:
Function:

7 AUXIN
Bank:
Input:
Output:
Function:

8 HOME
Bank:
Input:
Output:
Function:

9 SELDSK
Bank:
Input:

Output:

Function:

Oor 1
C = ASCII Character to send to AUX device
None
Sends the character in C to ALL devices that are currently
assigned to the AUXOUT device. It waits for all assigned devices
to accept a character before exiting.

Oor 1
None
A = ASCII character from AUX device
Reads a character from any ONE of the assigned AUXIN devices.
A scan of each assigned device is done until an input character
is found. The character is returned in the A register.

0
None
None
Homes the head on the currently selected disk drive. This
function sets the current track to 0 and does not move the head
of the disk.

0
C = Disk Drive (0-15) (A = 0)
E = Initial Select Flag (LSB)
HL = Address of Disk Parameter Header (DPH) if drive exists.
HL = 000H if drive does not exist.
Selects the disk drive whose address is in C as the current drive

10

11

SETTRK
Bank:
Input:
Output:
Function:

SETSEC
Bank:
Input:
Output:
Function:

for all further disk operations. If the LSB of the E register is a
zero, then this is the first logging of this disk. The disk type
(C64 CP/M, MFM or C128 CP/M) is checked and the DPB
parameters adjusted for the diskette currently in the drive.

0
BC = Track number
None
Register pair BC contains the track number to be used in the
subsequent disk access. This value is saved.

0
BC = Sector number
None
Register pair BC contains the sector number to be used in the
subsequent disk access. This value is saved. The value in BC
is the value returned by the sector translation routine (in HL).

12 SETDMA
Bank:
Input:
Output:
Function:

13 READ
Bank:
Input:
Output:

Function:

14 WRITE
Bank:
Input:
Output:

Function:

15 LISTST
Bank:
Input:
Output:

Function:

0
BC = Direct memory access address
None
The value in BC is saved as the current DMA address. This is
the address where ALL disk reads or writes occur. The DMA
address that is set is used until it is changed by a future call to
this routine to change it.

0
None
A = 000H if no errors
A = 001H if nonrecoverable error
A = OFFH if media has changed
Reads the sector addressed by the current disk, track and
sector to the current DMA address. If the data is read with no
errors then A = 0 on return. If an error occurs, the operation is
tried several more times, and if a successful read does not
occur then A is set to 001H. A test for media change is
performed each time this routine is called and A is set to -1 if
the media has been changed.

0
C = Deblocking code (not used)
A = 000H if no errors
A = 001H if nonrecoverable error
A = 002H if disk is read only
A = OFFH if media has changed
Writes the sector addressed by the current disk track and
sector from the current DMA address. If the data is written with
no errors, then A is set to 0 on return. If an error occurs, the
operation is tried several more times, and if a successful write
does not occur, then A is set to 001H. A test for media change
is performed each time this routine is called and A is set to
-1 if the media has been changed. Also, if an attempt is made
to write to a read-only disk, then the A register is set to 002H.

Oor 1
None
A = 00H if list device is not ready to accept a character.
A = OFFH if list device is ready to accept a character.
This routine scans the currently assigned list devices and returns
with A set to OFFH if ALL assigned devices are ready to accept a
character. If any assigned device is not ready then A is set
to 00H.

APPENDIXES 681

16

17

18

19

20

SECTRN
Bank:
Input:

Output:
Function:

CONOST
Bank:
Input:
Output:

Function:

AUXIST
Bank:
Input:
Output:

Function:

AUXOST
Bank:
Input:
Output:

Function:

DEVTBL
Bank:
Input:
Output:
Function:

0
BC = Logical sector number (0-n)
DE = Translation table address (from DPB)
HL = Physical sector number
This routine converts the physical sector number to a logical
sector number. If no translation is needed then it moves the
BC register to HL and returns.

Oor 1
None
A = OFFH if Ready
A = 000H if not Ready
This routine scans the currently assigned console devices and
returns with A set to OFFH if ALL assigned devices are ready
to accept a character. If any assigned device is not ready then
A is set to 000H.

Oor 1
None
A = OFFH if console character present
A = 000H if no console character
Checks the status of the current AUXIN device. If any of the
devices have a character available, OFFH is returned, otherwise
000H is returned.

Oor 1
None
A = OFFH if ready
A = 000H if not ready
This routine scans the currently assigned AUXOUT devices and
returns with A set to OFFH if ALL devices are ready to accept a
character. If any assigned device is not ready then A is set
toOOH.

Oor 1
None
HL = address of character I/O table
This routine returns the address of the Character I/O table.
This table is used to name each of the driver modules and
set/control the baud rate and XON/XOFF logic for each driver.
Note: the device drive mechanism is used to replace the IOBYTE
used with CP/M 2.2.

21

22

DEVINI
Bank:
Input:
Output:
Function:

DRVTBL
Bank:
Input:
Output:
Function:

23 MULTIO
Bank:
Input:
Output:
Function:

24 FLUSH
Bank:
Input:
Output:

Function:

25 MOVE
Bank:
Input:

Output:

Function:

26 TIME
Bank:
Input:
Output:

Oor 1
C = device number
None
Initializes the physical character device specified in the C
register to the BAUD rate in the DEVTBL.

0
None
HL = address of the drive table
Returns the address of the drive table in HL (NOTE: first
instruction MUST be LXI H, DRVTBL). The drive table is a
list of 16 word pointers that point to the DPH for that drive. If
a drive is not present in the system, then the pointer for that
drive is set to zero.

0
C = multisector count
None
The multisector count is set before the track, sector, and DMA
address and the read/write of the sectors occur. A maximum
of 16K can be transferred by each multisector count.

0
None
A = 000H if no errors
A = 001H if nonrecoverable error
A = 002H if disk is read-only
A = OFFH if media has changed
This routine is used only if blocking/deblocking is done in the
BIOS. This code ALWAYS returns with A =000H.

Oor 1
HL = destination address
DE = source address
BC = count
HL = HL(in) + BC(in)
DE = DE(in) + BC(in)
Moves a block of data. Data to be moved is to/from the current
memory bank (or common) unless the XMOVE routine is
called first, then the move is an interbank data movement.

Oor 1
C = 000H (Time Get) / OFFH (Set Time)
None

APPENDIXES 683

27

Function:

SELMEM
Bank:
Input:
Output:
Function:

This function is called with C = 000H if the system time in the
SCB needs to be updated by the clock. If C = 0FFH, then the
time in the SCB has just been updated and the clock is
set to the SCB time. NOTE: HL and DE MUST be preserved.

Oor 1
A = memory bank
None
Changes the current memory bank. This code MUST be in
common memory.

NOTE: ONLY A can be changed.

28

29

SETBNK
Bank:
Input:
Output:
Function:

XMOVE
Bank:
Input:

Output:
Function:

30 USERF
Banks
Input:
Output:
Function:

31

32

RESERV1
Bank:
Input:
Output:
Function:

RESERV2
Bank:
Input:
Output:
Function:

0
A = DMA memory bank
None
Sets the DMA bank for the next READ/WRITE operation.

0
B = destination bank
C = source bank
None
Provides the system with the ability to perform memory-to-
memory DMA through the entire system space.

Oor 1
A = function number, L = subfunction number
Outputs depend on the called function or subfunction.
This calls the user functions and 8502 BIOS routines, which
are defined in the Commodore 128 System Dependent User
Function section.

N/A
N/A
N/A
Not available to the user.

N/A
N/A
N/A
Not available to the user.

DATA STRUCTURES

SYSTEM CONTROL BLOCK—(SCB)
The System Control Block is a 100-byte data structure. The data structure is
used as the basic communication between the various modules that make up the
CP/M Plus system. The contents of the data structure are system parameters and
variables.

DRIVE TABLE (DRVTBL)

PHO through DPHIS
A list of 16 word pointers (reverse-byte format). The first pointer (DPHO) is
drive A and the last pointer (DPH15) is drive P. The pointers point to the XDPH
for that disk drive. Any drive that is not in the system has its pointers set to
zero.

EXTENDED DISK PARAMETER HEADER (XDPH)
(NORMAL DPH WITH A HEADER)

WRT READ

16b
-10

16b
-8

LOGIN

16b
-6

INIT

16b
-4

TYPE

8b
-2

UNIT

8b

XLT

16b
0

-0-

72b
2

MF

8b
11

DPB

16b
12

CSV ALV

16b
14
16b
16

DIRBCB DTABCB HASH

16b
18

16b
20

16b
22

HBANK

8b
24

WRT Contains the address of the sector write routine for this drive.
READ Contains the address of the sector read routine for this drive.
LOGIN Contains the address of the login routine for this drive.
INIT Contains the address of the first time initialization routine for this drive.
TYPE This byte is used by the BIOS to keep track of density and media type.
UNIT Contains the drive number relative to the disk controller.
XLT Contains the address of the sector translation table or zero if none.
-0- BDOS scratch area (9 bytes).
MF Media flag cleared to zero if disk logged in. BIOS sets to OFFH if media

has changed.
DPB Contains a pointer to the current DPB that describes the current media type.
CSV Contains a pointer to directory checksum area (one per disk drive).
ALV Contains a pointer to allocation vector area (one per disk drive).
DIRBCB Contains a pointer to a single directory Buffer Control Block (BCB).
DTSBCB Contains a pointer to a single data Buffer Control Block (BCB).
HASH Contains a pointer to an optional directory hashing table (FFFFH is

not used).
HBANK Contains a bank number of the directory hashing table.

APPENDIXES 685

DISK PARAMETER BLOCK— DPB

SPT

16b

BSH

8b

BLM

8b

EXM

8b

DSM

16b

DRM

16b

ALO

8b

ALl

8b

CKS

16b

OFF

16b

PSH

8b

PHM

8b

SPT Number of 128 records per track
BSH Data allocation block shift factor
BLM Block mask
EXM Extent mask
DSM Number of allocation block on disk minus one
DRM Number of directory entries minus one
ALO First byte: directory block allocation vector. Filled from MSB to LSB
ALl Second byte: (Up to 16 allocation blocks can be used for the directory)
CKS Size of the directory check vector, (DRM+ l)/4
OFF Number of reserved tracks at the beginning of the disk
PSH Physical record shift factor
PHM Physical record mask

BUFFER CONTROL BLOCK (LRU CONTROL BLOCK—BCB)

DRV REC# WFLG 00 TRACK SECTOR BUFFAD BANK LINK

8b 24b 8b 8b 16b 16b 16b 8b 16b

DRV Drive associated with this record. Set to OFFH when not used.
REC# Contains the absolute sector number of the buffer.
WFLG Set to OFFH when buffer contains data that must be written to disk.
00 Scratch byte used by BDOS
TRACK Physical track address of buffer.
SECTOR Physical sector address of buffer.
BUFFAD Address of the buffer associated with this BCB.
BANK Bank number of buffer associated with this BCB.
LINK Contains the address of the next BCB in this linked list. Set to zero if last.

COMMODORE 128 SYSTEM DEPENDENT
USER FUNCTIONS

The Z80 machine language routines discussed in this section pertain explicitly to the
Commodore 128 Personal Computer. These routines are not part of the standard CP/M
system that is transportable from one manufacturer's computer to another. They are
written to run only on the Commodore 128.

Most of these customized C128 Z80 routines require certain parameters to be
passed from the user into the appropriate Z80 registers. All these routines, listed by

function number, require that the function number be placed in the Z80 A register
(accumulator). Many of these routines have subfunctions which require the user to place
a value in the eight bit L register, which is used to call the appropriate subfunction. All
other additional required parameters are noted if they are necessary. This section follows
the same format as the preceding CP/M BIOS section:

a) Function Name
b) Input Parameters
c) Output Parameters
d) Brief Description
e) Additional Information

0 a) User Function 0: Read any Byte in RAM Bank 00
b) A = 0 (function number)

DE = 16 bit address to be read
c) C = Value read from address in RAM Bank 0

A = 0 on RETurn from routine
d) This reads a value from RAM BANK 0 ($0-$0FFF, $1000-$FFFF RAM)

and places it in register C.

I. a) User Function 1: Write Function in RAM Bank 0
b) A = 1 (function number)

DE = 16-bit address where write operation occurs
C = Value to be written to the address in Bank 0

c) A = 0 on RETurn from routine if write is successful
A = -1 ($FF) on RETurn from routine if write is unsuccessful

d) This function writes the value in register C to RAM in bank 0 specified
by the address in register pair DE. An error is flagged if a write to ROM
($0-$DFFFH) or the top page of memory ($FF00-$FFFF) is attempted.

II. a) User Function 2: Keyscan Function
b) A = 2 (function number)
c) B = -1 ($FF) if no key is pressed

B = Matrix position in the keyboard matrix table (if pressed)
A = Contents (character value) of matrix position whether A is lower- or

uppercase or containing the C O N T R O L key.
HL = Address (pointer) where A (contents of matrix position) is found

in memory
Address = Tablestart + (4 * B) + C (bits 1 and 0)

C = Returns control code information, where each bit has a specific
meaning as follows:

Bits 1 & 0

0 0 = lower case
0 1 = upper case
1 0 = shifted
1 1 = control key

APPENDIXES 687

C = Bit 2 1 = control key down, 0 = up
Bit 3 Not implemented
Bit 4 1 = Right shift key down, 0 = up
Bit 5 1 = O key is active (not necessarily down)
Bit 6 Not implemented
Bit 7 1 = left shift key down, 0 = up

d) The keyscan function allows the user to bypass the normal I/O BIOS
keyboard processing and check for a particular key or key sequence
being pressed.

e) Additional Information—Important Addresses:
$FD09 = Pointer to Tablestart (low byte first)

Each ASCII character has four coded definitions. Each key has a defined code for
the following:

a) lower case
b) upper case
c) shifted key and character
d) control key and character

These four definitions are labeled in columns in the ASCII table.

1292
1296
129A
129E
12A2
12A6
12AA
12AE

12B2
12B6
12BA
12BE
12C2
12C6
12CA
12CE

12D2
12D6
12DA
ODE
12E2
12E6

7F7F7F16
0D0D0D0D
06060101
86868787
80808181
82828383
84848585
1717171A

333323A2
77575717
61414101
343424A3
7A5A5A1A
73535313
65454505
00000000

353525A4
72525212
64444404
363626A5
63434303
66464606

ASCII$TBL:

DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB

A B C D

7FH,7FH,7FH,16H
0DH,0DH,0DH,0DH
06H,06H,01H,01H
86H,86H,87H,87H
80H,80H,81H,81H
82H,82H,83H,83H
84H,84H,85H,85H
17H,17H,17H,1AH

33H,33H,23H,0A2H
77H,57H,57H,17H
61H,41H,41H,01H
34H,34H,24H,0A3H
7AH,5AH,5AH,1AH
73H,53H,53H,13H
65H,45H,45H,05H
00H,00H,00H,00H

35H,35H,25H,0A4H
72H,52H,52H,12H
64H,44H,44H,04H
36H,36H,26H,0A5H
63H,43H,43H,03H
66H,46H,46H,06H

INS DEL matrix 0 position
RETURN
LFRT
F7F8
Fl F2
F3F4
F5F6
UP DOWN

3 #
W
A
4 $
Z
s
E
(LF SHIFT)

5 %
R
D
6&
C
F

12EA
12EE

12F2
12F6
12FA
12FE
1302
1306
130A
130E

1312
1316
131A
131E

1322
1326
132A
132E

1332
1336
133A
133E
1342
1346
134A
134E

1352
1356
135A
135E
1362
1366
136A
136E

1372
1376
137A

137E
1382
1386
138A
138E

74545414
78585818

373727A6
79595919
67474707
383828A7
62424202
68484808
75555515
76565616

39392900
69494909
6A4A4A0A
30303000

6D4D4D0D
6B4B4B0B
6F4F4F0F
6E4E4E0E

2B2B2B00
70505010
6C4C4C0C
2D2D2D00
2E2E3E00
3A3A5B7B
40404000
2C2C3C00

23232360
2A2A2A00
3B3B5070
000000F5
00000000
3D3D3D7E
5E5E7C7C
2F2F3F5C

313121A0
5F5F5F7F
09153000

323222A1
20202000
21200000
71515111
000000F0

ASCII$TBL:

DB
DB

DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB

DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB

DB
DB
DB
DB
DB

74H,54H,54H,14H
78H,58H,58H,18H

37H,37H,27H,0A6H
79H,59H,59H,19H
67H,47H,47H,07H
38H,38H,28H,0A7H
62H,42H,42H,02H
68H,48H,48H,08H
75H,55H,55H,15H
76H,56H,56H,16H

39H,39H,29H,00H
69H,49H,49H,09H
6AH,4AH,4AH,0AH
30H,30H,30H,OOH

6DH,4DH,4DH,0DH
6BH,4BH,4BH,0BH
6FH,4FH,4FH,0FH
6EH,4EH,4EH,0EH

2BH,2BH,2BH,00H
70H,50H,50H,10H
6CH,4CH,4CH,0CH
2DH,2DH,2DH,00H
2EH,2EH,3EH,00H
3AH,3AH,5BH,7BH
40H,40H,40H,00H
2CH,2CH,3CH,00H

23H,23H,23H,60H
2AH,2AH,2AH,00H
3BH,3BH,5DH,7DH
00H,00H,00H,0F5H
00H,00H,00H,00H
3DH,3DH,3DH,7EH
5EH,5EH,7CH,7CH
2FH,2FH,3FH,5CH

31H,31H,21H,0A0H
5FH,5FH,5FH,7FH
09H,15H,30H,00H

32H,32H,22H,OA1H
20H,20H,20H,00H
21H,20H,00H,00H
71H,51H,51H,11H
00H,00H,00H,0F0H

T
X

7 '
Y
G
8(
B
H
U
V

9)
I
J
0

M
K
O
N

+
P
L

, <
:[{
@
,<

POUND
*

;]}
CLEAR/HOME
(RT SHIFT)

PI
/ ? \

1
<-
(CONTROL) SOUND1

SOUND2
2 "
SPACE
(COMMODORE) SOUND3

Q
RUN STOP

APPENDIXES 689

1392
1396
139A
139E
13A2
13A6
13AA
13AE

13B2
13B6
13BA
13BE
13C2
13C6
OCA
13CE
13D2
13D6
13DA
ODE
13E2
13E6
13EA
13EE

9F9F9F9F
383838B7
353535B4
09090900
323232B1
343434B3
373737B6
313131B0

1B1B1B00
2B2B2B00
2D2D2D00
0A0A0A0A
0D0D0DFF
363636B5
39393900
333333B2
00000000
30303000
2E2E2E00
05050512
18181803
1313138D
0404048E
F1F1F1F2

ASCIISTBL:

DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

A B C D

9FH,9FH,9FH,9FH
38H,38H,38H,0B7H
35H,35H,35H,0B4H
09H,09H,09H,00H
32H,32H,32H,OB1H
34H,34H,34H,0B3H
37H,37H,37H,0B6H
31H,31H,31H,0B0H

1BH,1BH,1BH,OOH
2BH,2BH,2BH,00H
2DH,2DH,2DH,00H
0AH,0AH,0AH,0AH
0DH,0DH,0DH,0FFH
36H,36H,36H,0B5H
39H,39H,39H,00H
33H,33H,33H,0B2H
00H,00H,00H,00H
30H,30H,30H,00H
2EH,2EH,2EH,00H
05H,05H,05H,12H
18H,18H,18H,03H
13H,13H,13H,08DH
04H,04H,04H,08EH
OF1H,OF1H,OF1H,OF2H

/HELP/
/SI
15/
/TAB/
11/
141
171
III

/ESC/
/ + /
/-/
/LINE FEED/
/ENTR/
161
191
13/
/ALT/
101
I.I
/UP/
/DN/
/LF/
/RT/
/NO SCROLL/

LOGICAL COLOR TABLE (USED WITH ESC ESC ESC CHAR)
(WHERE CHAR IS 50H TO 7FH)

13F2
13F6

00112233
44556677

13FA 8899AABB
13FE CCDDEEFF

DB OOOH,011H,022H,033H
DB 044H,055H,066H,077H
DB 088H,099H,0AAH,0BBH
DB 0CCH,0DDH,0EEH,0FFH

III. a) User Function 3: Execute a Z80 ROM function
b) A = 3

L = subfunction number
Additional input parameters may be necessary

c) Most of the ROM functions do not output values; they instead perform
an action, which in this user function is assumed to be the output.

d) This function executes a Z80 ROM function. These ROM routines
primarily perform screen manipulation routines.
All subfunction numbers are even numbers. The first 80 subfunctions are
screen manipulating routines for the 40- and 80-column display. Only the
80-column subfunction is listed here. Add 2 to the 80-column subfunction
number to get the corresponding 40-column subfunction number.

III. Oa) Subfunction 0: Write Character
b) wr$char
c) Register D = character to write auto advance cursor to next position
A\

III. 4a) Subfunction 4: Cursor Position
b) cursor$pos

c) Register D = row value
Register E = column value

d) This subfunction sets the current position of the cursor on the 80-column
screen.

III. 8a) Subfunction 8: Cursor Up one position
b) cursor$up
c) no values returned
d) This subfunction moves the cursor up one row on the current screen (40

or 80), but not past the top of the screen.

III. 12a) Subfunction 12: Cursor down one row
b) cursor$down
c) no values returned
d) This subfunction moves the cursor down one row on the current screen

(40 or 80). The screen scrolls down if on bottom line.

III. 14a) Subfunction 14: Not Implemented
b)
c)

III. 16a) Subfunction 16: Cursor left one column
b) cursor$left
c) no values returned
d) This subfunction moves the cursor left one column, but not past the

left margin.

III. 20a) Subfunction 20: Cursor right one column
b) cursor$rt
c) no values returned.
d) This subfunction moves the cursor right one column, but not past the

right edge of the screen.

III. 24a) Subfunction 24: Execute a carriage return
b) do$cr
c) No values returned.
d) This subfunction executes a carriage return and places the cursor at the

left margin.

III. 28a) Subfunction 28: Clear to end of line
b) CEL
c) No values returned.
d) This subfunction clears the cursor row starting where the cursor is

currently located and ending at the end of the line.

APPENDIXES 691

III. 32a) Subfunction 32: Clear to end of screen
b) CES
c) No values returned.
d) This subfunction clears the screen starting where the cursor is currently

located through the end of screen.

III. 36a) Subfunction 36: Character insert
b) char$ins
c) No values returned.
d) This subfunction inserts a character at the current cursor position, the

last character on the line is lost.

III. 40a) Subfunction 40: character delete
b) char$del
c) No values returned.
d) This subfunction deletes a character at the current cursor position, and

places a space in the last position in the line.

III. 44a) Subfunction 44: Line insert
b) line$ins
c) No values returned.
d) This subfunction inserts a line of spaces on the current cursor row, the

current cursor row is moved down one and the last line (24) is lost.

III. 48a) Subfunction 48: Line delete
b) line$del
c) No values returned.
d) This subfunction deletes a line at the character row marked by the

current cursor position. The bottom line (24) is filled with spaces.

III. 50a) Subfunction 50: Not Implemented
b)
c)
d)

III. 52a) Subfunction 52: Set Cursor Color
b) color

B register returns color code value
c) No values returned.
d) This function sets the current cursor color code with the value in color.

III. 56a) Subfunction 56: Set 80-column Attributes
b) attr

B = bit to set/clear
C = bit value

c) No values returned.
d) This function enables/disables the 8563 attributes for the 80-column screen.

Attributes are extra screen features such as foreground R,G,B and I,
character blinking, underlining, reverse video and the alternate character
set. The 40-column function (subfunction 58) controls only reverse video.

III. 60a) Subfunction 60: Read Character Attribute (80)
b) rdchratr

D = 8563 character row
E = 8563 character column

c) D = 8563 character row
L = 8563 character column
B = character value
C = attribute bit pattern of selected character location

d) This function reads the attribute byte of the selected character row and
column on the 8563 screen, and returns the true RGBI color. The
corresponding 40-column subfunction (62) controls only reverse video.

III. 64a) Subfunction 64: Write Character Attribute (80)
b) wrchratr

B = character value
C = attribute

c) No values returned
d) This function writes an attribute byte of the selected character value

on the 8563 screen.

III. 68a) Subfunction 68: Read Color
b) rd$color
c) A = character color

B = background color
C = border color (40-column only)
D = 8563 attribute

d) This function reads the current color of the 8563 color sources. Subfunction
70 returns the VIC color sources.

III. 80a) Subfunction 80: Convert record (GCR only)
b) @trk
c) VICStrk, VIC$SEC
d) This function returns the physical track and sector from the disk drive,

including skew, given the logical track.

III. 82a) Subfunction 82: Check CBM code from disk (GCR only)
b) check$CBM
c) zero flag = 1 if CBM (C128 mode disk) is present in drive

zero flag = 0 if CP/M 2.2 (C64 CP/M disk) is present in drive
A = 0 if single sided
A = $FF if double sided

d) This function detects which type of GCR disk is in the drive. Reads
data from t = 1, s = 0 into buffer at $FE00.

III. 84a) Subfunction 84: Bell Function
b) Sound 1, Sound 2, Sound 3 ($FD10, $FD12, $FD14, respectively)
c) Outputs a bell sound
d) This function outputs a bell sound from the SID chip.

Subfunctions 86-95 are not defined

APPENDIXES 693

III. 96a) Subfunction 96: Track 40
b) trk$40
c) @ off 40
d) This function computes the logical (offset) position of the cursor on the

physical 80-column screen. The variable @ off40 is computed on
8-character boundaries, and is used in the next subfunction.

III. 98a) Subfunction 98: Set cursor position
b) setcur40
c) No value returned.
d) This function calls Track 40 to check the offset between the logical

(window) and physical (40-column) screen. It keeps the cursor within
the 40-column logical window on the scrolled 80-column virtual screen
for VIC screen output.

III. 100a) Subfunction 100: Line Paint
b) line$paint
c) No value returned.
d) This function updates the current character line only if @ off 40 and

old Soffset are the same. If old $offset = - 1 , TRACK 40 is called.
If @off40 and old $offset are not equal, Screen Paint is called to
scroll the 40-column logical screen (window) over the virtual 80-
column screen.

III. 102a) Subfunction 102: Screen paint
b) screenSpaint
c) No value returned.
d) This function updates (scrolls) the 40-column logical (window) screen

across the VIC 80-column virtual screen based on the value of @off40.
This and the three previous subfunctions (96, 98, 100) are intertwined
to make the scrolled 40-column logical screen display as fast as
possible. Normally you would only call Set Cursor Position or Line
Paint, since they call the other related routines, if necessary. See file
CXROM.ASM listing on the DRI disks that come with the documenta-
tion for the source listings.

III. 104a) Subfunction 104: Print Message (BOTH)
b) prtmsgboth
c) No value returned.
d) This function prints simultaneous output to both screens, displaying

the string pointed to by the top value on the stack. Place the address of
the string on the stack, and terminate the string with a zero. Execution
resumes with the byte following the zero terminator. This works like
an "in-line Print"

III. 106a) Subfunction 106: (Print Message (BOTH)
b) prtdeboth
c) No value returned.

d) This function works like the previous one, except the start address of
the string is taken from DE, and execution resumes with the return
address from the stack.

III. 108a) Subfunction 108: Incripted Messages
b) update$it
c) No value returned
d) This function displays incripted messages.

Subfunction 110 is not implemented.

III. 112a) Subfunction 112: ASCII to PET ASCII Conversion
b) ASCII$pet, B register = ASCII character ($20-$7F)
c) A register = converted PET ASCII character.
d) This function performs a standard ASCII to Pet ASCII conversion on

the characters printed to the screen (from any input device)
Control codes are not translated.

HI. 114a) Subfunction 114: Place 40-column cursor at specified address
b) curadr40
c) HL = address of cursor on screen

DE = cursor line (row) start address
BC = # of characters to end of line (<80, not counting cursor)

d) This function places the cursor at the address specified in HL (in RAM
bank 0). This address is of the logical screen, not the virtual one.

HI. 116a) Subfunction 116: Place 80-column cursor at specified address
b) curadr80
c) HL = address of cursor on screen

DE = cursor line (row) start address
BC = # of characters to end of line (<80, not counting cursor)

d) This function places the cursor at the address specified in HL (in
8563 RAM).

III. 118a) Subfunction 118: Look up color
b) look$color, B = color code ($3O-$3F), C = max. Value of color code.
c) HL = pointer to logical color table (lower nybble = 80, high nybble = 40-

B = $0 (Character color)
$10 (Background color)
$20 (Border color)

d) This function sets the 8563 screen colors to the VIC screen colors.
Subfunction 120 is not defined.

III. 122a) Subfunction 122: Block Fill
b) blk$fill, put start address on stack (8563)

BC = # of bytes to fill
D = fill character
E = attribute

c) No value returned.
d) This function fills a 256-byte block with data specified in the D register.

APPENDIXES 695

HI. 124a) Subfunction 124: Block move
b) blk$move, place source address (in 8563 RAM) on the stack

DE = destination address (in 8563 RAM)
BC = count

c) No value returned.
d) This function moves 256-byte blocks from one memory block to another

in 8563 RAM.

NOTE: Subfunctions 122 and 124 and 126 must be direct Z80 calls. The
example routines provided in this section for subfunctions 122, 124 and 126
will not work. They are usually not user-accessible, and must run in BANK 0.

HI. 126a) Subfunction 126: Character Install
b) chr$inst, stack = 8563 RAM address to install character definition

DE = address of system memory (C128 RAM) bank 0) of new
character definition (8 bytes per character).

B = number of consecutive characters
c) No value
d) This function installs a user-defined character in 8563 RAM.

IV. a) User Function 4: 8502 BIOS Functions
b) A = 4 (function number)

L = Subfunction number (-1 through 11)
Additional input parameters may be required

c) Outputs depend on each subfunction
d) User function 4 allows you to call 8502 input/output functions that are

performed by the 8502 processor. These functions are not part of the
standard CP/M system and are completely hardware-dependent. This
function enables you to go back and forth between the Z80 and 8502
processors.

e) Each subfunction is discussed in detail using the defined conventions.

IV.-1.a) Subfunction - 1 : Reboot C128 hardware
b) A = 4

L = -1
c) none
d) This subfunction reboots the Commodore 128 hardware when the value

in the L register is equal to -1 ($FF). This subfunction is not normally
used. It performs the same actions as pressing reset.

IV. O.a) Subfunction 0: Initialize 8502 BIOS
b) A = 4

L = 0
cl) Sets up interrupt vector $0314—$0319 to vector to the 8502 interrupt

handler
c2) Copies ROM interrupt vector to RAM

c3) Sets up PAL and NTSC variables (SYSFREQ)
c4) Closes all open channels
d) This subfunction intializes 8502 system variables, interrupt processing

and system frequencies so that the Z80 and 8502 may communicate
back and forth. Processor control is given to either the Z80 or the 8502
at one particular time. The processors cannot run simultaneously.

IV. l.a) Subfunction 1: 1541 Read (GCR format only)
b) A = 4

L = 1
VICTRACK = (1-35)—Variable for track number on disk
VICSECTOR = (0-21)—Variable for sector number on disk
VICDRV = —Variable for disk drive device number where:

LOWER NYBBLE

OF VICTORY

BIT VALUE

0001
0010
0100
1000

DEVICE NUMBER

8
= 9

10
11

DRIVE

0
0
0
0

EQUIVALENT OPEN

STATEMENT IN BASIC

OPEN 8,11,15
OPEN 9,12,16
OPEN 10,13,17
OPEN 11,14,18

Values of the Lower Nybble of VICDRV

c) VICDATA = 11 ($0B) if disk in drive has been changed
VICDATA = 13 (SOD) if read/write or channel error occurs
VICDATA = 0 if read is successful
VICDATA = 15 ($0F) if device is not present

d) This function reads a particular track and sector on the disk in the drive
as specified by VICTRACK and VICSECTOR and VICDRV respec-
tively. Data is read into the buffer at $FE00H. The value returned in the
variable VICDATA depends on the conditions described in c.

e) Additional Information: This subfunction assumes that both the data and
command channels have been opened previously. An error will occur if
this routine is called to read from a 1571.

IV. 2.a) Subfunction 2: 1541 Write (GCR format only)
b) A = 4

L = 2
VICTRACK = Same as for 1541 Read
VICSECTOR = Same as 1541 Read
VICDRV = Same as 1541 Read

c) VICDATA = Same as 1541 Read
d) This subfunction writes data to the specified track and sector on the disk

in the drive as specified by VICTRACK, VICSECTOR and VICDRV
respectively. The value returned in VICDATA depends on the condi-
tions described for the outputs in c. See subfunction 1 for details.

APPENDIXES 697

e) Additional Information: This subfunction assumes that both the data and
command channels have been opened previously. Data is written from
the buffer at $FE00H.

IV. 3.a) Subfunction 3: 1571 Read Set Up (MFM or GCR formats)
b) A = 4

L = 3
* VICTRACK = (1-35)—Variable for track number on disk
* VICSECTOR = (0-21)—Variable for sector number on disk
* VICDRV = —Variable for disk drive device number (See VICDRV

table above.)
* = Ranges apply to GCR format only. The ranges are different for

MFM disks depending on the manufacturer.
VIC$COUNT = Number of sectors to read (on the track)

c) VICDATA = 11 ($0B) if disk in drive has been changed
VICDATA = 12 ($0C) if drive is not a fast (1571) disk drive
VICDATA = 13 ($0D) if channel error occurs
VICDATA = 15 ($0F) if device is not present
If FAST ANDed with VICDRV = 0 meaning drive is a 1541
If FAST ANDed with VICDRV = 1 meaning drive is a 1571

d) This subfunction sets up the 1571 disk drive for a read operation.
However, the data transfer is not performed by the 8502 BIOS. The
data is transferred by the Z80.

e) Additional Information: To access the back side of an MFM disk set bit
7 ($80) of VICSECTOR. For MFM formats, a dash between the track and
sector on the display window means that the drive accesses the back
side of the disk. This is usually performed by the BIOS.

IV. 4.a) Subfunction 4: 1571 Write Set Up (MFM or GCR formats)
b) A = 4

L = 4
* VICTRACK = (1-35)—Variable for track number on disk
* VICSECTOR = (0-21)—Variable for sector number on disk

VICDRV = —Variable for disk drive device number. See VICDRV
table on previous page.

VICSCOUNT = Number of sectors to read
* = Ranges apply to GCR format only. The ranges are different for

MFM disks depending on the manufacturer.
c) VICDATA = 11 ($0B) if disk in drive has been changed

VICDATA = 12 ($0C) if drive is not a fast (1571) disk drive
VICDATA = 13 ($0D) if channel error occurs
VICDATA = 15 ($0F) if device is not present
If FAST ANDed with VICDRV = 0 meaning drive is a 1541
If FAST ANDed with VICDRV = 1 meaning drive is a 1571

d) This subfunction sets up the 1571 disk drive for a write operation.
However, the data is not performed by the 8502 BIOS. The data is
transferred by the Z80.

e) Additional Information. This is how the user should select between a
1541 and 1571 Drive. To access the back side of an MFM disk set bit 7
of VICSECTOR. To perform a write operation, the user will have to do
so in their application.

IV. 5.a) Subfunction 5: Interrogate 1541 or 1571 Disk Drive
b) A = 4

L = 5
VICDRV = (8-11)—Disk drive device number variable

c) VICDATA = lower four bits returns status for FAST read/write
(same as previous VICDATA Disk error codes, which
are listed in the Disk Error Status table on the next page).

= upper four bits return sector size for MFM disks
d) This subfunction interrogates the disk drive for the disk sector size

(MFM or GCR) and the drive status. In addition, this subfunction
initializes the FAST variable, closes and reopens the channel for the
corresponding drive, and clears the drive status.

IV. 6.a) Subfunction 6: Query to Disk
b) A = 4

L = 6
VICTRACK = (1-35)—Variable for track number on disk
VICSECTOR = (0-21)—Variable for sector number on disk
VICDRV = —Variable for disk drive device number

c) If error-free
VICDATA = lower four bits returns status for FAST read/write

= upper four bits return sector size for MFM disks and the
subfunction inputs 6 bytes into a memory buffer starting at
location $FE00 (and ending at $FEFF). These 6 bytes are
defined as :

1) $FE00-TRACK STATUS (on track below)
2) $FE01 -Number of Sectors
3) $FE02-Logical Track
4) $FE03-Minimum Sector Number (on this track)
5) $FE04-Maximum Sector Number (on this track)
6) $FE05-Physical Interleave

If an error occurs:

VICDATA = 11 ($0B) if disk in drive has been changed
VICDATA = 12 ($0C) if drive is not a fast (1571) disk drive
VICDATA = 13 (SOD) if channel error occurs
VICDATA = 15 ($0F) if device is not present

d) This subfunction queries the disk, and returns the disk status and sector
size (if MFM format). In addition, the buffer located between $FE00
and $FEFF receives 6 data items as described above.

APPENDIXES 699

Disk Error Status Table

MD DN H 12 Dl D2 D3 D4

MD Mode: 1 = MFM, 0 = GCR.
DN Drive Number.
II, 12 Sector Size.

a) 00 = 128 bytes
b) 01 = 256 bytes
c) 10 = 512 bytes
d) 11 = 1024 bytes

D1-D4 Controller Status

GCR

OOOx = Ok.
0010 = Sector not found.
0011 = No Sync.
0100 = Data block not found.
0101 = Data block checksum.
0110 = Format error.
0111 = Verify error.
1000 = Write protect error.
1001 = Header block checksum.
1010 = Data extends into next block.
1011 = Disk ID mismatch/Disk change.
1100 = Drive is not fast (1571).
1101 = Channel Error.
1110 = Syntax.
1111 = No Drive present.

MFM

OOOx = Ok.
0010 = Sector not found.
0011 = No address mark.
0100 = Unused.
0101 = Data CRC error.
0110 = Format error.
0111 = Verify error.
1000 = Write protect error.
1001 = Header CRC error.
1010 = Unused.
1011 = Disk change.
1100 = Drive is not fast (1571).
1101 = Channel Error.
1110 = Syntax.
1111 = No Drive present.

Disk Error Status Table

IV. 7.a) Subfunction 7: Print characters to a serial bus printer
b) A = 4

L = 7
VICDRV = Printer number (either 4 or 5)
VICTRACK = Secondary address in which device is opened as
VICDATA = Character to be printed to the serial bus printer (if

VICCOUNT = 0)
c) VICDATA = -1 ($FF) if device is not present
d) This subfunction outputs characters to the previously opened serial bus

printer.
e) Additional Information: If the secondary address (which is normally 7)

is changed, the device is closed and reopened with the new secondary
address. If a serial bus error besides device not present occurs, the
channel is closed, reopened and the original operation is executed
again.
If VICCOUNT is not equal to zero, the data is printed from the buffer
pointed to by $FE0O. The number of bytes printed is supplied in VICCOUNT.

IV. 8.a) Subfunction 8: Format a 1541 or 1571 Diskette
b) A = 4

L = 8
DRIVE#
FAST

c) VICDATA
d) This subfunction formats a 1541 or 1571 diskette in the appropriate

drive. If FAST is enabled, (FAST ANDed with DRIVE# (not equal to
0)), the length of a disk command is fetched from memory buffer
location $FE00. The command starting at location $FE01 and ending at
the location specified by the length of the command in $FE00 is sent to
the drive. For example, if $FE00 = $06, the command in the memory
buffer between $FE01 and $FE06 is sent to the drive. All commands
have a "U0" preceding them, so only the command from the memory
buffer must be supplied.

IV. 9.a) Subfunction 9: User Call to 8502 Code Routine
b) A = 4

L = 9
VICOUNT = ($FD05) low byte address of 8502 routine (pointer to the

start of execution of the user routine)
VICDATA = ($FD06) high-byte address of 8502 routine

c) User defined outputs only
d) This is the routine that allows you to call an 8502 machine language

subroutine from Z80 mode. The 8502 coded routine is usually user
defined. It must execute in RAM bank 0 with the input/output registers
enabled. The MMU value = $3E. Control is transferred to the 8502
processor with the KERNAL disabled. If you want to call a C128

APPENDIXES 701

KERNAL routine, you must enable the KERNAL after you have trans-
ferred control to the 8502. Before you return to the Z80, you must
disable the KERNAL again.

When control passes from the Z80 to the 8502 processor, the Z80
is idle. To return control to the Z80 processor, place the customary
8502 RTS instruction at the end of your 8502 coded routine and control
is passed back to the Z80.

e) Additional Information: Once control is passed from the Z80 to the
8502, the 8502 is running at the speed of 1 Mhz. You can increase the
speed to 2 Mhz to speed up processing on the 8502 side of the
computer. However, YOU MUST RETURN TO 1 Mhz SPEED BEFORE
RETURNING TO THE Z80 OR A SYSTEM CRASH WILL OCCUR.
The nature of the timing of the two processors dictates this. If you
don't return to 1 Mhz, the clock cycle timing is thrown off and the
system crashes.

IV. lO.a) Subfunction 10: RAM Disk Read
b) A = 4

L = 10
c) Data is transferred to expansion RAM from RAM (BANK 0)
d) All expansion RAM registers must be set up prior to calling this routine.

IV. 11.a) Subfunction 11: RAM Disk Write
b) A = 4

L = 11
c) Data is transferred to expansion RAM from RAM (BANK 0)
d) All expansion RAM registers must be set up prior to calling this routine.

V. a) User Function 5: Read 40/80 Column Key
b) A = 5 (function number)
c) A = Value stored in $D505 (C128 Mode Configuration register)

If bit 7 is high (1), 40/80 key is up, otherwise 40/80 is down.
d) This function returns the value of location $D505, the mode configura-

tion register. Only bit 7 is significant as noted above. The 40/80 key is
not in the keyboard matrix table, so this function is dedicated to reading
its position.

VI. a) Functions 6 through 254 are not implemented.
b) none
c) HL = number of days (in binary) since 1/1/78

VII. a) User Function 255: System Date
b) A = -1 ($FF)
c) HL = number of days (in binary) since 1/1/78
d) By specifying A = - 1 , the system date is returned.

APPENDIX K

PART II

CALLING CP/M BIOS, 8502 BIOS AND
CP/M USER FUNCTIONS IN
Z80 MACHINE LANGUAGE

The Commodore 128 CP/M system allows you to call the CP/M BIOS, 8502 BIOS and
CP/M user functions in your own Z80 assembly language programs. However, in order
to program in Z80 assembly language, you need either an assembler or machine
language monitor. Many Z80 assemblers and monitors are available on the market;
however, the full featured Digital Research CP/M Plus (3.0) system now available on
the Commodore 128 comes with two Z80 assemblers, MAC and RMAC and CP/M plus
documentation. These programs or documentation are not included in the Commodore
128 Personal Computer package; refer to the Commodore 128 System Guide for infor-
mation on obtaining them.

Assuming you have the MAC and RMAC assemblers, you can now enter and
assemble Z80 assembly language programs. At this point, this reference guide must
make a substantially large assumption about its readers and their knowledge of Z80
assembly language programming. As you probably agree, this reference guide could not
possibly introduce Z80 machine language and thoroughly cover it. That is simply
beyond the scope of this book, considering how voluminous it is already. Your trusty
local bookstore undoubtedly offers several excellent books on Z80 programming. See
"Suggestions for Further Reading" for a few Z80 book titles.

Now that all the assumptions are out of the way, here's how to call a Z80 user or
BIOS function. First, the user function call.

CALLING A CP/M SYSTEM USER FUNCTION
As you saw in Part I of this appendix, certain user functions had subfunctions, others
did not. User function 4 is the 8502 BIOS call function. The 8502 BIOS functions have
13 (-1-11) subfunctions which perform the machine level 8502 input and output
routines. Do not confuse the 8502 BIOS with the CP/M BIOS. The CP/M BIOS comes
standard with every CP/M Plus system regardless of the hardware running it. Remember
that CP/M was designed to be transportable from one microcomputer to another. Each
different microcomputer has its own machine level input and output which it must
perform. The 8502 BIOS is completely hardware-dependent and will only run on the
Commodore 128's 8502 microprocessor.

Another way of understanding the difference between the two BIOS types is

APPENDIXES 703

recalling the CP/M jump vector on page 677 of Appendix K. The first 30 jumps (0-29)
are direct calls to CP/M BIOS routines. Jump number 30 is the call to the user functions, of
which user function 4 is the 8502 BIOS. The 8502 BIOS is a subset of the CP/M user
functions. The user function call is 1 of 31 system routine calls within the CP/M BIOS
jump table.

The following example calls user function 2 the keyscan function. The calling
routine starts at "waitkey" and the subroutine starts at "user$fun".

waitkey:
MVI useroffset,30

MVI A,2
CALL user$fun
INRB
JZ waitkey
DCRB

; load A reg. with function no. 2
;calls subroutine user$fun
;increment B—test for -1 if no key is pressed
;jump to wait key if none
;decrement B if B not equal to 0
;this restores original matrix value

Rest of Program

user$fun
PUSHH
LHLD 1

;place HL reg. pair on stack
;load address of jump vector 1 (WBOOT) into HL

MVI L, useroffset * 3 ;get offset of 90 (30*3) to L
XTHL
RET

;exchange HL with top of stack
;jump to new HL pointer location of routine

First, the main program loads the user function number (2) into the A register. To
call a user function, place the required input parameter, the user function number, in the
A register. If a subfunction is going to be called, like in user function 4 (8502 BIOS), the
input parameter for the subfunction number must be placed in L.

The second instruction in the main routine is a CALL to the subroutine user$fun.
However, in this example of the keyscan user function, the returned value B is -1 if
no key is pressed. If this is the case, B is incremented to zero and the main program
jumps to waitkey and scans the keyboard again. Otherwise, the rest of the program
continues processing.

When the subroutine is called, the first instruction saves the HL register pair, the
address pointer, on top of the stack. The next instruction loads memory location 1 (low)
and 2 (high) into register pair HL. The high byte points to the page number that the
jump vectors are on and the low byte is always 3 (Jump #1 the warm boot vector). Next
the jump number times 3 is loaded into the low byte (L) of register pair HL. This adds the
offset of 90 memory locations to base address of the CP/M BIOS jump table, which now
points to jump number 30, USERF.

The XTHL instruction exchanges the HL register pair with the top of the stack.
This places the computed address on the top of the stack and the entry values of HL
back in HL, When the RETurn instruction is reached by the Z80, program control is
therefore passed to the USERF vector, entry 30 in the CP/M BIOS jump table. When
the function has completed, control returns to the instruction immediately following the
CALL User$Fun instruction (INR B).

In order for the routines to be called successfully, the proper required input
parameters must be placed in the appropriate registers. The user function number must
be placed in the A register, the subfunction number is placed in L, if any. Additional
inputs must be placed in the correct register or variable prior to calling the user function.

The above example calls user function 2, the keyscan function. To call any other
user function, load the subfunction number into the A register. To call a subfunction,
load the L register with a subfunction number on the beginning of the main (calling)
program as follows:

MVI L, subfun

The way this program is written, the value in L, which you will load at the beginning
of the program with the above instruction, is placed back in L from the stack when the
XTHL is reached at the end of the subroutine. Use this example as a template when
calling other subfunctions. Make sure the proper inputs are present in the correct
locations prior to calling the user function.

CALLING A CP/N BIOS ROUTINE
Making a direct BIOS call is different from calling a user function. User function calls
always enter jump number 30 in the CP/M BIOS jump table. A direct BIOS call enters
any of the first 30 (0-29) jump vectors. These are the input and output routines that are
a part of any CP/M system on any microcomputer. The standard method of calling a
CP/M BIOS routine is via BIOS function 50. This function handles the banking of the
two 64K RAM banks in the C128.

You could call a CP/M BIOS routine similar to the first example, but there is a
limitation. With the user function call method, you are only able to call BIOS routines
that reside in RAM bank 1. The TPA resides in bank 1, while the Z80 function code is
stored in RAM bank 0. If you try to call a direct BIOS routine in bank 0, the system will
crash because bank 1 is in context. This is why it is important to make direct
CP/M BIOS calls through user function 50. Refer to the Digital Research CP/M Plus
documentation for more details on user function 50.

Here's a program example that illustrates how to call a CP/M BIOS function.

main
MVI C,50 ;store function no. 50 in reg. C
LXI D,bios$pb ;load immediate a 16 bit pointer in DE
CALL 5 standard BIOS call

APPENDIXES 70S

Rest of Program

RET
bios$pb: ;BIOS variable table

db FUNNUM ;BIOS function no. variable
db AREG ;temporary A reg. storage
dw BCREG ;temp BC reg. pair storage
dw DEREG ;temp DE reg. pair storage
dw HLREG ;temp HL reg. pair storage

The first instruction in the main routine stores the function number 50 in the C
register. The system expects the input parameter C to be the BIOS function number. The
next instruction loads the address of the BIOS variable table bios$pb into register pair
DE. The third instruction calls BDOS function 50 through the call BDOS vector, the
standard BIOS vector through which all direct BIOS functions are called. BDOS
function 50 manipulates the banking in and out of RAM banks 0 and 1. This is the
recommended way of directly calling a CP/M BIOS function over that of the first
example which is designed primarily for calling user functions.

The variable table "bios$pb" contains the necessary input parameters required for
BDOS function 50. The "db" 's stand for a byte of storage (like .byte in 8502) while the
"dw" 's stand for a 16 bit word (like .word in 8502).

This appendix is the only section of the book that crosses the Z80 programming
barrier. It at least points you in the right direction and gives you the "hooks" into the
machine level routines of the CP/M system. For more detailed Z80 programming
information see the "Suggestions for Further Reading" at the back of the book. For
more detailed CP/M information, refer to the Digital Research CP/M Plus documentation.

MFM DISK FORMATS
The abbreviation MFM stands for Modified Frequency Modulation. This type of disk
format is variable and programmable according to the specifications of the particular
computer manufacturer.

The Commodore 128 CP/M system supports four standard MFM disk formats. These
four formats constitute the majority of CP/M software formats available on the market.
This does not mean that the Commodore 128 CP/M system can read every single CP/M
disk format in the universe; however, the majority of available CP/M software can run
on the Commodore 128, if the particular application is not hardware dependant.

The four major formats that are supported are as follows:

a) Epson QX10 (double sided)
al) Epson QX10 (double sided)
b) IBM-8 (single sided)
bl) IBM-8 (double sided)
c) KayPro IV (double sided)
d) KayPro II (single sided)
e) Osborne (single sided)

Each of these formats is compatible with the Commodore 128 CP/M system. At
the present time, the system cannot format these disk types and successfully use them on
the host system, but they can be used on the C128 system. This portion of the system
is still in development.

The following table lists the parameters that these disk formats are looking for
when reading third party CP/M software.

Disk Type

Starting pos. (t/s)

Sector size (bytes)

Vumber of sec/trk

Xumber of tracks

Block alloc size

of dir entries

of resvd tracks

a

DSDD

2/1

256

32

40

2048

128

2

Ma

b

SSDD

1/1

512

8

40

1024

64

1

nufacture

c

DSDD

0/10

512

10

80

2048

128

1

rs

d

SSDD

1/0

512

10

40

1024

64

1

e

SSDD

3/1

1024

5

40

1024

64

3

al

DSDD

2/1

512

20

40

2048

128

2

bl

DSDD

1/1

512

8

80

2048

64

1

SS = single sided
DS = double sided
DD = double density

MFM Disk Format Table

NOTE: Epson (a) labels sector numbers 1 through 16. The other Epson
QX10 format (al) labels sectors from 1 to 10. Both the top and bottom of
the disk are labeled the same way.

IBM (b) labels sector numbers 1 through 8. Both the top and
bottom of the disk are labeled the same way.

KayPro IV and KayPro II (c and d) label sector numbers 0 through
9 on top and 10 through 19 on the bottom.

These values are taken from the MFM table. The vector at $FD46 holds the
pointer to the start of the table labeled MFM$table. In the current system, these are the
formats that are read and write compatible on the Commodore 128 CP/M Plus system.

The following is a listing of the MFM format table:

APPENDIXES 707

db S256*2 +(16*2-8)+ 1
db MFM + S256 + Type0 + C0 + Sl
dw 0
dpb 256,32,40,2048,128,2

db 16
db 'Epson QX10'

db 80h + S512*2 +(10*2-8)+ 1
db S256*2
db MFM + S512 + Type0 + C0 + Sl
dw 0
dpb 512,20,40,2048,128,2

db 10
db 'Epson QX10'

db S512*2 +(8*2-8)+ 1
db MFM + S512 + Type2 + C0 + Sl
dw 0
dpb 512,8,40,1024,64,1

db 8
db ' IBM-8 SS'

db S512*2 +(8*2-8)+1
db MFM + S512 + Type2 + C0 + Sl
dw 0
dpb 512,8,80,2048,64,1

db 8
db ' IBM-8 DS'

db S512*2 +(10*2-8)+ 0
db MFM + S512 + Typel + Cl + S0
dw 0
dpb 512,10,80,2048,128,1

db 10
db 'KayPro IV

db S512*2 +(10*2-8)+ 0
db MFM + S512 + Type0 + Cl + S0
dw 0
dpb 512,10,40,1024,64,1

db 10
db 'KayPro II'

; 256 byte sect, 16 seet/trk
DSDD

start on track 2 sect 1 (2 ale)
sect# 1 to 16

(top and bottom numbered the same)
1 Epson QX10

512 byte sect, 10 sect/trk
track 0 is 256 bytes/sector

DSDD
start on track 2 sect 1 (2 ale)
sect# 1 to 10

(top and bottom numbered the same)
2

512 byte sect 8 sect/trk
SSDD

start on track 1 sector 1 (2 ale)
sect# 1 to 8

512 byte sect 8 sect/trk
DSDD

start on track 1 sector 1(1 ale)
sect# 1 to 8

(top and bottom numbered the same)

512 byte sector, 10 sect/trk
DSDD

start on track 0 sector 10 (2 ale)
sect# 0 to 9 on top (even tracks)

sect# 10 to 19 on bottom (odd tracks)

512 byte sect, 10 sect/trk
SSDD

start on track 1 sector 0 (4 ale)
sect# 0 to 9

MFM Format Table

db S1024*2 + (5*2-8) +1 ; 1024 byte sect, 5 sect/trk
db MFM + S1024 + Type0 + C0 + Sl ; SSDD
dw 0 ; start on track 3 sector 1 (2 ale)
dpb 1024,5,40,1024,64,3 ; sect# 1 to 5

db 5 ;
db 'Osborne DD' ;7

MFM Format Table (continued)

APPENDIXES 709

APPENDIX K

PART III

THE CP/M SYSTEM MEMORY MAP

The following pages contain the Z80 CP/M memory map for the Commodore 128.
The memory map includes all the key CP/M locations, vectors and variable tables.
Use it as a guide through the Z80 CP/M system within the Commodore 128.

The CP/M memory map is available as a disk file "CXEQU.LIB" on the disk
that comes with the computer.

$*MACRO

false
true
banked
EXTSYS
preSrelease

equ
equ
equ
equ
equ

0
not false
true
false ; use external system as disk and char I/O
false

; start at Jan 1,1978
dthxyr equ

1985
dateShex equ

78 79 80 81 82 83 84
365+365+366+365+365+365+366

1 2 3 4 5 6 7 8 9 10 11 12
dthxyr+31+28+31+30+31+30+31+31+30+31+30+6

date macro
db
endm

'6 Dec 85'

boot memory map (bank 0 only)

bios02 equ 3000h
block$buffer equ 3400h
boot$parm equ 3C00h

; bank 0 low memory map

uses 2K
uses about 256 bytes

RDM
VIC$color
SYSkeyarea
screen$40
BftNK$parm$blk
BIOS8502
VIC$ screen
ccp$buffer
bankOSfree

; mapped I/O

VIC
SID
MMU
DS8563
VICCH
VICCL
CIA1
CIA2
USART
RAMdskbase

equ
equ
equ
equ
equ
equ
equ
equ
equ

locations

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

OOOOh
lOOOh
lOOOh
1400h
2400h
2600h
2C00h
3000h
4000h

ODOOOh
0D400h
0D500h
0D600h
0D800h
OlOOOh
ODCOOh
ODDOOh
ODEOOh
ODFOOh

I/O page only (IO$0 selected)
3 256 byte blocks (allow 4)
2 X 80 X 25 = 4000
allow 0.5K of parameters
1.5K
IK
0c80h (allow 4K)
start of free area in bank 0

8563
(memory mapped only in IOS0)
(memory and i/o mapped in IOS0)
6526
6526
6551 (extrn card)
8726

Cannon memory allocation

int$block
parm?block
0 buffer

equ
equ

OFCOOh
OFDOOh
OFEOOh

mode 2 interrupt pointers (to FDFDh)
system parameters
disk buffer (256 bytes)

OFFOOh ; to OFFFFh used by 8502

the following are C128 system equates

enable$z80
return$z80
enables6502
return$6502

vic$cmd
vic$drv
vic$trk

equ
equ
equ
equ

equ
equ
equ

OFFDOh
OFFDCh
OFFEOh
OFFEEh

parm$b1ock+1
vic$cmd+l
vic$drv+l

8502 code

Z80 cede

1st byte used as Intterrupt pointer
; bios8502 coimiand byte
bios8502 drive (bit 0 set, drv 0)

; bios8502 track #

APPENDIXES 711

vic$sect
vic$count
vic$data
cur$drv
fast

key$tbl
fun$tbl
colortblptr
fun$offset
sound$l
sound?2
sound$3

@trk
@dma

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

equ
equ

; belcw here not used

@sect
@cnt
@cbnk
@dbnk
(Badrv
(§rdrv
ccp$count
stat$enable

emulation$adr
usart$adr
; CXIO equates
intShl
intSstack
userhltemp
hl$temp
de$temp
a$temp
source$bnk
dest$bnk
MFMtblptr

equ
equ
equ
equ
equ
equ
equ
equ

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

; 1st release end
prt$conv$l
prt$conv$2

equ
equ

keyFXfunction equ
XxD$config equ

vic$trk+l
vic$sect+l ;
vic$count+l ;
vicSdata+1 ;
cur$drv+l ;

fast+1 ;
key$tbl+2
fun$tbl+2 ;
colortblptr+2 ;
fun$offset+l
sound$1+2 ;
sound$2+2 ;

sound$3+2 ;
@trk+2

by ROM

Odrna+2 ;
@sect+2
@cnt+1
@ cbnk+1 ;
@ dbnk+1 ;
dadrv+1 ;
@rdrv+l ;
ccp$count+l ;

stat$enable+1 ;
emulation$adr+2 ;

usart$adr+2 ;
int5hl+2+20 ;
int$stack ;
userhltemp+2 ;
hl$terop+2 ;
de$temp+2
a$temp+l ;
source$bnk+l ;
dest$bnk+l ;

MFMtblptr-r2
prt$conv$l+2
prt$conv$2+2
keyFXfunction+2

; bios8502 sector #
bios8502 sector count

; bios8502 data byte to/from
current disk installed to Vir. drive
bit 0 set, drv 0 is fast. ect.

pointer to keyboard table
pointer to function table
pointer to logical color table
function # to be prepormed
unused

current track number
current DMA address

current sector number
record count for multisector transfer
bank for processor operations
bank for DMA operations
currently selected disk drive
controller relative disk drive
number of records in the CCP
status line enable
7 kybrd, key codes(l), functions!0)
6 40 column tracking on(0), off(l)
0 disk stat, enabled), disable(O)
address of current emulation
pointer to USART (6551) register

interrupt HL hold location
currently only 5*2 used
user function HL hold location
raise temp storage (used by VECTOR)
misc temp storage (used by VECTOR)
misc temp storage (used by VECTOR)
inter bank move source bank #
inter bank move dest bank #
pointer to MFM table

RS232$status equ XxD$config+l

xmit$data
recv$data

equ
equ

RS232$status+l
xmit$data+l

bit 7 0 = no parity
bit 6 0= mark/space
bit 5 0~ space/even

1 = parity
1 — odd/even
1 - mark/odd

bit 1 0 = 1 stop bit 1 = 2 stop bits
bit 0 0 = 7 data bits 1 = 8 data bits

bit 7, l=send data, 0=no data
bit 6, l=sending data
bit 5, l=recv que active
bit 4, l=parity error
bit 3, l=framing error
bit 2, l=recv over run (no used)
bit 1, l=receiving data
bit 0, l=Data byte ready

data byte to send
received data byte

The following equates are used by the interrupt driven keyboard handler

int$rate equ recv$data+1

1st byte is a pointer into table, 2nd to 12th byte represent
the keyboards current state (active low), NOTE: only
current if key$buffer is not full

key$scan$tbl equ int$rate+l

keyboard roll over buffer

8*2 ; must be an even number of bytes
key$scan$tbl+12
keySgetSptr+2
keyputptr+2

64
key$buffer+keySbuf$size
RxDSbufScount+1
RxD$bufSput+l
RxDbufget+l
RxD$buffer+RxD$buf$size
tick$vol+l

keybufsize
keygetptr
keySputSptr
keySbuffer

equ
equ
equ
equ

; software UA

RxDbufsize
RxDbufcount
RxDbufput
RxDbufget
RxDSbuffer
tick$\'ol

INTSvector

equ
equ
equ
equ
equ
equ
equ

eau OFDFDh

;=^> 40 column misc parm
tempSl equ BANK$pann$blk
@ off40 equ temp$l+2
cur$offset equ @off40
old$offset equ @off40+2
prt$flg equ old$offset+l
flash$pos equ prt$flg+l

;===> 40 column
paintSsize
charadr40
charcol40
charrow40
attr$40
bg$color$40
bd$color$40
rev$40

position and color stora<
equ
equ
equ
equ
equ
equ
equ
equ

flash$pos+2
paint$size+l
charadr40+2
charcol40+l
charrow40+l
attr$401-l
bg$color$40+l
bd$color$40+l

=> 80 column position and color storage
char$adr
char$col
char$row
current$atr
bg$color?80
char$color$80

equ
equ
equ
equ
equ
equ

rev$40+l
charSadr+2
charScol+1
char$rowtl
currentSatr+1
bg$color$80+l

contains a JMP int$handler
(in common)

ROM uses localtions above this point

=> Qnulation parameters
parm$base
parm5areaS 80

parm$area$40

buffer$80Scol

equ
equ
ds
ds
equ
ds
ds
equ

char$color?80+l
parmSbase+2
2
1
parmSarea$80+3
2
1
parm$area$40+3

column exec$adr
column row #

40 column execSadr
40 column row #

;==> CXIO parameters
; intScount not used by releases past 10 Oct 85
int$count qu buffer$80$col+40*2 ; one added every l/60th sec
key$buf a I int$count+l

APPENDIXES 713

;==> CXKEYS parameters
key?down$tbl equ key$buf+l ; not used any more (int code)
;;;;; free space above, new interrupt driven cede does not require this space
; control$keys equ keySdown$tbl+ll*2 ; byte, not used any more (int code)

commodore $mode equ
msgptr equ
offset equ
cur$pos equ
stringSindex equ
; 1st release end (3
sys$freq equ
; 2nd release end {1
; equ

key$down$tbl+l1*2
commodore$mode+l
msgptr+2
offset+1
cur$pos+l

June 85)
string$index+l

Aug 85)
sys$freq+l

; -l=50Hz, 0=60Hz

; = > temp ROM
blk?ptr$cnt
ioad$count
ldblkptr
blk$unld$ptr
blcck$size
block$end
blockSptrs
info$buffer

ext$num
retry
bcot$stack

boot da
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

ta storage
32
boot$parm
loadScount+2
ldblkptr+2
blk$unld$ptr+2
block$size+l
block$end+2

number of 128 byte blocks to load
current sector dma pointer
read memory block (lk,2K) pointer
block size (1K=32 or 2K=64)
allow 48K cpm.sys to load
end of block load buffer (+1K or +2K)

block$ptrs+blk$ptr$cnt
CPM3.sys load adr s and counts
CPM3.SYS current ext #info$buffer+12

extSnum+1
retry+1+64
boot$stack

;===> special equates used by CXKEY
special
SFSexit
SF$insert
SFSdelete
alpha$toggle
altSkey
SF$left
lf$arrow
SF$right
rt$arrow

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

00010111b
OOlh
02 8h
02Bh
03Dh
05 Oh
055h
05 5h
056h
05 6h

allow 64 bytes of stack

RETURN KEY
PLUS KEY
MINUS KEY
commodore key
alterant key
left arrow key
left arrow key
right arrow key
right arrow key

buff$large
buffSsmall
buffSpos

equ 25
equ 7
equ 7

;=z> External RS232 interface controls
rxd$6551 equ USART+0
txd$6551 equ USART+0
status$6551 equ USART+1
reset$6551 equ USART+1
comrnand$6551 equ USART+2
control$6551 equ USART+3
txrdy equ lOh
rxrdy equ 08h
cmd$init equ Obh
cntr$init$19200 equ lFh
cntr$init$9600 equ lEh
cntr$init$600 equ 017h

read
write
read
write
read/write
read/write

no parity, enable txd + rxd, interrupts off
1 stop, 8 bits, 19200 baud
1 stop, 8 bits, 9600 baud (internal)
600 baud

; = > memory management loactions
mmu$start
conf$reg
confregl
confreg2
confreg3
confreg4
modeSreg

equ
equ
equ
equ
equ
equ
equ

MMU
MMU
MMU+1
MW+2
MMU+3
mu+i
MMU+5

3eh
3fh
7fh
3eh
7eh
blh

ramsreg
pageOl
pageOh
pagell
pagelh
rrcnu$version

enable$C64
z80$off
z80$on
fastrden
fastwren
common$4K
common$8K
common$16K

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

;==> preconfiguration
force$map
bank$0
bank$l
io
io$0
io$l

equ
equ
equ
equ
equ
equ

Md+6
MMU+7
M4U+8
MMU+9
M4U+10
MMU+11

11110001b
10110001b
10110000b
Z80$on+0
Z80$on+8
09h
Oah
Obh

maps
OffOOh
OffOlh
OffO2h
0ff03h
OffO3h
0ff04h

Obh 16K top Cannon
OOh
Olh
Olh
Olh
??h

FS=0
value to be write to enable 8502

fast serial read
fast serial write
top 4K common
top 8K cannon
top 16K common

3fh
7fh
3eh
3eh
7eh

; = > 80 column display equates
DS$index$reg equ DS8563
DS$status$reg equ DS8563
DS$data$reg equ DS8563+1
;==> register pointers
DS$cursor$high equ 14
DS$cursor$low equ 15
DSrwptr$high equ 18
DSrwptr$low equ 19
DSrwdata equ 31
DSScolor equ 26
; = > status bits
DS$ready equ 80h
DSltpen equ 40h
; = > display memory layout (16K) 0-3fffh
DS$screen equ OOOOh
DS$attribute equ 0800h
DS$char$def equ 2000h

; = > VIC equates
; vie colors
black
white
red
cyan
purple
green
blue
yellow
orange
brown
lt$red
dark$grey
med$gray
lt$green
ltSblue
lt$grey

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

RM$status
bit 7

6
5

note:
4

equ RAM$dsk?base
Interrupt pending if 1
Transfer complete if 1
Block verify error if 1

bits 5-7 are cleared when read
128K if 0, 512K if 1

3-0 Version #

;read only register

APPENDIXES 715

RM$command equ RAM$dsk$base+l ;r/w
bit 7 execute per current config. if set

6 reserved
5 enable auto reload if set (restores all register to

value before command was done, else point to
next byte to read/write.}

4 disable FFOO decode if set (do operation after command writen)
3,2 reserved
1,0 00 = transfer C128 —> Ram Disk

01 = Transfer C128 <— Ram Disk
10 = swap C128 <-> Ram Disk
11 = Verify C128 = Ram Disk

RM128low equ RAMdskbase+2 ;r/w
bits 0 to 7 of C128 address

RM128mid
bits

RMextlow equ RAMdskbase+4 ,-r/w
bits 0 to 7 of Ram Disk address

equ RAMdskbase+3 ;r/w
to 15 of the C128 address

RMextmid
bits

equ RAMdskbase+5 ;r/w
to 15 of Ram Disk address

RMexthi equ RAMdskbase+6 ;r/w
bit 16 of Ram Disk address if 128K version
bits 16 to 18 of Ram Disk address if 512K version

RM$count$low equ RAMdskbase+7 ;r/w
low byte transfer count (bits 0-7)

RM$count$hi equ RAMdskbase+8 ;r/w
hi byte transfer count (bits 8-15)

RM$intr$mask
bit 7

6
5

RM$control
bit 7,6

equ RAMdskbase+9 ;r/w
l=enable chip interrupts
l=enable end of block interrupts
l=enable verify error interrupts

equ
00
01
10
11

RAMdskbase+10 ;r/w
Increment both addresses (default)
Fix expansion address
Fix C128 address
Fix both addresses

==> CIA equates

Data$a
Data$b
Datadira
Datadirb
timeralow
timerahigh
timerblow
timerbhigh
todsec60
tod$sec
tod$min
tod$hrs
sync$data
int$ctrl
cia$ctrl$a
cia$ctrl$b
CIA$hours

key$row

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

OOh
Olh
02h
03h
04h
05h
06h
07h
08h
09h
Oah
Obh
Och
Odh
Oeh
Ofh
CIAl+tod$hrs

CIAl+DataSa ; output

key$col
VICkeyrow

data$hi
dataSlow

if$shift$key
rt$shift$key
commodore$key
controlSkey

type$lower
type$upper
type$shift
typeScntrl
type$field

bnkl equ
pageO equ
page 1 equ

MMUtblM
db
db
db
endm

equ
equ

equ
equ

equ
equ
equ
equ

equ
equ
equ
equ
equ

1
0
1

CIA1+Data$b
0d02fh

4
0

8 Oh
lOh
2 Oh
04h

0
1
2
3
00000011b

macro
3fh,3fh,7fh,3eh,7eh
z 8 0 Son,commonS 8K
pageO,bnkl,pagel,bnkl

; input
; output

; RS232 data line HI
; RS232 data line LOW

; config reg's
; mode & mem
; page reg's

ROM functions

macro x
rst 2 ! db x
endm

TCALL macro x
mvi l,x !
endm

rst 4

macro x
rst 3 ! db x
endm

RCALL macro x
mvi 1,x ! rst 5
endm

FRS40 equ

FRSwrSchar
FRScursorSpos
FRScursorSup
FR$cursor$down
ERScursorSleft
FRScursorSrt
FRdocr
FRSCEL
FR$CES
ERSchar$ins
FRSchar$del
ERSlineSins
BRSlineSdel
ERScolor
FR$attr
FRSrdSchrSatr

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

OOh
04h
08h
OCh
lOh
14h
18h
ICh
2 Oh
24h
28h
2Ch
30h
34h
38h
3Ch

EKwrchr$atr equ

offset to 40 column ROM functions

D=char auto advance
B=row, C^oolumn

40h

B=color
B=bit to se t /c lear , C=bit value
in D=row, E=col
out H=row, L=col, B=char, C=attr(real)
in D=row, E=col, B=char, G=attr(real)
out H=row, Ir=col

FRrdcolor
;FRwrcolor

equ
equ
ecru

44h
48h
4Ch

APPENDIXES 717

FRtrksect
ER$check$CBM
FR$bell

FR$trkS40
FR$setScur$40
FR$line$paint
FRSscreenSpaint
FRprtmsg$both
FRSprtSdeSboth
FR$update$it

FRSASCIItopet
FRcuradr54O
FR$curSadrS80
FR$look$color

FRblkfill
FRblkmove
ER$char$inst

equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

50h
52h
54h
56h
58h
5Ah
5Ch
5Eh

6 Oh
62h
64h
66h
68h
6Ah
6Ch
6Eh

7 Oh
72h
74h
76h
78h
7Ah
7Ch
7Eh

HL passed on the stack

fixed ROM locations

Rcmphl$de
R$write$nemory
R$read$memory
Rsetupdate$adr
R$wait

R$status$color$tbl
R$color$convert$tbl

equ
equ
equ
equ
equ

equ
equ

100h-6
180h+0
180h+3
180h+6
180h+9

1000h-246-16
1000h-230-16

Disk type byte definition

bit 7 0=GCR, 1=MFM

if bit 7 is 1 (MFM)
6 C0=0, Cl=l (side 2 #, 0 to (n/2)-l or n/2 to n-1)
5,4 00=128, 01=256, 10=512, 11=1024 byte/sector
3,2,1 disk type (MFM)
0 starting sector # (0 or 1}

if bit 7 is 0 (GCR)
6
5,4
3,2,1

MEM
CO
Cl
CISbit

TypeO

Typel

Type2

equ
equ
equ
equ
equ

equ

equ

1*128
0*64
1*64
6
0*2

1*2

2*2

unused (set to 0)
always 01 (256 byte sectors)
disk type (GCR)
TypeO = none, set track and sector as passed
Typel = C64 type disk
Type2 = C128 type disk
unused (set to 0)

2nd side start at begining
2nd side continues from first

(MEM) top, bottom then next track
(TRK# 0 to (34 or 39))

(MEM) top (trk 0 even), bottom (trk 1 odd)
(TRK# 0 to (69 or 79))

(MFM) top TRK# 0 to 39, bottom TRK# 40 to 79
(TRK# on back start at 39 and go to 0)

Type7 equ

TypeX equ

7*2

7*2

SO equ
SI equ

SI 28 equ
S256 equ
S512 equ
S1024 equ

dskSnone
dsk$c64
dsk$cl28

dir$track

; 6510

vic$reset
vic$init
vic$rd
vicSwr
vic$rdF
vic$wrF
vic$test
vic$query
vic$prt
vic$frmt
vic$user$fun
vicRMrd
vicRMwr

0*1
1*1

0*16
1*16
2*16
3*16

equ
equ
equ

equ

conmands

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

TypeO+S256
Typel+S256
Type2+S256

18

-1 ;
0
1
2
3
4
5
6
7
8
9
10
11

(MH4) pass the byte values supplied in *trk
and ' sect

start at sector 0
start at sector 1

access to any sector on the disk

C64 disk dir track

reboot C128
initilize the bios8502
read one sector of data (256 bytes)
write one sector of data
set-up for fast read (many sectors)
set-up for fast write
test current disk in drive
get start sectors and #sector/trk
print data character
format a disk (1541)

RAM disk read
RAM disk write

control charactors

eom
bell
bs
If
cr
xon
xoff
esc

equ
equ
equ
equ
equ
equ
equ
equ

OOh
07h
08h
Oah
Odh
llh
13h
lbh

003D
FF01
2400
2416
3C04
3C06
0009
0007
3000
240B
DCOO
1)001!
001E
DE02
2488
D500
DE03
2402
0000
0000
1)600
OOOE
D600
0080
0000
FD23
0000
FD08
0002
007A
0024
0074
0004
0030
0076
0068
0066
006C
0005

ALPHATOGGLE
BANK0
BANKPARMBLK
BGCOLOR30
BLKUNLDPTR
BLOCKSIZE
BROWN
BUFFPOS
CCPBUFFER
CHARCOL40
CIA1
CMDINIT
CNTRINIT9600
COMMAND6S51
COMMODOREMODE
CONFREG
CONTROL6551
CUROFFSET
DATAA
DATALOW
DS8563
DSCURSORHIGH
DSINDEXREG
DSREADY
DSSCREEN
EMULATIONADR
EOM
FAST
FR40
FRBLKFILL
FRCHARINS
FRCURADR80
FRCURSORPOS
FRLINEDEL
FRLOOKCOLOR
FRPRTMSGBOTH
FRSCREENPAINT
FRUPDATEIT
GREEN

Variables

4000

3000
3400
0006
0008
0007
FD21
2417
DD00
001F

D501

248C
0001
0B1C
0800

0014
001F
D600

001B
00B0
0070
007C
007E
OOOC

002C

0000
FD3F

B A N K 0 F R E E

BIOS02
B L O C K B U F F E R
B L U E
BS
B U F F S M A L L
C C P C O U N T
C H A R C O L O R 8 0
CIA2
CNTRINIT19200

C O N F R E G 1

C U R P O S
DATAB
D A T E H E X
D S A T T R I B U T E

DSKC128
DSRWDATA
DSSTATUSREG

ESC
FASTRDEN
F R A S C I I T O P E T
F R B L K M O V E
F R C H A R I N S T
F R C U R S O R D O W N

F R L I N E I N S

F R W R C H A R
H L T E M P

0050
FF02
240F
2600

0001
2420
0000
2411

OOOE

FD0D
0020
000B
0502
0004
2415
0002
FD45

000F
0012
0012

FFEO
3C35
00B8

001C
0052

0014
0064
006A
003C
0062
0040
3C29

A L T K E Y
BANK1
BDCOLOR40
BIOS8502

BNK1
BUFFER80COL
CO
CHARADR

C I A C T R L A

C O L O R T B L P T R
C O M M O D O R E K E Y
C O M M O N 1 6 K
C O N F R E G 2
C O N T R O L K E Y
CURRENTATR
DATADIRA
DESTBNK

DSCURSORLOW
DSKC64
D S R W P T R H I G H

ENABLE6502
EXTNUM
FASTWREN

F R C E L
F R C H E C K C B M

F R C U R S O R R T
FRLINEPAINT
F R P R T D E B O T H
F R R D C H R A T R
FRSETCUR40
F R W R C H R A T R
INFOBUFFER

FD43
F F F F
0007
0000
3C07
3C00

0040
2409
2414
000F
0017

0009
0503
000D
0003
0003
FD41
2000

0010

09FD
00F1
0000
2406
0038
0020
0034
0010
0008

0044
0060
FD0F
FC00

A T E M P
BANKED
BELL
BLACK
B L O C K E N D
B O O T P A R M

Cl
CHARADR40
C H A R R O W
C I A C T R L B
CNTRINIT600

C O M M O N 4 K
C O N F R E G 3
CR
CYAN
DATADIRB
D E T E M P
DSCHARDEF

DSKNONE

DTHXYR
ENABLEC64
EXTSYS
FLASHPOS
FRATTR
F R C E S
F R C O L O R
F R C U R S O R L E F T
F R C U R S O R U P

F R R D C O L O R
F R T R K 4 0
FUNOFFSET
INTBLOCK

240D

240E
0020
3C09
3C77
0019
0006
2413
240C
DC0B

000A
D504
FD07
OO0B
0004
0012
001A
D601
0040
0013

FFD0
0000
FFOO
0054
0028
0072

0018

0050
FD0B
2470

ATTR40

B G C O L O R 4 0
B L K P T R C N T
B L O C K P T R S
B O O T S T A C K
B U F F L A R G E
C1BIT
C H A R C O L
C H A R R O W 4 0
C I A H O U R S

C O M M O N 8 K
C O N F R E G 4
CURDRV
D A R K G R E Y
DATAHI
D I R T R A C K
D S C O L O R
DSDATAREG
DSLTPEN
DSRWPTRLOW

ENABLEZ80
FALSE
F O R C E M A P
F R B E L L
F R C H A R D E L
FRCURADR40

F R D O C R

F R T R K S E C T
FUNTBL
I N T C O U N T

>

rr
2c
X
rn
V

719

OOOD
FF03
0010
FD5F
3C02
OOOE
0080
DS05
0000
D509
FDOO
DFOO
FD51
F F D C
DFOA
DF05
0183
0186
0010
FD73
003C
0000
0001
FD10
FD22
248E
0007
0008
0002
0000
FD25
FD01
0008
0001
2C00
0002
0007
FD1D
FD20

INTCTRL
IO
KEYBUFSIZE
KEYGETPTR
LDBLKPTR
LTBLUE
MFM
MODEREG
PAGEO
PAGE1L
PARMBLOCK
RAMDSKBASE
RECVDATA
RETURNZ80
RMCONTROL
RMEXTMID
RREADMEMORY
RSETUPDATEADR
RTSHIFTKEY
RXDBUFCOUNT
RXDBUFS1ZE
S128
SFEXIT
SOUND1
STATENABLE
SYSFREQ
TIMERBHIGH
TODSEC60
TYPE1
TYPELOWER
USARTADR
VICCMD
VICFRMT
VICRD
VICSCREEN
V1CWR
YELLOW
(SCBNK
(5RDRV

FD27
FF03
DC01
FD61
000A
OOOD
FD46
2489
D508
2408
FD48
D506
0002
2410
DF08
DF09

0189

0008
0010
0028
FD12
DE01
1000
0006
FFFF
0004
0002
FD3D
1000
0000
0003
FD04
0004
00B1
FD1C
FD1A

INTHL
IOO
KEYCOL
KEYPUTPTR
LF
LTGREEN
MFMTBLPTR
MSGPTR
PAGE0H
PAINTSIZE
PRTCONV1
RAMREG
RED
REV40
RMCOUNTHI
RMINTRMASK

RWAIT

RXRDY
S256
SFINSERT
SOUND2
STATUS6551
SYSKEYAREA
TIMERBLOW
TRUE
TYPE2
TYPESHIFT
USERHLTEMP
VICCOLOR
VICINIT
VICRDF
VICSECT
VICWRF
Z80OFF
(ffiCNT
(ci'SECT

FD52
FF04
2472
DC00
0055
000F
D500
248B
D507
241D
FD4A
OOFA
DE01
DF02
DF07
DFOO
F D 4 F
OEFA
0180
FD76
0000
0020
0055
FD14
248D
2400
OOOB
DE00
OOOE
0001
D000
FD05
D02F
FFFF
0005
0001
0(114(1
F D 1 E
FD16

INTRATE
IO1
K E Y D O W N T B L
K E Y R O W
L F A R R O W
L T G R E Y
MMU
O F F S E T
PAGE0L
PARMAREA40
PRTCONV2
R C M P H L D E
RESET6551
RM128LOW
R M C O U N T L O W
RMSTATUS
RS232STATUS
R S T A T U S C O L O R T B L
R W R I T E M E M O R Y
RXDBUFFER
SO
S512
S F L E F T
SOUND3
STRINGINDEX
T E M P I
TODHRS
TXD6551
TYPE7
TYPEUPPER
VIC
V1CCOUNT
V I C K E Y R O W
V I C R E S E T
VICTEST
W H I T E
Z80ON
(ffiDBNK
(ffiTRK

FD3D
2471
FD4C
FD53
0080
000A
D500
2404
0001
241A
2405
OFOA
3C36
DF03
DF06
0000

FD75
0001
1400
0056
FD44

0005
000A
0010
0003
OOOE
D800
FD06
0007
000A
FD03
FD50
FD1F
FD18

INTSTACK
KEYBUF
KEYFXFUNCTION
KEYSCANTBL
L F S H I F T K E Y
L T R E D
M M U S T A R T
O L D O F F S E T
PAGE1
PARMAREA80
P R T F L G
R C O L O R C O N V E R T T B L
R E T R Y
RM128MID
R M E X T H I
ROM

R X D B U F G E T
SI
SCREEN40
S F R I G H T
SOURCEBNK

T I M E R A H I G H
TODM1N
TXRDY
T Y P E C N T R L
TYPEX
V I C C H
VICDATA
V I C P R T
V I C R M R D
VICTRK
XMITDATA
O A D R V
(©DMA

FDFD
FD63

FD09
3C00
OOOC
D50B
0008
D50A
2418
0004

FFEE
DF01
DF04

0056
DE00
FD74
0030
002B
D400
0017
OOOC
0004
0009
0000
0003
DE00
1000
FD02
0006
OOOB
0009
F D 4 E
FEOO
2402

INTVECTOR
KEYBUFFER

KEYTBL
LOADCOUNT
MEDGRAY
MMUVERSION
ORANGE
PAGE1H
PARMBASE
PURPLE

RETURN6502
RMCOMMAND
RMEXTLOW

RTARROW
RXD6551
RXDBUFPUT
S1024
SFDELETE
SID
SPECIAL
SYNCDATA
TIMERALOW
TODSEC
TYPE0
TYPEFIELD
USART
VICCL
VICDRV
VICQUERY
VICRMWR
VICUSERFUN
XXDCONFIG
(ffiBUFFER
(SOFF40

Variables

APPENDIXES 721

APPENDIX L

COMMODORE 128 SYSTEM SCHEMATICS
The following eight pages contain the full system schematics for the Commodore 128.
Each two-page spread represents one full-size engineering schematic sheet. For easier
readability, the right edge of the left-hand page and the left edge of the right-hand page
have portions of the schematic that are duplicated. This overlap is provided so you can
read the circuit diagram from either half of the two-page spread, then move to the
adjacent page and pick up where you left off from the point where the opposite page
ends. The arrow at the top of each page provides a frame of reference to mark the
portion of the diagram that is overlapped.

APPENDIXES 723

APPENDIXES 725

APPENDIXES 727

APPENDIXES 729

GLOSSARY

This glossary provides brief definitions of frequently used computing terms.

Acoustic Coupler or Acoustic Modem: A device that converts digital signals to
audible tones for transmission over telephone lines. Speed is limited to about 1200
baud, or bits per second (bps). Compare Direct Connect Modem.

Address: The label or number identifying the register or memory location where a unit
of information is stored.

Alphanumeric: Letters, numbers and special symbols found on the keyboard, exclud-
ing graphic characters.

ALU: Arithmetic Logic Unit. The part of a Central Processing Unit (CPU) where
mathematical operations are performed.

Animation: The use of computer instructions to simulate motion of an object on the
screen through gradual, progressive movements.

Array: A data storage structure in which a series of related constants or variables is stored
in consecutive memory locations. Each constant or variable contained in an array
is referred to as an element. An element is accessed using a subscript. See
Subscript.

ASCII: Acronym for American Standard Code for Information Interchange, which is a
seven-bit code used to represent alphanumeric characters. It is a useful communi-
cation code for such things as sending information from a keyboard to the
computer, and from one computer to another. See Character String Code.

Assembler: A program that translates assembly language instructions into machine
language instructions.

Assembly Language: A machine-oriented language in which mnemonics are used to
represent each machine language instruction. Each CPU has its own specific
assembly language. See CPU and Machine Language.

Assignment Statement: A BASIC statement that sets a variable, constant or array
element to a specific numeric or string value.

Asynchronous Transmission: A communication scheme in which data characters are
sent at time intervals, independent of the system clock. Limits phone line trans-
mission to about 2400 baud (bps). See Synchronous Transmission.

Attack: The rate at which the volume of a musical note rises from zero to peak volume.
Background Color: The color of the portion of the screen that the characters are

placed upon.

BASIC: Acronym for Beginner's All-purpose Symbolic Instruction Code.
Baud: A unit of serial-data transmission speed. The term was originally used for

measuring telegraph transmission speed. Three hundred baud is approximately
equal to a transmission speed of 30 bytes, or characters, per second.

Binary: A base-2 number system. All numbers are represented as a sequence of 0s and
Is.

Bit: The abbreviation for Binary diglT. A bit is the smallest unit in a computer's
memory. Each binary digit can have one of two values, 0 or 1. A bit is referred to
as set or "on" if it equals 1. A bit is clear or "off" if it equals 0.

Bit Control: A means of transmitting serial data in which each bit has a significant
meaning and a single character is surrounded with start and stop bits.

Bit Map Mode: An advanced graphic mode in the Commodore 128 in which you can
control every pixel on the screen.

Border Color: The color of the edges around the screen.
Branch: To jump to a section of a program and execute it. GOTO and GOSUB are

examples of BASIC branch instructions.
Bubble Memory: A relatively new type of computer memory, it uses tiny magnetic

"pockets" or "bubbles" to store data.
Burst Mode: A special high-speed mode of communication between a 1571 disk drive

and a C128 computer, in which information is transmitted at many times the speed
of the 1541 Disk Drive.

Bus: Parallel or serial lines used to transfer signals between devices. Computers are
often described by their bus structure (i.e., S-100-bus computers, etc.).

Bus Network: A system in which all stations or computer devices communicate by
using a common distribution channel or bus.

Byte: A group of 8 bits that make up the smallest unit of addressable storage in a
computer. Each memory location in the Commodore 128 contains 1 byte of
information. One byte is the unit of storage needed to represent one character in
memory. See Bit.

Carrier Frequency: A constant signal transmitted between communicating devices
that is modulated to encode binary information.

Character: Any symbol on the computer keyboard that is printed on the screen.
Characters include numbers, letters, punctuation and graphic symbols.

Character Memory: The area in Commodore 128's memory that stores the encoded
character patterns that are displayed on the screen.

Character Set: A group of related characters. The Commodore 128 character sets
consist of upper case letters, lower case letters and graphic characters.

Character String Code: The numeric value assigned to represent a Commodore 128
character in the computer's memory.

Chip: A miniature electronic circuit that performs a computer operation such as
graphics, sound and input/output.

Clock: The timing circuit for a microprocessor.
Clocking: A technique used to synchronize the sending and receiving of data that is

modulated to encode binary information.
Coaxial Cable: A transmission medium, usually employed in local networks.

GLOSSARY 733

Collision Detection: Determination of collision between two or more sprites or
between sprites and data.

Color Memory: The area in the Commodore 128's memory that controls the color of
each location in screen memory.

Command: A BASIC instruction used in direct mode to perform an action. See Direct
Mode.

Compiler: A program that translates a high-level language, such as BASIC, into
machine language.

Composite Monitor: A device used to provide the C128 40-column video display.
Computer: An electronic, digital device that inputs, processes, and outputs information.
Condition: Expression(s) between the words IF and THEN, in an IF . . . THEN

statement, evaluated as either true or false. The conditional IF . . . THEN
statement gives the computer the ability to make decisions.

Coordinate: A single point on a grid having vertical (Y) and horizontal (X) values.
Counter: A variable used to keep track of the number of times an event has occurred in

a program.
CPU: Acronym for Central Processing Unit, the part of the computer containing the

circuits that control and perform the execution of computer instructions.
Crunch: To minimize the amount of computer memory used to store a program.
Cursor: The flashing square that marks the current location on the screen.
Data: Numbers, letters or symbols that are input into the computer and are to be

processed.
Database: A large amount of related data stored in a well-organized manner. A

database management system is a program that allows access to the information.
Data Link Layer: A logical portion of data communications control that mainly

ensures that communication between adjacent devices is error-free.
Data Packet: A means of transmitting serial data in an efficient package that includes

an error-checking sequence.
Data Rate or Data Transfer Rate: The speed at which data is sent to a receiving

computer—given in baud, or bits per second (bps).
Datassette: A device used to store programs and data files sequentially on tape.
Debug: To correct errors in a program.
Decay: The rate at which the volume of a musical note decreases from its peak value to

a midrange volume called the sustain level. See Sustain.
Decrement: To decrease an index variable or counter by a specific value.
Dedicated Line or Leased Line: A special telephone line arrangement supplied by

the telephone company, and required by certain computers or terminals, whereby
the connection is always established.

Delay Loop: An empty FOR . . . NEXT loop that slows the execution of a
program.

Dial-Up Line: The normal switched telephone line that can be used as a transmission
medium for data communications.

Digital: Of or relating to the technology of computers and data communications
where all information is encoded as bits of Is or Os that represent on or off
states.

Dimension: The property of an array that specifies the size and direction along an axis
in which the array elements are stored. For example, a two-dimensional array has
an X-axis for rows and a Y-axis for columns. See Array.

Direct Connect Modem: A device that converts digital signals from a computer into
electronic impulses for transmission over telephone lines. Contrast with Acoustic
Coupler.

Direct Mode: The mode of operation that executes BASIC commands immediately after
the R E T U R N key is pressed. Also called Immediate Mode. See Command.

Disable: To turn off a bit, byte or specific operation of the computer.
Disk Drive: A random access, mass-storage device that saves and loads files to and

from a floppy diskette.
Disk Operating System: A program used to transfer information to and from a disk.

Often referred to as a DOS.
Duration: The length of time a musical note is played.
Electronic Mail, or E-Mail: A communications service for computer users in which

textual messages are sent to a central computer, or electronic "mailbox," and
later retrieved by the addressee.

Enable: To turn on a bit, byte or specific operation of the computer.
Envelope Generator: Portion of the Commodore 128 that produces specific wave-

forms (sawtooth, triangle, pulse width and noise) for musical notes. See Waveform.
EPROM: A PROM that can be erased by the user, usually by exposing it to ultraviolet

light. Abbreviation for Erasable Programmable Read Only Memory. See PROM.
Error Checking or Error Detection: Software routines that identify, and often

correct, erroneous data.
Execute: To perform the specified instructions in a command or program statement.
Expression: A combination of constants, variables or array elements acted upon by

logical, mathematical or relational operators that return a numeric value.
File: A program or collection of data treated as a unit and stored on disk or

tape.
Firmware: Computer instructions stored in ROM, as in a game cartridge.
Frequency: The number of sound waves per second of a tone. The frequency corre-

sponds to the pitch of the audible tone.
Full-Duplex Mode: In this mode, two computers can transmit and receive data at the

same time.
Function: A predefined operation that returns a single value.
Function Keys: The four keys on the far right of the Commodore 128 keyboard. Each

key can be programmed to execute a series of instructions. Since the keys can be
SHIFTed, you can create eight different sets of instructions.

GCR: The abbreviation for Group Code Recording, a method of storing information on
a disk. The 1541 and 1571 disk drives can read, write and format GCR disks.

Graphic Characters: Nonalphanumeric characters on the computer's keyboard.
Graphics: Visual screen images representing computer data in memory (i.e., charac-

ters, symbols and pictures).
Grid: A two-dimensional matrix divided into rows and columns. Grids are used to

design sprites and programmable characters.

GLOSSARY 737

Program: A series of instructions that direct the computer to perform a specific task.
Programs can be stored on diskette or cassette, reside in the computer's memory,
or be listed on a printer.

Program Line: A statement or series of statements preceded by a line number in a
program. The maximum length of a program line on the Commodore 128 is 160
characters.

Programmable: Capable of being processed with computer instructions.
PROM: The acronym for Programmable Read Only Memory. A semiconductor memory

chip whose contents can be changed.
Protocol: The rules under which computers exchange information, including the

organization of the units of data to be transferred.
Random Access Memory (RAM): The programmable area of the computer's memory

that can be read from and written to (changed). All RAM locations are equally
accessible at any time in any order. The contents of RAM are erased when the
computer is turned off.

Random Number: A nine-digit decimal number from 0.000000001 to 0.999999999
generated by the RaNDom (RND) function.

Read Only Memory (ROM): The permanent portion of the computer's memory. The
contents of ROM locations can be read, but not changed. The ROM in the
Commodore 128 contains the BASIC language interpreter, character-image pat-
terns and the operating system.

Register: Internal storage compartments with the microprocessor that communicate
between system ROM, RAM, and themselves.

Release: The rate at which the volume of a musical note decreases from the sustain
level to 0.

Remark: Comments used to document a program. Remarks are not executed by the
computer, but are displayed in the program listing.

Resolution: The fineness of detail of a displayed image, determined by the density of
pixels on the screen.

RGBI Monitor: A high-resolution display device necessary to produce the C128 80-
column screen format. RGBI stands for Red/Green/Blue/Intensity.

Ribbon Cable: A group of attached parallel wires, usually made up of 25 lines for
RS-232 communication.

Ring Network: A system in which all stations are linked to form a continuous loop or
circle.

RS-232: A recommended standard for electronic and electromechanical specifications for
serial communication. The Commodore 128 parallel user port can be treated as a
serial port if accessed through software, sometimes with the addition of an
interface device.

Screen: A video display unit, which can be either a television or a video monitor.
Screen Code: The number assigned to represent a character in screen memory. When

you type a key on the keyboard, the screen code for that character is entered into
screen memory automatically. You can also display a character by storing its
screen code directly into screen memory with the POKE command.

Screen Memory: The area of the Commodore 128's memory that contains the infor-
mation displayed on the video screen.

Serial Port: A port used for serial transmission of data; bits are transmitted one bit
after the other over a single wire.

Serial Transmission: The sending of sequentially ordered data bits.
Software: Computer programs (set of instructions) stored on disk, tape or cartridge that

can be loaded into random access memory. Software, in essence, tells the com-
puter what to do.

Sound Interface Device (SID): The MOS 6581 sound synthesizer chip responsible
for all the audio features of the Commodore 128.

Source Code: A nonexecutable program written in a higher-level language than
machine code. A compiler or an assembler must translate the source code into an
object code (machine language) that the computer can understand.

Sprite: A programmable, movable, high-resolution graphic image. Also called a Mov-
able Object Block (MOB).

Standard Character Mode: The mode the Commodore 128 operates in when you
tum it on and when you write programs.

Start Bit: A bit or group of bits that identifies the beginning of a data word.
Statement: A BASIC instruction contained in a program line.
Stop Bit: A bit or group of bits that identifies the end of a data word and defines the

space between data words.
String: An alphanumeric character or series of characters surrounded by quotation

marks.
Subroutine: An independent program segment separate from the main program that

performs a specific task. Subroutines are called from the main program with the
GOSUB statement and must end with a RETURN statement.

Subscript: A variable or constant that refers to a specific element in an array by its
position within the array.

Sustain: The midranged volume of a musical note.
Synchronous Transmission: Data communications using a synchronizing, or clock-

ing, signal between sending and receiving devices.
Syntax: The grammatical rules of a programming language.
Tone: An audible sound of specific pitch and waveform.
Transparent: Describes a computer operation that does not require user intervention.
Variable: A unit of storage representing a changing string or numeric value. Variable

names can be any length, but only the first two characters are stored by the
Commodore 128. The first character must be a letter.

Video Interface Controller (VIC): The MOS chip (8564) responsible for the 40-column
graphics features of the Commodore 128.

Voice: A sound-producing component inside the SID chip. There are three voices
within the SID chip so the Commodore 128 can produce three different sounds
simultaneously. Each voice consists of a tone oscillator/waveform generator, an
envelope generator and an amplitude modulator.

Waveform: A graphic representation of the shape of a sound wave. The waveform
determines some of the physical characteristics of the sound.

Word: Number of bits treated as a single unit by the CPU. In an 8-bit machine, the
word length is 8 bits; in a 16-bit machine, the word length is 16 bits.

INDEX

Abbreviations, 670-673
ABS, 73
Accumulator, 127-129

addressing, 138
loading, 147-148

ACPTR, 422-423
ADC, 162
Addition, 19
Addressing

absolute, 138-139, 143
accumulator, 138
immediate, 138
implied, 139
indexed, 141-143, 144-145
indirect, 143-145
modes, 137, 141-142
relative, 140-141
16-bit, 133-135
table, 161-179
zero-age. 139, 142

ALT Mode. 497
AND, 152, 162
APPEND, 27
Arithmetic

instructions, 151-152
operations. 18-20

Arrays, 13, 16-18
ASC, 73. 660-662
ASL, 163
Assembler, 126-127
ATN, 73
AUTO, 27

B
BACKUP 27-28
BANK, 28
BASIC

advanced programming techniques,
103-107

color RAM in C128, 218
color RAM in C64, 218-219
C128 bit map mode, 221
crunching of programs, 95
C64 bit map mode, 222
C64 character modes, 222
entering machine language subrou-

tines through, 198-202
error messages, 644-647
intelligent use of, 97
mixed with machine language,

198-205
placement of machine language

routines with, 203-205
relocating, 106
screen memory in C128, 215-217
screen memory in C64, 217

BASIN, 423-433
BCC, 163
BCS, 163
BEGIN/BEND, 28-29
BEQ, 164
BIOS (Basic Input Output System),

486-489, 500, 677-683, 704-
705

BIT, 153-154, 164
Bit map mode 112, 221, 222

data, 241-243
80-column (8563) chip, 314-320
multi-color, 243-245
standard, 239-243
standard sprites, 283-284
video matrix, 240-241, 244

Bits
masking, 97-98
16-bit addressing, 133-135
values in a byte, 98-99

BLOAD, 29
BMI, 164
BNE, 164
BOOT, 29-30, 446-447
BOX, 30, 113-114
BPL, 165
BRK, 165
BSAVE. 31
BSOUT, 433
Buffer

control block, 685
routine. 93

BUMP, 73-74
Bus

architecture, 560-562
color data, 562
display, 562
expansion, 635-637
loading, 567-568
multiplexed address, 561
processor, 560
serial, 633-634
shared address, 561-562
translated address, 560-561

BVC, 165
BVS, 165

Cassette connector, 398
CATALOG, 31
CHAR, 31-32, 115
Character mode

accessing character ROM, 229
character memory. 226-229,

234-235
color data, 225-226, 235-237
color memory, 226

C128 BASIC, 219-220
C64 BASIC, 222
multi-color. 233-237
programmable characters, 230-233
screen location, 224, 234
screen memory data, 224-225
standard, 223-233

CHKIN, 429-430
CHRS, 74, 660-662
CIA (6526) chip, 611-623

control registers 622-623
description, 611, 618-622
electrical characteristics, 613-615
interface signals, 615-616
interrupt control, 621-622
serial port, 620-621
timing, 616-617, 618-620

CINT, 410, 414
CIOUT, 423
CIRCLE, 32-33, 115-116
CKOUT 430-431
CLALL, 439
CLC, 166
CLD, 166
CLI, 166
CLOSE, 33, 428^*29
CLOSE ALL, 443
CLR. 33
CLRCH, 431-432
CLV, 166
CMD, 33
CMP, 167
CMPSTA, 456
COLLECT, 34
COLLISION, 34, 267
COLOR, 34-35, 116-117
Color mode

extended background, 237-239
memory map, 664
sprites, 283-285
See also Memory, color RAM

Commands. 12
basic, 27-72
CP/M, 481-482, 483
format, 25-27
graphics, 113-122
machine language monitor, 186-194
sprites, 267-270
summary, 674-675
See also specific commands

Commodore 128. See C128 Mode
Commodore 64. See C64 Mode
Complex Interface Adapter. See CIA

(6526) chip
CONCAT, 35-36
C128 Mode. 2-3, 5

BASIC bit map mode. 221

C128 Mode (continued)
character memory, 219-220
character set availability. 222
color RAM in BASIC, 218
CP/M disk format, 493^t94
memory map, 502-540
ROM cartridge, 471-472
screen memory in BASIC, 215-217
switching from mode to mode, 6
using C64 function key values, 95

Configuration Register. See Memory
Connectors, 652-657
Constants, 12-15

floating-point, 13
integer. 13
string, 14-15

CONT. 36
Control codes, 666-668
COPY, 36
COS, 74
CP/M, 676

BIOS routines, 677-683, 704-705
calling user function, 702-704
commands, 481-482. 483
control characters for line editing,

482, 484
copies of disks and files, 482, 485
disk organization, 491-495
enhancements, 479
files, 479-481, 482,485
keyboard scanning, 496-497
memory map, 709-720
mode, 4
requirements for system, 478
switching from mode to mode, 7
system layout, 486-487
system memory organization,

489-491
system operations, 500
system release, 8

CPX, 167
CPY, 167
C64 Mode, 3, 5, 444

BASIC bit map mode, 222
BASIC character modes, 222
color RAM in BASIC, 218-219
CP/M disk format, 492-493
input/output assignments, 546-554
memory map, 540-554
ROM cartridge, 472
screen memory in BASIC, 217
switching from mode to mode, 7
using function key values. 95

Cursor. 313-314, 326

Daisy wheel printer, 378
DATA, 36
Datassette, 389-390
Data structures, 684-685
DCLEAR. 37
DCLOSE, 37
Debugging. See Programming
DEC, 168
DEF FN, 37
DELETE. 38
Device numbers. 457
DEX, 168

DEY, 168
DIM, 38
DIRECTORY, 38-39
Directory, 375
Disk drive

copies. 482, 485
device number, 378
directory. 375
formatting, 372-373
replacing files or programs, 374
retrieving files or programs, 375-376
saving programs, 373-374
verifying files or programs,

374-375
Disk Parameter Block, 685
Division, 19-20
DLCHR, 450
DLOAD, 39
DMA CALL. 444-445
DO/LOOP/WHILE/UNTIL/EXiT. 39-40
DOPEN. 40
DOS errors, 101, 648-651
Dot matrix printer, 378-379
DRAW, 41, 117-118
Drive Table, 684-685
DSAVE, 41
DVERIFY, 42

Editor. See Screen editor
80-column (8563) chip, 292-334

bit map mode, 314—320
Block Write and Block Copy,

312-313, 333
characters, 296-297, 301-304, 325,

328, 333
cursor, 313-314, 326
display, 299-301, 326, 327-334
frames, 297-299
RAM, 304-305, 309-313, 327-334
registers, 304-309. 324-334
scrolling of screen. 320-323.

328-331
8502 microprocessor, 569-574

description. 569
electrical specification, 569-571
processor timing, 571-574

END, 42
ENVELOPE. 42, 336-337, 347-348
Environmental specifications, 568
EOR, 152, 168
Errors

BASIC messages, 644-647
DOS, 101, 648-651
functions, 101
logic, 99
syntax, 99
tracing of, 101
trapping of, 100
See also Programming, debugging

Escape codes, 669
Exponentiation. 20
Expressions, 18

arithmetic, 18
string. 24

F
FAST, 43

FETCH. 43
Files

CP/M, 479-481
creating and storing, 376-378
disk drive, 374-376
merging, 106-107

FILTER, 43, 337-338, 348-351
FNxx, 74
FOR/TO/STEP/NEXT, 44
FRE, 75
Function keys

changing, 95
programming, 94
using C64 values, 95

Functions, 72-86
errors, 101
user, 685-704
See also specific functions

G
GET, 44-45
GET#, 45
GETCFG, 452
GETIN, 438-439
GETKEY, 45
GO64, 45
GOSUB, 45-46
GOTO/GO TO, 46
GRAPHIC, 46, 119
Graphics

commands, 113-122
power behind, 208-263
programming, 110-122
system, 215-223

GSHAPE, 46, 119-120

H
Hardware

components, 4-5
specifications, 556-641
system architecture, 557-558
See also specific components

HEADER. 47
HELP, 47
HEXS, 75
Hexadecimal notation, 136-137

I
IF/THEN/ELSE. 47-48
INC, 169
INDFET, 454-455
INDSTA, 455
INPUT. 48
INPUT*, 49
Input/output, 5, 372-400, 727

BIOS (Basic Input Output System),
486-489, 500, 667-683, 704-
705

controller ports input, 390-393
C64 assignments, 546-554
Datassette output, 389-390
disk drive, 372-376
files, 376-378
modem output, 381
output control. 393-394
pinouts, 394-400
printer output, 378-381
RS-232 channel, 382-388

INDEX 741

Input/output (continued)
screen outpuut, 388-389

INSTR, 75
Instructions

arithmetic, 151-152
branching, 154—156
compare, 150-151
counter, 148-149
entering machine language in

monitor, 183-184
jump, 159-160
logical, 151, 152-153
machine language, 145-179,

183-184
multiple, 96
register to memory, 147-148
register transfer, 156
return, 160
rotate, 156, 157
set and clear, 158-159
shift, 156-157
stack, 160
table, 161-179
See also specific instructions

INT, 75-76
Interrupt service routine, 258-263
INX, 169
INY, 169
IOBASE, 442
IOINIT, 409-410, 415-416
IRQ pin, 411-414

J
JMP, 169
JMPFAR, 453-454
JOY, 76
Joysticks, 390-392
JSR, 170
JSRFAR, 453-454

Kernal calls, 414-457
Kernal/Editor flags, 539-540
Kernal jump table, 537-539
Kernal routines, 403-406
KEY, 49, 421-422
Keyboard, 640-642, 727

connector pinout, 640-641
scanning, 496-497, 588-589

Keywords. See Reserved system
words

LDA, 147-148, 170
LDX, 170
LDY, 171
LEFTS, 76
LEN, 77
LET, 49-50
Light pen, 393, 593
LIST, 50
LISTN, 425
LKULPA, 448^t49
LKUPSA, 448-449
LOAD, 50, 434-435
Loading

accumulator, 147-148
bus, 567-568

routine. 93-94
LOCATE, 51, 120
LOG, 77
Logic

errors. 99
instructions, 151, 152-153

Logical operators, 21-22
LSR, 171

M
Machine language, 124-179

character memory, 223
color RAM, 219
definition, 124
entering programs, 182-195
entering subroutines through

BASIC, 198-202
executing programs, 184—186
instructions, 145-179, 183-184
mixed with BASIC, 198-205
monitor, 127
monitor commands, 186-194
operand field, 126
operation code field, 125
placement of programs in memory,

202-203
placement of routines with BASIC,

203-205
programming of SID chip, 352-358
screen memory, 217-218
Z80. 702-708

MEMBOT, 420-421
Memory, 4

banked, 208-213, 218, 490
character (ROM), 219-222, 226-229
color RAM, 218-219, 225-226,

236, 238, 243, 245
Configuration Register, 460-463
CP/M system memory organization,

489-491
crunching, 95
dynamic RAM, 624-626
80-column (8563) chip, 299-301,

304-305, 309-313, 327-334
management, 5, 458-471, 583-587
maps, 502-554, 663-664, 709-720
Mode Configuration Register,

465-466
placement of machine language

programs, 202-203
preconfiguration, 462-465
RAM Configuration Register,

467-469
RAM and 80-column (8563) chip,

304-305, 309-313 327-334
RAM organization, 566-567
RAM and system architecture,

557-558, 729
ROM, 627-632
ROM banking, 627
ROM cartridge startup, 471-472
ROM chip, 630, 632
ROM organization, 564
ROM pinout, 629, 631
ROM and system architecture,

557-558, 729
ROM timing, 628
RS-232 channel, 387-388

screen (RAM), 215-218
16K video banks, 210-212
64K RAM banks, 208-210
split-screen mode, 246-247
storage, 12-13, 148
switching banks, 459-460
system organization, 562-567
See also Character mode

Memory Management Unit (MMU).
See Memory, management

MEMTOP, 419-420
Menu, 92
MFM. See Modified Frequency

Modulation
MID$, 77
Modem, 381
Modified Frequency Modulation

(MFM), 705-708
Module communication, 486-487
MONITOR, 51
Monitor, 388-389

entering machine language pro-
grams in, 183-184

field descriptors, 187-188
machine language commands,

186-194
manipulating text within, 194-195

Mouse, 392
Movable object blocks. See Sprites
MOVSPR, 51-52, 267-268
Multiplication, 19
Music, 336-369

coding a song from sheet music,
341-344

equal-tempered scale values, 366,
607-608

instruments, 336-337
notes, 338-340, 341-343, 366-369
statements, 336-341

N
NEW, 52
Non-Maskable Interrupt (NMI) vector,

407-408
NOP, 160, 171

O
ON, 53
OPEN, 53-54, 427-428
Operating system, 402-475

CP/M components, 486
Kernal calls, 414-457
Kemal routines for programs,

403-406
vectors, 407—414

Operations
arithmetic, 18-20
hierarchy of, 22-23
string, 24

ORA, 152, 172
Output. See Input/output

P
Paddles, 392
Page pointers, 470-471
PAINT, 54-55, 120-121
PEEK, 77
PEN. 78

Performance specifications, 567-568
PFKEY, 450-451
PHA, 172
PHOENIX, 448
PHP, 172
Pinouts, 394-400
PLA, 172

See also Programmed Logic Array
PLAY, 55-56. 338-339
PLOT, 441
PLP, 173
POINTER, 78
POKE, 56
Ports, 372, 727

controller. 390-393, 398-399
expansion, 399-400
for peripheral equipment. 652-657
serial. 394
user (RS-232 channel). 394-396
See also specific controller devices

POS, 79
POT. 79
PRIMM, 456-457
PRINT, 56, 100
PRINT*, 57, 380
Printer, 378-380

control, 380-381
daisy wheel, 378
dot matrix, 378-379

PRINT USING, 57-58
Processors, 4, 560
Program counter, 132
Programmed Logic Array, 581-582,

723
Programming

advanced BASIC techniques,
103-107

debugging, 99-101
of 80-column (8563) chip, 292-334
escape, 106
of function keys, 94
graphics, 110-122
of SID chip in machine language,

352-358
Programs

definition, 376
Kernal routines, 403-406
printing program listing, 379
printing through a program, 380
replacing, 374
retrieving from disks. 375-376
saving, 373-374
verifying, 374-375

PUDEF, 58-59

RAM. See Memory
RAMTAS, 416
Raster interrupt split screen program,

248-258
RCLR, 79-80
RDOT, 80
RDTIM, 437
READ, 59
READSS, 426
RECORD. 59-60
Registers, 126

CIA (6526) chip, 622-623

80-column (8563) chip, 304-309,
324-334

8502 microprocessor, 127
8563 video controller, 595
interrupt, 591-592
raster, 591
shadow, 213-214, 539-540
SID chip, 359-365, 528-530
status, 130-132
System Version, 471
VIC chip, 524-527, 591-592
X and Y index, 129-130, 141-143

Relational operators, 20-21
REM, 60, 96
RENAME, 60
RENUMBER, 60-61
Reserved system symbols, 88-89
Reserved system words, 86-88
RESET, 408
RESTOR, 416-417
RESTORE, 61, 407-408
RESUME, 61-62
RETURN, 62
RGBI video connector, 397-398
RGR, 80-81
RIGHTS, 81
RND, 81
ROL, 173
ROM. See Memory
ROR, 173
RSPCOLOR, 82
RSPPOS, 82
RSPR1TE, 83
RS-232 channel, 382-388, 394-396

closing, 385-387
data, 385
memory locations, 387-388
opening, 382-385
sample program, 387

RTI, 174
RTS, 174
RUN, 62
RWINDOW, 83

SAVE, 63, 435-436
SBC, 174
SCALE, 63, 121-122
Schematics, 721-729
SCNCLR, 64
SCRATCH, 64
Screen editor

control codes, 474
escape codes, 473
intermediate storage, 213-214
interrupt-driven, 214-215, 247-248
jump table, 474-475

Screen output, 388-389
See also Graphics; Video

Scrolling
of 8563 screen, 320-323, 328-331
of 8564 VIC chip, 593

SCRORG, 440
SEC, 175
SECND, 418-419
SED, 175
SEI, 175
SETBNK, 451

SETLFS, 426-427
SETMSG, 418
SETNAM, 427
SETTIM, 436-437
SETTMO, 422
SGN, 84
SID (Sound Interface Device) chip,

336, 723
audio input, 351-352
electrical characteristics, 605-606
envelope generators, 608-610
filter, 337-338, 348-351, 363
pins, 600, 602-604
programming in machine language,

352-358
registers, 359-365, 528-530
specifications, 599-604
synchronization and ring modula-

tion, 358-359
and system architecture, 558
timing, 606-607

SIN, 84
SLEEP, 64, 99
SLOW, 64
SOUND, 65, 339-340
Sound, 5, 336-369

characteristics, 345-348
statements, 336-341
volume, 347

Sound Interface Device. See SID chip
Space elimination, 95
SPC, 84
SPINP, 442-443
Split-screen mode, 245-248

organization in memory, 246-247
raster interrupt program, 248-258

SPOUT, 442-443
SPRCOLOR, 65-66, 268-269
SPRDEF, 66, 269-270, 276, 279
SPRITE, 66-67, 272-273
Sprites, 266-290

adjoining, 274—276 ~
collision priorities, 289-290 *.
color, 283-285
commands, 267-270
creation of image, 279-281
creation procedure in definition

mode, 270-274
display priorities, 288-289
enablement, 282
expansion of size, 287-288 *•**'
inner workings, 279-290
pointers, 281-282
positioning on screen, 285-287
program examples, 276-278

SPRSAV, 67, 273
SQR, 84
SSHAPE/GSHAPE, 68-69, 122,

273-274
STA, 175
Stack pointer, 132-133
STASH, 69
Statements, 12

basic, 27-72
format, 25-27
See also specific statements

STOP, 69, 100, 437-438
Storage. See Files; Memory, storage

GLOSSARY 735

Half-Duplex Mode: In this mode, data can be transmitted in only one direction at a
time; if one device is sending, the other must simply receive data until it's time for
it to transmit.

Hardware: Physical components in a computer system, such as the keyboard, disk
drives and printer.

Hexadecimal: Refers to the base-16 number system. Machine language programs are
often written in hexadecimal notation.

Home: The upper-left corner of the screen.
IC: The abbreviation for Integrated Circuit. A silicon chip containing an electrical

circuit made up of components such as transistors, diodes, resistors and capaci-
tors. Integrated circuits are smaller, faster and more efficient than the individual
circuits used in older computers.

Increment: To increase an index variable or counter with a specified value.
Index: The variable counter within a programming loop.
Input: Data fed into the computer to be processed. Input sources include the keyboard,

disk drive, Datassette or modem.
Integer: A whole number (i.e., a number containing no fractional part), such as 0, 1,

2, etc.
Interface: The point of meeting between a computer and an external entity, whether an

operator, a peripheral device or a communications medium. An interface may be
physical, involving a connector, or logical, involving software.

I/O: The abbreviation for Input/Output. Refers to the process of entering data into the
computer, or transferring data from the computer to a disk drive, printer or storage
medium.

Keyboard: Input component of a computer system.
Kilobyte (K): 1024 bytes.
Local Network: One of several short-distance data communications schemes typified

by common use of a transmission medium by many devices at high-data speeds.
Also called a Local Area Network, or LAN.

Loop: A program segment executed repetitively a specified number of times.
Machine Language: The lowest-level language the computer understands. The com-

puter converts all high-level languages, such as BASIC, into machine language
before executing any statements. Machine language is written in binary form, which
a computer can execute directly. Also called machine code or object code.

Matrix: A two-dimensional rectangle with row and column values.
Memory: Storage locations inside the computer. ROM and RAM are two different

types of memory.
Memory Location: A specific storage address in the computer. There are 131,072

memory locations (0-131,071) in the Commodore 128.
MFM: The abbreviation for Modified Frequency Modulation, a method of storing

information on disks. The 1571 disk drives can read and write to MFM disks.
Microprocessor: A CPU that is contained on a single integrated circuit (IC). Micropro-

cessors used in Commodore personal computers include the 6510, the 8502 and
the Z80.

Mode: A state of operation.

Modem: The acronym for MOdulator/DEModulator. A device that transforms digital
signals from the computer into analog electrical impulses for transmission over
telephone lines, and does the reverse for reception.

Monitor: A display device resembling a television set but with a higher-resolution
(sharper) image on the video screen.

Motherboard: In a bus-oriented system, the board that contains the bus lines and edge
connectors to accommodate the other boards in the system.

Multi-Color Bit Map Mode: A graphic mode that allows you to display one of four
colors for each pixel within an 8 by 8 character grid. See Pixel.

Multi-Color Character Mode: A graphic mode that allows you to display four
different colors within an 8 by 8 character grid.

Multiple-Access Network: A flexible system by which every station can have access
to the network at all times; provisions are made for times when two computers
decide to transmit at the same time.

Null String: An empty character ("") . A character that is not yet assigned a character
string code. Produces an illegal quantity error if used in a GET statement.

Octave: One full series of eight notes on the musical scale.
Operating System: A built-in program that controls everything a computer does.
Operator: A symbol that tells the computer to perform a mathematical, logical or

relational operation on the specified variables, constants or array elements in the
expression. The mathematical operators are +, -, *, / and | • The relational
operators are <, =, >, < =, > = and < > . The logical operators are AND,
OR NOT and XOR.

Order of Operations: Sequence in which computations are performed in a mathemat-
ical expression. Also called Hierarchy of Operations.

Parallel Port: A port used for transmission of data 1 byte at a time using 8 data lines,
one for each bit.

Parity Bit: A 1 or 0 added to a group of bits that identifies the sum of the bits as odd or
even, for error checking purposes.

Peripheral: Any accessory device attached to the computer such as a disk drive, printer,
modem or joystick.

Pitch: The highness or lowness of a tone that is determined by the frequency of the
sound wave. See Frequency.

Pixel: Computer term for picture element. Each dot that makes up an image on
the screen is called a pixel. Each character on the screen is displaced within
an 8 by 8 grid of pixels. The entire screen is composed of a 320 by 200 pixel
grid. In bit-map mode, each pixel corresponds to a bit in the computer's
memory.

Pointer: A register used to indicate the address of a location in memory.
Polling: A communications control method used by some computer/terminal systems

whereby a "master" station asks many devices attached to a common transmis-
sion medium, in turn, whether they have information to send.

Port: A channel through which data is transferred to and from the CPU.
Printer: Peripheral device that outputs the contents of the computer's memory onto a

sheet of paper. This paper is referred to as a hard copy.

